Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Appl Environ Microbiol ; : e0080724, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38940562

RESUMEN

Enterotoxigenic Escherichia coli (ETEC) is a diverse and poorly characterized E. coli pathotype that causes diarrhea in humans and animals. Phages have been proposed for the veterinary biocontrol of ETEC, but effective solutions require understanding of porcine ETEC diversity that affects phage infection. Here, we sequenced and analyzed the genomes of the PHAGEBio ETEC collection, gathering 79 diverse ETEC strains isolated from European pigs with post-weaning diarrhea (PWD). We identified the virulence factors characterizing the pathotype and several antibiotic resistance genes on plasmids, while phage resistance genes and other virulence factors were mostly chromosome encoded. We experienced that ETEC strains were highly resistant to Enterobacteriaceae phage infection. It was only by enrichment of numerous diverse samples with different media and conditions, using the 41 ETEC strains of our collection as hosts, that we could isolate two lytic phages that could infect a large part of our diverse ETEC collection: vB_EcoP_ETEP21B and vB_EcoS_ETEP102. Based on genome and host range analyses, we discussed the infection strategies of the two phages and identified components of lipopolysaccharides ( LPS) as receptors for the two phages. Our detailed computational structural analysis highlights several loops and pockets in the tail fibers that may allow recognition and binding of ETEC strains, also in the presence of O-antigens. Despite the importance of receptor recognition, the diversity of the ETEC strains remains a significant challenge for isolating ETEC phages and developing sustainable phage-based products to address ETEC-induced PWD.IMPORTANCEEnterotoxigenic Escherichia coli (ETEC)-induced post-weaning diarrhea is a severe disease in piglets that leads to weight loss and potentially death, with high economic and animal welfare costs worldwide. Phage-based approaches have been proposed, but available data are insufficient to ensure efficacy. Genome analysis of an extensive collection of ETEC strains revealed that phage defense mechanisms were mostly chromosome encoded, suggesting a lower chance of spread and selection by phage exposure. The difficulty in isolating lytic phages and the molecular and structural analyses of two ETEC phages point toward a multifactorial resistance of ETEC to phage infection and the importance of extensive phage screenings specifically against clinically relevant strains. The PHAGEBio ETEC collection and these two phages are valuable tools for the scientific community to expand our knowledge on the most studied, but still enigmatic, bacterial species-E. coli.

2.
Microb Ecol ; 87(1): 85, 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38935220

RESUMEN

Antimicrobial resistance (AMR) is a major public health threat, exacerbated by the ability of bacteria to rapidly disseminate antimicrobial resistance genes (ARG). Since conjugative plasmids of the incompatibility group P (IncP) are ubiquitous mobile genetic elements that often carry ARG and are broad-host-range, they are important targets to prevent the dissemination of AMR. Plasmid-dependent phages infect plasmid-carrying bacteria by recognizing components of the conjugative secretion system as receptors. We sought to isolate plasmid-dependent phages from wastewater using an avirulent strain of Salmonella enterica carrying the conjugative IncP plasmid pKJK5. Irrespective of the site, we only obtained bacteriophages belonging to the genus Alphatectivirus. Eleven isolates were sequenced, their genomes analyzed, and their host range established using S. enterica, Escherichia coli, and Pseudomonas putida carrying diverse conjugative plasmids. We confirmed that Alphatectivirus are abundant in domestic and hospital wastewater using culture-dependent and culture-independent approaches. However, these results are not consistent with their low or undetectable occurrence in metagenomes. Therefore, overall, our results emphasize the importance of performing phage isolation to uncover diversity, especially considering the potential of plasmid-dependent phages to reduce the spread of ARG carried by conjugative plasmids, and to help combat the AMR crisis.


Asunto(s)
Bacteriófagos , Plásmidos , Aguas Residuales , Plásmidos/genética , Aguas Residuales/virología , Aguas Residuales/microbiología , Bacteriófagos/genética , Bacteriófagos/aislamiento & purificación , Bacteriófagos/fisiología , Bacteriófagