RESUMEN
Diabetes is commonly associated with an elevated level of reactive carbonyl species due to alteration of glucose and fatty acid metabolism. These metabolic changes cause an abnormality in cardiac Ca2+ regulation that can lead to cardiomyopathies. In this study, we explored how the reactive α-dicarbonyl methylglyoxal (MGO) affects Ca2+ regulation in mouse ventricular myocytes. Analysis of intracellular Ca2+ dynamics revealed that MGO (200 µM) increases action potential (AP)-induced Ca2+ transients and sarcoplasmic reticulum (SR) Ca2+ load, with a limited effect on L-type Ca2+ channel-mediated Ca2+ transients and SERCA-mediated Ca2+ uptake. At the same time, MGO significantly slowed down cytosolic Ca2+ extrusion by Na+/Ca2+ exchanger (NCX). MGO also increased the frequency of Ca2+ waves during rest and these Ca2+ release events were abolished by an external solution with zero [Na+] and [Ca2+]. Adrenergic receptor activation with isoproterenol (10 nM) increased Ca2+ transients and SR Ca2+ load, but it also triggered spontaneous Ca2+ waves in 27% of studied cells. Pretreatment of myocytes with MGO increased the fraction of cells with Ca2+ waves during adrenergic receptor stimulation by 163%. Measurements of intracellular [Na+] revealed that MGO increases cytosolic [Na+] by 57% from the maximal effect produced by the Na+-K+ ATPase inhibitor ouabain (20 µM). This increase in cytosolic [Na+] was a result of activation of a tetrodotoxin-sensitive Na+ influx, but not an inhibition of Na+-K+ ATPase. An increase in cytosolic [Na+] after treating cells with ouabain produced similar effects on Ca2+ regulation as MGO. These results suggest that protein carbonylation can affect cardiac Ca2+ regulation by increasing cytosolic [Na+] via a tetrodotoxin-sensitive pathway. This, in turn, reduces Ca2+ extrusion by NCX, causing SR Ca2+ overload and spontaneous Ca2+ waves.
Asunto(s)
Calcio , Miocitos Cardíacos , Carbonilación Proteica , Retículo Sarcoplasmático , Sodio , Animales , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/efectos de los fármacos , Retículo Sarcoplasmático/metabolismo , Retículo Sarcoplasmático/efectos de los fármacos , Ratones , Calcio/metabolismo , Sodio/metabolismo , Carbonilación Proteica/efectos de los fármacos , Intercambiador de Sodio-Calcio/metabolismo , Ventrículos Cardíacos/metabolismo , Ventrículos Cardíacos/citología , Piruvaldehído/farmacología , Piruvaldehído/metabolismo , Señalización del Calcio/fisiología , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismo , Potenciales de Acción/efectos de los fármacos , Ratones Endogámicos C57BL , Células Cultivadas , MasculinoRESUMEN
The type 2a sarco/endoplasmic reticulum Ca2+-ATPase (SERCA2a) plays a central role in the intracellular Ca2+ homeostasis of cardiac myocytes, pumping Ca2+ from the cytoplasm into the sarcoplasmic reticulum (SR) lumen to maintain relaxation (diastole) and prepare for contraction (systole). Diminished SERCA2a function has been reported in several pathological conditions, including heart failure. Therefore, development of new drugs that improve SERCA2a Ca2+ transport is of great clinical significance. In this study, we characterized the effect of a recently identified N-aryl-N-alkyl-thiophene-2-carboxamide (or compound 1) on SERCA2a Ca2+-ATPase and Ca2+ transport activities in cardiac SR vesicles, and on Ca2+ regulation in a HEK293 cell expression system and in mouse ventricular myocytes. We found that compound 1 enhances SERCA2a Ca2+-ATPase and Ca2+ transport in SR vesicles. Fluorescence lifetime measurements of fluorescence resonance energy transfer between SERCA2a and phospholamban indicated that compound 1 interacts with the SERCA-phospholamban complex. Measurement of endoplasmic reticulum Ca2+ dynamics in HEK293 cells expressing human SERCA2a showed that compound 1 increases endoplasmic reticulum Ca2+ load by enhancing SERCA2a-mediated Ca2+ transport. Analysis of cytosolic Ca2+ dynamics in mouse ventricular myocytes revealed that compound 1 increases the action potential-induced Ca2+ transients and SR Ca2+ load, with negligible effects on L-type Ca2+ channels and Na+/Ca2+ exchanger. However, during adrenergic receptor activation, compound 1 did not further increase Ca2+ transients and SR Ca2+ load, but it decreased the propensity toward Ca2+ waves. Suggestive of concurrent desirable effects of compound 1 on RyR2, [3H]-ryanodine binding to cardiac SR vesicles shows a small decrease in nM Ca2+ and a small increase in µM Ca2+. Accordingly, compound 1 slightly decreased Ca2+ sparks in permeabilized myocytes. Thus, this novel compound shows promising characteristics to improve intracellular Ca2+ dynamics in cardiomyocytes that exhibit reduced SERCA2a Ca2+ uptake, as found in failing hearts.
Asunto(s)
Insuficiencia Cardíaca , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico , Animales , Humanos , Ratones , Calcio/metabolismo , Insuficiencia Cardíaca/metabolismo , Células HEK293 , Miocitos Cardíacos/metabolismo , Retículo Sarcoplasmático/metabolismo , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismo , Tiofenos/farmacologíaRESUMEN
In cardiomyocytes, the sarco/endoplasmic reticulum Ca2+-ATPase (SERCA2a) is a central component of intracellular Ca2+ regulation. Several heart diseases, including heart failure, are associated with reduced myocardial contraction due to SERCA2a downregulation. Therefore, the need for developing new drugs that could improve SERCA2a function is high. We have recently identified SERCA2a modulators (Compounds 6 and 8) from our screening campaigns and confirmed activation of biochemical SERCA2a ATPase activity and Ca2+ uptake activity. In this study, confocal microscopy and in-cell Ca2+ imaging were used to characterize the effects of these SERCA2a activators on Ca2+ regulation in mouse ventricular myocytes and endoplasmic reticulum (ER) Ca2+ uptake in a HEK293 cell expressing human SERCA2a. Analysis of cytosolic Ca2+ dynamics in cardiomyocytes revealed that both Compounds (6 and 8) increase the action potential-induced Ca2+ transients and sarcoplasmic reticulum (SR) Ca2+ load. While Compound 6 induced a negligible effect on Ca2+ transients invoked by the L-type Ca2+ channel (LTCC) current, Compound 8 increased Ca2+ transients during LTCC activation, suggesting an off-target protein interaction of Compound 8. Analysis of ER Ca2+ transport by human SERCA2a in HEK cells showed that only Compound 6 increased both ER Ca2+ uptake and ER Ca2+ load significantly, whereas Compound 8 had no effect on SERCA2a Ca2+ transport. This study revealed that Compound 6 exhibits promising characteristics that can improve intracellular Ca2+ dynamics by selectively enhancing SERCA2a Ca2+ uptake.
Asunto(s)
Señalización del Calcio , Calcio , Ratones , Humanos , Animales , Calcio/metabolismo , Células HEK293 , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismo , Miocitos Cardíacos/metabolismo , Retículo Sarcoplasmático/metabolismoRESUMEN
Obesity affects over 2 billion people worldwide and is accompanied by peripheral neuropathy (PN) and an associated poorer quality of life. Despite high prevalence, the molecular mechanisms underlying the painful manifestations of PN are poorly understood, and therapies are restricted to use of painkillers or other drugs that do not address the underlying disease. Studies have demonstrated that the gut microbiome is linked to metabolic health and its alteration is associated with many diseases, including obesity. Pathologic changes to the gut microbiome have recently been linked to somatosensory pain, but any relationships between gut microbiome and PN in obesity have yet to be explored. Our data show that mice fed a Western diet developed indices of PN that were attenuated by concurrent fecal microbiome transplantation (FMT). In addition, we observed changes in expression of genes involved in lipid metabolism and calcium handling in cells of the peripheral nerve system (PNS). FMT also induced changes in the immune cell populations of the PNS. There was a correlation between an increase in the circulating short-chain fatty acid butyrate and pain improvement following FMT. Additionally, butyrate modulated gene expression and immune cells in the PNS. Circulating butyrate was also negatively correlated with distal pain in 29 participants with varied body mass index. Our data suggest that the metabolite butyrate, secreted by the gut microbiome, underlies some of the effects of FMT. Targeting the gut microbiome, butyrate, and its consequences may represent novel viable approaches to prevent or relieve obesity-associated neuropathies.
Asunto(s)
Trasplante de Microbiota Fecal/métodos , Obesidad/microbiología , Enfermedades del Sistema Nervioso Periférico/terapia , Animales , Butiratos/metabolismo , Dieta Alta en Grasa , Dieta Occidental , Ácidos Grasos Volátiles/metabolismo , Microbioma Gastrointestinal/efectos de los fármacos , Expresión Génica , Resistencia a la Insulina , Metabolismo de los Lípidos/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Obesos , Microbiota , Neuralgia/metabolismo , Obesidad/fisiopatología , Sistema Nervioso Periférico/metabolismo , Sistema Nervioso Periférico/fisiologíaRESUMEN
The type 2a sarco/endoplasmic reticulum (ER) Ca2+-ATPase (SERCA2a) plays a key role in intracellular Ca2+ regulation in the heart. We have previously shown evidence of stable homodimers of SERCA2a in heterologous cells and cardiomyocytes. However, the functional significance of the pump dimerization remains unclear. Here, we analyzed how SERCA2a dimerization affects ER Ca2+ transport. Fluorescence resonance energy transfer experiments in HEK293 cells transfected with fluorescently labeled SERCA2a revealed increasing dimerization of Ca2+ pumps with increasing expression level. This concentration-dependent dimerization provided means of comparison of the functional characteristics of monomeric and dimeric pumps. SERCA-mediated Ca2+ uptake was measured with the ER-targeted Ca2+ sensor R-CEPIA1er in cells cotransfected with SERCA2a and ryanodine receptor. For each individual cell, the maximal ER Ca2+ uptake rate and the maximal Ca2+ load, together with the pump expression level, were analyzed. This analysis revealed that the ER Ca2+ uptake rate increased as a function of SERCA2a expression, with a particularly steep, nonlinear increase at high expression levels. Interestingly, the maximal ER Ca2+ load also increased with an increase in the pump expression level, suggesting improved catalytic efficiency of the dimeric species. Reciprocally, thapsigargin inhibition of a fraction of the population of SERCA2a reduced not only the maximal ER Ca2+ uptake rate but also the maximal Ca2+ load. These data suggest that SERCA2a dimerization regulates Ca2+ transport by improving both the SERCA2a turnover rate and catalytic efficacy. Analysis of ER Ca2+ uptake in cells cotransfected with human wild-type SERCA2a (SERCA2aWT) and SERCA2a mutants with different catalytic activity revealed that an intact catalytic cycle in both protomers is required for enhancing the efficacy of Ca2+ transport by a dimer. The data are consistent with the hypothesis of functional coupling of two SERCA2a protomers in a dimer that reduces the energy barrier of rate-limiting steps of the catalytic cycle of Ca2+ transport.
Asunto(s)
Calcio , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico , Calcio/metabolismo , Dimerización , Células HEK293 , Humanos , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Retículo Sarcoplasmático/metabolismo , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismoRESUMEN
Transient receptor potential proteins (TRPs) act as nonselective cation channels. Of the TRP channels, PC2 (also known as polycystin 2) is localized to the sarcoplasmic reticulum (SR); however, its contribution to calcium-induced calcium release and overall cardiac function in the heart is poorly understood. The goal of this study was to characterize the effect of cardiac-specific PC2 deletion in adult cardiomyocytes and in response to chronic ß-adrenergic challenge. We used a temporally inducible model to specifically delete PC2 from cardiomyocytes (Pkd2 KO) and characterized calcium and contractile dynamics in single cells. We found enhanced intracellular calcium release after Pkd2 KO, and near super-resolution microscopy analysis suggested this was due to close localization of PC2 to the ryanodine receptor. At the organ level, speckle-tracking echocardiographical analysis showed increased dyssynchrony in the Pkd2 KO mice. In response to chronic adrenergic stimulus, cardiomyocytes from the Pkd2 KO had no reserve ß-adrenergic calcium responses and significantly attenuated wall motion in the whole heart. Biochemically, without adrenergic stimulus, there was an overall increase in PKA phosphorylated targets in the Pkd2 KO mouse, which decreased following chronic adrenergic stimulus. Taken together, our results suggest that cardiac-specific PC2 limits SR calcium release by affecting the PKA phosphorylation status of the ryanodine receptor, and the effects of PC2 loss are exacerbated upon adrenergic challenge.NEW & NOTEWORTHY Our goal was to characterize the role of the transient receptor potential channel polycystin 2 (PC2) in cardiomyocytes following adult-onset deletion. Loss of PC2 resulted in decreased cardiac shortening and cardiac dyssynchrony and diminished adrenergic reserve. These results suggest that cardiac-specific PC2 modulates intracellular calcium signaling and contributes to the maintenance of adrenergic pathways.
Asunto(s)
Adrenérgicos/farmacología , Señalización del Calcio , Miocitos Cardíacos/metabolismo , Canales Catiónicos TRPP/metabolismo , Potenciales de Acción , Animales , Células Cultivadas , Eliminación de Gen , Masculino , Ratones , Ratones Endogámicos C57BL , Contracción Miocárdica , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/fisiología , Retículo Sarcoplasmático/metabolismo , Canales Catiónicos TRPP/genéticaRESUMEN
The conformational changes of a calcium transport ATPase were investigated with molecular dynamics (MD) simulations as well as fluorescence resonance energy transfer (FRET) measurements to determine the significance of a discrete structural element for regulation of the conformational dynamics of the transport cycle. Previous MD simulations indicated that a loop in the cytosolic domain of the SERCA calcium transporter facilitates an open-to-closed structural transition. To investigate the significance of this structural element, we performed additional MD simulations and new biophysical measurements of SERCA structure and function. Rationally designed in silico mutations of three acidic residues of the loop decreased SERCA domain-domain contacts and increased domain-domain separation distances. Principal component analysis of MD simulations suggested decreased sampling of compact conformations upon N-loop mutagenesis. Deficits in headpiece structural dynamics were also detected by measuring intramolecular FRET of a Cer-YFP-SERCA construct (2-color SERCA). Compared with WT, the mutated 2-color SERCA shows a partial FRET response to calcium, whereas retaining full responsiveness to the inhibitor thapsigargin. Functional measurements showed that the mutated transporter still hydrolyzes ATP and transports calcium, but that maximal enzyme activity is reduced while maintaining similar calcium affinity. In live cells, calcium elevations resulted in concomitant FRET changes as the population of WT 2-color SERCA molecules redistributed among intermediates of the transport cycle. Our results provide novel insights on how the population of SERCA pumps responds to dynamic changes in intracellular calcium.
Asunto(s)
Señalización del Calcio , Calcio/metabolismo , Retículo Endoplásmico/metabolismo , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/química , Cristalografía por Rayos X , Humanos , Modelos Moleculares , Simulación de Dinámica Molecular , Unión Proteica , Conformación Proteica , ARN Interferente Pequeño/genética , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/genética , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismoRESUMEN
The type 2a sarco-/endoplasmic reticulum Ca2+-ATPase (SERCA2a) plays a key role in Ca2+ regulation in the heart. However, available techniques to study SERCA function are either cell destructive or lack sensitivity. The goal of this study was to develop an approach to selectively measure SERCA2a function in the cellular environment. The genetically encoded Ca2+ sensor R-CEPIA1er was used to measure the concentration of Ca2+ in the lumen of the endoplasmic reticulum (ER) ([Ca2+]ER) in HEK293 cells expressing human SERCA2a. Coexpression of the ER Ca2+ release channel ryanodine receptor (RyR2) created a Ca2+ release/reuptake system that mimicked aspects of cardiac myocyte Ca2+ handling. SERCA2a function was quantified from the rate of [Ca2+]ER refilling after ER Ca2+ depletion; then, ER Ca2+ leak was measured after SERCA inhibition. ER Ca2+ uptake and leak were analyzed as a function of [Ca2+]ER to determine maximum ER Ca2+ uptake rate and maximum ER Ca2+ load. The sensitivity of this assay was validated by analyzing effects of SERCA inhibitors, [ATP]/[ADP], oxidative stress, phospholamban, and a loss-of-function SERCA2a mutation. In addition, the feasibility of using R-CEPIA1er to study SERCA2a in a native system was evaluated by using in vivo gene delivery to express R-CEPIA1er in mouse hearts. After ventricular myocyte isolation, the same methodology used in HEK293 cells was applied to study endogenous SERCA2a. In conclusion, this new approach can be used as a sensitive screening tool to study the effect of different drugs, posttranslational modifications, and mutations on SERCA function. NEW & NOTEWORTHY The aim of this study was to develop a sensitive approach to selectively measure sarco-/endoplasmic reticulum Ca2+-ATPase (SERCA) function in the cellular environment. The newly developed Ca2+ sensor R-CEPIA1er was used to successfully analyze Ca2+ uptake mediated by recombinant and native cardiac SERCA. These results demonstrate that this new approach can be used as a powerful tool to study new mechanisms of Ca2+ pump regulation.
Asunto(s)
Calcio/metabolismo , Retículo Endoplásmico/enzimología , Miocitos Cardíacos/enzimología , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismo , Retículo Sarcoplasmático/enzimología , Adenosina Difosfato/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Transporte Biológico , Técnicas Biosensibles , Proteínas de Unión al Calcio/metabolismo , Retículo Endoplásmico/efectos de los fármacos , Inhibidores Enzimáticos/farmacología , Células HEK293 , Humanos , Ratones Endogámicos C57BL , Mutación , Miocitos Cardíacos/efectos de los fármacos , Estrés Oxidativo , Canal Liberador de Calcio Receptor de Rianodina/genética , Retículo Sarcoplasmático/efectos de los fármacos , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/antagonistas & inhibidores , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/genética , Factores de TiempoRESUMEN
Defective Ca2+ regulation plays a key role in the blunted force-frequency response in heart failure (HF). Since HF is commonly associated with oxidative stress, we studied whether oxidation of ryanodine receptor (RyR2) contributes to this defect. In control ventricular myocytes, oxidative stress induced formation of disulfide bonds between RyR2 subunits: intersubunit cross-linking (XL). Western blot analysis and Ca2+ imaging revealed a strong positive correlation between RyR2 XL and sarcoplasmic reticulum (SR) Ca2+ leak. These results illustrate that RyR2 XL can be used as a sensitive indicator of RyR2 dysfunction during oxidative stress. HF myocytes were in a state of oxidative stress since they exhibited an increase in reactive oxygen species (ROS) level, a decrease in ROS defense and an overall protein oxidation. These myocytes were also characterized by RyR2 XL and increased SR Ca2+ leak. Moreover, the frequency-dependent increase of Ca2+ transient amplitude was suppressed due to the inability of the SR to maintain Ca2+ load at high pacing rates. Because SR Ca2+ load is determined by the balance between SR Ca2+ uptake and leak, the blunted frequency-dependent inotropy in HF can be mediated by ROS-induced SR Ca2+ leak. Preventing RyR2 XL in HF myocytes decreased SR Ca2+ leak and increased Ca2+ transients at high pacing rate. We also studied whether RyR2 oxidation alone can cause the blunted frequency-dependent facilitation of Ca2+ transient amplitude in control myocytes. When RyR2 XL was induced in control myocytes to a similar level seen in HF, an increase of Ca2+ transient amplitude at high pacing rate was significantly suppressed. These results suggest that SR Ca2+ leak induced by RyR2 oxidation can play an important role in the blunted frequency-dependent inotropy of HF.
Asunto(s)
Señalización del Calcio , Insuficiencia Cardíaca/metabolismo , Miocitos Cardíacos/metabolismo , Estrés Oxidativo , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Potenciales de Acción , Animales , Células Cultivadas , Miocitos Cardíacos/fisiología , ConejosRESUMEN
ß-Adrenergic receptor (ß-AR) activation produces the main positive inotropic response of the heart. During ischemia-reperfusion (I/R), however, ß-AR activation can trigger life-threatening arrhythmias. Because I/R is frequently associated with oxidative stress, we investigated whether ryanodine receptor (RyR) oxidation contributes to proarrythmogenic Ca2+ waves during ß-AR activation. Measurements of contractile and electrical activity from Langendorff-perfused rabbit hearts revealed that I/R produces tachyarrhythmias. Ventricular myocytes isolated from I/R hearts had an increased level of oxidized glutathione (i.e., oxidative stress) and a decreased level of free thiols in RyRs (i.e., RyR oxidation). Furthermore, myocytes from I/R hearts were characterized by increased sarcoplasmic reticulum (SR) Ca2+ leak and enhanced fractional SR Ca2+ release. In myocytes from nonischemic hearts, ß-AR activation with isoproterenol (10 nM) produced only a positive inotropic effect, whereas in myocytes from ischemic hearts, isoproterenol at the same concentration triggered spontaneous Ca2+ waves. ß-AR activation produced a similar effect on RyR phosphorylation in control and I/R myocytes. Treatment of myocytes from I/R hearts with the reducing agent mercaptopropionylglycine (100 µM) attenuated RyR oxidization and decreased Ca2+ wave frequency during ß-AR activation. On the other hand, treatment of myocytes from nonischemic hearts with H2O2 (50 µM) increased SR Ca2+ leak and triggered Ca2+ waves during ß-AR activation. Collectively, these results suggest that RyR oxidation after I/R plays a critical role in the transition from positive inotropic to arrhythmogenic effects during ß-AR stimulation. Prevention of RyR oxidation can be a promising strategy to inhibit arrhythmias and preserve positive inotropic effect of ß-AR activation during myocardial infarction. NEW & NOTEWORTHY Oxidative stress induced by ischemia plays a critical role in triggering arrhythmias during adrenergic stimulation. The combined increase in sarcoplasmic reticulum Ca2+ leak (because of ryanodine receptor oxidation) and sarcoplasmic reticulum Ca2+ load (because of adrenergic stimulation) can trigger proarrythmogenic Ca2+ waves. Restoring normal ryanodine receptor redox status can be a promising strategy to prevent arrhythmias and preserve positive inotropic effect of adrenergic stimulation during myocardial infarction.
Asunto(s)
Agonistas Adrenérgicos beta/farmacología , Arritmias Cardíacas/metabolismo , Señalización del Calcio/efectos de los fármacos , Ventrículos Cardíacos/efectos de los fármacos , Isoproterenol/farmacología , Daño por Reperfusión Miocárdica/metabolismo , Miocitos Cardíacos/efectos de los fármacos , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Función Ventricular Izquierda/efectos de los fármacos , Animales , Arritmias Cardíacas/etiología , Arritmias Cardíacas/fisiopatología , Modelos Animales de Enfermedad , Ventrículos Cardíacos/metabolismo , Ventrículos Cardíacos/fisiopatología , Preparación de Corazón Aislado , Daño por Reperfusión Miocárdica/etiología , Daño por Reperfusión Miocárdica/fisiopatología , Miocitos Cardíacos/metabolismo , Oxidación-Reducción , Fosforilación , Conejos , Retículo Sarcoplasmático/efectos de los fármacos , Retículo Sarcoplasmático/metabolismo , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismo , Factores de TiempoRESUMEN
Functional impact of cardiac ryanodine receptor (type 2 RyR or RyR2) phosphorylation by protein kinase A (PKA) remains highly controversial. In this study, we characterized a functional link between PKA-mediated RyR2 phosphorylation level and sarcoplasmic reticulum (SR) Ca2+ release and leak in permeabilized rabbit ventricular myocytes. Changes in cytosolic [Ca2+] and intra-SR [Ca2+]SR were measured with Fluo-4 and Fluo-5N, respectively. Changes in RyR2 phosphorylation at two PKA sites, serine-2031 and -2809, were measured with phospho-specific antibodies. cAMP (10µM) increased Ca2+ spark frequency approximately two-fold. This effect was associated with an increase in SR Ca2+ load from 0.84 to 1.24mM. PKA inhibitory peptide (PKI; 10µM) abolished the cAMP-dependent increase of SR Ca2+ load and spark frequency. When SERCA was completely blocked by thapsigargin, cAMP did not affect RyR2-mediated Ca2+ leak. The lack of a cAMP effect on RyR2 function can be explained by almost maximal phosphorylation of RyR2 at serine-2809 after sarcolemma permeabilization. This high RyR2 phosphorylation level is likely the consequence of a balance shift between protein kinase and phosphatase activity after permeabilization. When RyR2 phosphorylation at serine-2809 was reduced to its "basal" level (i.e. RyR2 phosphorylation level in intact myocytes) using kinase inhibitor staurosporine, SR Ca2+ leak was significantly reduced. Surprisingly, further dephosphorylation of RyR2 with protein phosphatase 1 (PP1) markedly increased SR Ca2+ leak. At the same time, phosphorylation of RyR2 at serine 2031 did not significantly change under identical experimental conditions. These results suggest that RyR2 phosphorylation by PKA has a complex effect on SR Ca2+ leak in ventricular myocytes. At an intermediate level of RyR2 phosphorylation SR Ca2+ leak is minimal. However, complete dephosphorylation and maximal phosphorylation of RyR2 increases SR Ca2+ leak.
Asunto(s)
Calcio/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Ventrículos Cardíacos/metabolismo , Activación del Canal Iónico , Miocitos Cardíacos/metabolismo , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Retículo Sarcoplasmático/metabolismo , Animales , Señalización del Calcio , AMP Cíclico/metabolismo , Miocardio/metabolismo , Fosforilación , ConejosRESUMEN
In cardiomyocytes, [Ca] within the sarcoplasmic reticulum (SR; [Ca]SR) partially determines the amplitude of cytosolic Ca transient that, in turn, governs myocardial contraction. Therefore, it is critical to understand the molecular mechanisms that regulate [Ca]SR handling. Until recently, the best approach available to directly measure [Ca]SR was to use low-affinity Ca indicators (e.g., Fluo-5N). However, this approach presents several limitations, including nonspecific cellular localization, dye extrusion, and species limitation. Recently a new genetically encoded family of Ca indicators has been generated, named Ca-measuring organelle-entrapped protein indicators (CEPIA). Here, we tested the red fluorescence SR-targeted Ca sensor (R-CEPIA1er) as a tool to directly measure [Ca]SR dynamics in ventricular myocytes. Infection of rabbit and rat ventricular myocytes with an adenovirus expressing the R-CEPIA1er gene displayed prominent localization in the SR and nuclear envelope. Calibration of R-CEPIA1er in myocytes resulted in a Kd of 609 µM, suggesting that this sensor is sensitive in the whole physiological range of [Ca]SR [Ca]SR dynamics measured with R-CEPIA1er were compared with [Ca]SR measured with Fluo5-N. We found that both the time course of the [Ca]SR depletion and fractional SR Ca release induced by an action potential were similar between these two Ca sensors. R-CEPIA1er fluorescence did not decline during experiments, indicating lack of dye extrusion or photobleaching. Furthermore, measurement of [Ca]SR with R-CEPIA1er can be combined with cytosolic [Ca] measurements (with Fluo-4) to obtain more detailed information regarding Ca handling in cardiac myocytes. In conclusion, R-CEPIA1er is a promising tool that can be used to measure [Ca]SR dynamics in myocytes from different animal species.
Asunto(s)
Técnicas Biosensibles , Señalización del Calcio , Calcio/metabolismo , Ventrículos Cardíacos/metabolismo , Proteínas Luminiscentes/metabolismo , Miocitos Cardíacos/metabolismo , Retículo Sarcoplasmático/metabolismo , Compuestos de Anilina/metabolismo , Animales , Células Cultivadas , Colorantes Fluorescentes/metabolismo , Ventrículos Cardíacos/citología , Cinética , Proteínas Luminiscentes/genética , Microscopía Confocal , Conejos , Ratas Sprague-Dawley , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Transfección , Xantenos/metabolismo , Proteína Fluorescente RojaRESUMEN
While ß-adrenergic receptor (ß-AR) stimulation ensures adequate cardiac output during stress, it can also trigger life-threatening cardiac arrhythmias. We have previously shown that proarrhythmic Ca(2+) waves during ß-AR stimulation temporally coincide with augmentation of reactive oxygen species (ROS) production. In this study, we tested the hypothesis that increased energy demand during ß-AR stimulation plays an important role in mitochondrial ROS production and Ca(2+)-wave generation in rabbit ventricular myocytes. We found that ß-AR stimulation with isoproterenol (0.1 µM) decreased the mitochondrial redox potential and the ratio of reduced to oxidated glutathione. As a result, ß-AR stimulation increased mitochondrial ROS production. These metabolic changes induced by isoproterenol were associated with increased sarcoplasmic reticulum (SR) Ca(2+) leak and frequent diastolic Ca(2+) waves. Inhibition of cell contraction with the myosin ATPase inhibitor blebbistatin attenuated oxidative stress as well as spontaneous SR Ca(2+) release events during ß-AR stimulation. Furthermore, we found that oxidative stress induced by ß-AR stimulation caused the formation of disulfide bonds between two ryanodine receptor (RyR) subunits, referred to as intersubunit cross-linking. Preventing RyR cross-linking with N-ethylmaleimide decreased the propensity of Ca(2+) waves induced by ß-AR stimulation. These data suggest that increased energy demand during sustained ß-AR stimulation weakens mitochondrial antioxidant defense, causing ROS release into the cytosol. By inducing RyR intersubunit cross-linking, ROS can increase SR Ca(2+) leak to the critical level that can trigger proarrhythmic Ca(2+) waves.
Asunto(s)
Señalización del Calcio/fisiología , Calcio/metabolismo , Miocitos Cardíacos/metabolismo , Receptores Adrenérgicos beta/metabolismo , Adenosina Trifosfatasas/antagonistas & inhibidores , Adenosina Trifosfatasas/metabolismo , Agonistas Adrenérgicos beta/farmacología , Animales , Señalización del Calcio/efectos de los fármacos , Técnicas de Cultivo de Célula , Citosol/efectos de los fármacos , Citosol/metabolismo , Inhibidores Enzimáticos/farmacología , Etilmaleimida/farmacología , Compuestos Heterocíclicos de 4 o más Anillos/farmacología , Isoproterenol/farmacología , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Miocitos Cardíacos/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Estrés Oxidativo/fisiología , Conejos , Especies Reactivas de Oxígeno/metabolismo , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Retículo Sarcoplasmático/efectos de los fármacos , Retículo Sarcoplasmático/metabolismoRESUMEN
The dyadic organization of ventricular myocytes ensures synchronized activation of sarcoplasmic reticulum (SR) Ca(2+) release during systole. However, it remains obscure how the dyadic organization affects SR Ca(2+) handling during diastole. By measuring intraluminal SR Ca(2+) ([Ca(2+)]SR) decline during rest in rabbit ventricular myocytes, we found that â¼76% of leaked SR Ca(2+) is extruded from the cytosol and only â¼24% is pumped back into the SR. Thus, the majority of Ca(2+) that leaks from the SR is removed from the cytosol before it can be sequestered back into the SR by the SR Ca(2+)-ATPase (SERCA). Detubulation decreased [Ca(2+)]SR decline during rest, thus making the leaked SR Ca(2+) more accessible for SERCA. These results suggest that Ca(2+) extrusion systems are localized in T-tubules. Inhibition of Na(+)-Ca(2+) exchanger (NCX) slowed [Ca(2+)]SR decline during rest by threefold, however did not prevent it. Depolarization of mitochondrial membrane potential during NCX inhibition completely prevented the rest-dependent [Ca(2+)]SR decline. Despite a significant SR Ca(2+) leak, Ca(2+) sparks were very rare events in control conditions. NCX inhibition or detubulation increased Ca(2+) spark activity independent of SR Ca(2+) load. Overall, these results indicate that during rest NCX effectively competes with SERCA for cytosolic Ca(2+) that leaks from the SR. This can be explained if the majority of SR Ca(2+) leak occurs through ryanodine receptors in the junctional SR that are located closely to NCX in the dyadic cleft. Such control of the dyadic [Ca(2+)] by NCX play a critical role in suppressing Ca(2+) sparks during rest.
Asunto(s)
Calcio/metabolismo , Ventrículos Cardíacos/citología , Miocitos Cardíacos/citología , Descanso/fisiología , Retículo Sarcoplasmático/metabolismo , Animales , Señalización del Calcio/efectos de los fármacos , Inhibidores Enzimáticos/farmacología , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Conejos , Retículo Sarcoplasmático/efectos de los fármacos , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/antagonistas & inhibidores , Intercambiador de Sodio-Calcio/antagonistas & inhibidores , Tapsigargina/farmacologíaRESUMEN
In the heart, coupling between excitation of the surface membrane and activation of contractile apparatus is mediated by Ca released from the sarcoplasmic reticulum (SR). Several components of Ca machinery are perfectly arranged within the SR network and the T-tubular system to generate a regular Ca cycling and thereby rhythmic beating activity of the heart. Among these components, ryanodine receptor (RyR) and SR Ca ATPase (SERCA) complexes play a particularly important role and their dysfunction largely underlies abnormal Ca homeostasis in diseased hearts such as in heart failure. The abnormalities in Ca regulation occur at practically all main steps of Ca cycling in the failing heart, including activation and termination of SR Ca release, diastolic SR Ca leak, and SR Ca uptake. The contributions of these different mechanisms to depressed contractile function and enhanced arrhythmogenesis may vary in different HF models. This brief review will therefore focus on modifications in RyR and SERCA structure that occur in the failing heart and how these molecular modifications affect SR Ca regulation and excitation-contraction coupling.
Asunto(s)
Acoplamiento Excitación-Contracción , Insuficiencia Cardíaca/metabolismo , Animales , Canales de Calcio/metabolismo , HumanosRESUMEN
The type 2 ryanodine receptor (RyR2) is the major Ca2+ release channel required for Ca2+-induced Ca2+ release (CICR) and cardiac excitation-contraction coupling. The cluster organization of RyR2 at the dyad is critical for efficient CICR. Despite its central role in cardiac Ca2+ signaling, the mechanisms that control CICR are not fully understood. As a single RyR2 Ca2+ flux dictates local CICR that underlies Ca2+ sparks, RyR2 density in a cluster, and therefore the distance between RyR2s, should have a profound impact on local CICR. Here, we studied the effect of the RyR2 expression level ([RyR2]) on CICR activation, termination, and amplitude. The endoplasmic reticulum (ER)-targeted Ca2+ sensor RCEPIA-1er was used to directly measure the ER [Ca2+] (Ca2+]ER) in the T-Rex-293 the sarco/endoplasmic reticulum Ca2+-ATPase (SERCA2a) stable cell line expressing human RyR2. Cells coexpressing RyR2 and SERCA2a produced periodic [Ca2+]ER depletions in the form of spontaneous Ca2+ waves due to propagating CICR. For each studied cell, the [Ca2+]ER at which Ca2+ waves are activated and terminated was analyzed as a function of [RyR2]. CICR parameters, such as [Ca2+]ER activation, termination, and amplitude, were inversely proportional to [RyR2] at low-intermediate levels. Increasing the sensitivity of RyR2 to cytosolic Ca2+ lowered the [Ca2+]ER at which CICR is activated and terminated. Decreasing the sensitivity of RyR2 to cytosolic Ca2+ had the opposite effect on CICR. These results suggest that RyR2 density in the release cluster should have a significant impact on local CICR activation and termination. Since SR Ca2+ load is evenly distributed throughout the SR network, clusters with higher RyR2 density would have a higher probability of initiating spontaneous CICR.
RESUMEN
Diabetes is commonly associated with an elevated level of reactive carbonyl species due to alteration of glucose and fatty acid metabolism. These metabolic changes cause an abnormality in cardiac Ca2+ regulation that can lead to cardiomyopathies. In this study, we explored how the reactive α-dicarbonyl methylglyoxal (MGO) affects Ca2+ regulation in mouse ventricular myocytes. Analysis of intracellular Ca2+ dynamics revealed that MGO (200 µM) increases action potential (AP)-induced Ca2+ transients and sarcoplasmic reticulum (SR) Ca2+ load, with a limited effect on L-type Ca2+ channel-mediated Ca2+ transients and SERCA-mediated Ca2+ uptake. At the same time, MGO significantly slowed down cytosolic Ca2+ extrusion by Na+/Ca2+ exchanger (NCX). MGO also increased the frequency of Ca2+ waves during rest and these Ca2+ release events were abolished by an external solution with zero [Na+] and [Ca2+]. Adrenergic receptor activation with isoproterenol (10 nM) increased Ca2+ transients and SR Ca2+ load, but it also triggered spontaneous Ca2+ waves in 27% of studied cells. Pretreatment of myocytes with MGO increased the fraction of cells with Ca2+ waves during adrenergic receptor stimulation by 163%. Measurements of intracellular [Na+] revealed that MGO increases cytosolic [Na+] by 57% from the maximal effect produced by the Na+-K+ ATPase inhibitor ouabain (20 µM). This increase in cytosolic [Na+] was a result of activation of a tetrodotoxin-sensitive Na+ influx, but not an inhibition of Na+-K+ ATPase. An increase in cytosolic [Na+] after treating cells with ouabain produced similar effects on Ca2+ regulation as MGO. These results suggest that protein carbonylation can affect cardiac Ca2+ regulation by increasing cytosolic [Na+] via a tetrodotoxin-sensitive pathway. This, in turn, reduces Ca2+ extrusion by NCX, causing SR Ca2+ overload and spontaneous Ca2+ waves.
RESUMEN
In cardiac myocytes, the type 2a sarco/endoplasmic reticulum Ca-ATPase (SERCA2a) plays a key role in intracellular Ca regulation. Due to its critical role in heart function, SERCA2a activity is tightly regulated by different mechanisms, including micropeptides. While phospholamban (PLB) is a well-known SERCA2a inhibitor, dwarf open reading frame (DWORF) is a recently identified SERCA2a activator. Since PLB phosphorylation is the most recognized mechanism of SERCA2a activation during adrenergic stress, we studied whether PLB phosphorylation also affects SERCA2a regulation by DWORF. By using confocal Ca imaging in a HEK293 expressing cell system, we analyzed the effect of the co-expression of PLB and DWORF using a bicistronic construct on SERCA2a-mediated Ca uptake. Under these conditions of matched expression of PLB and DWORF, we found that SERCA2a inhibition by non-phosphorylated PLB prevails over DWORF activating effect. However, when PLB is phosphorylated at PKA and CaMKII sites, not only PLB's inhibitory effect was relieved, but SERCA2a was effectively activated by DWORF. Förster resonance energy transfer (FRET) analysis between SERCA2a and DWORF showed that DWORF has a higher relative affinity for SERCA2a when PLB is phosphorylated. Thus, SERCA2a regulation by DWORF responds to the PLB phosphorylation status, suggesting that DWORF might contribute to SERCA2a activation during conditions of adrenergic stress.
Asunto(s)
Proteínas de Unión al Calcio , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismo , Proteínas de Unión al Calcio/metabolismo , Humanos , Fosforilación , Células HEK293 , Sistemas de Lectura Abierta/genética , Calcio/metabolismo , Activación Enzimática , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismoRESUMEN
Calcium signaling is a critical process required for cellular mechanisms such as cardiomyocyte contraction. The inability of the cell to properly activate or regulate calcium signaling can lead to contractile dysfunction. In isolated cardiomyocytes, calcium signaling has been primarily studied using calcium fluorescent dyes, however these dyes have limited applicability to whole organs. Here, we crossed the Salsa6f mouse which expresses a genetically encoded ratiometric cytosolic calcium indicator with a cardiomyocyte specific inducible cre to temporally-induce expression and studied cytosolic calcium transients in isolated cardiomyocytes and modified Langendorff heart preparations. Isolated cardiomyocytes expressing Salsa6f or Fluo-4AM loaded were compared. We also crossed the Salsa6f mouse with a floxed Polycystin 2 (PC2) mouse to test the feasibility of using the Salsa6f mouse to measure calcium transients in PC2 heterozygous or homozygous knock out mice. Although there are caveats in the applicability of the Salsa6f mouse, there are clear advantages to using the Salsa6f mouse to measure whole heart calcium signals.
Asunto(s)
Calcio , Miocitos Cardíacos , Ratones , Animales , Calcio/metabolismo , Miocitos Cardíacos/metabolismo , Señalización del Calcio/fisiología , Colorantes Fluorescentes/metabolismo , Contracción Miocárdica/fisiologíaRESUMEN
The zebrafish serves as a promising transgenic animal model that can be used to study cardiac Ca(2+) regulation. However, mechanisms of sarcoplasmic reticulum (SR) Ca(2+) handling in the zebrafish heart have not been systematically explored. We found that in zebrafish ventricular myocytes, the action potential-induced Ca(2+) transient is mainly (80 %) mediated by Ca(2+) influx via L-type Ca(2+) channels (LTCC) and only 20 % by Ca(2+) released from the SR. This small contribution of the SR to the Ca(2+) transient was not the result of depleted SR Ca(2+) load. We found that the ryanodine receptor (RyR) expression level in zebrafish myocytes was â¼72 % lower compared to rabbit myocytes. In permeabilized myocytes, increasing cytosolic [Ca(2+)] from 100 to 350 nM did not trigger SR Ca(2+) release. However, an application of a low dose of caffeine activated Ca(2+) sparks. These results show that the zebrafish cardiac RyR has low sensitivity to the mechanism of Ca(2+)-induced Ca(2+) release. Activation of protein kinase A by forskolin increased phosphorylation of the RyR in zebrafish myocardium. In half of the studied cells, an increased Ca(2+) transient by forskolin was entirely mediated by augmentation of LTCC current. In the remaining myocytes, the forskolin action was associated with an increase of both LTCC and SR Ca(2+) release. These results indicate that the mechanism of excitation-contraction coupling in zebrafish myocytes differs from the mammalian one mainly because of the small contribution of SR Ca(2+) release to the Ca(2+) transient. This difference is due to a low sensitivity of RyRs to cytosolic [Ca(2+)].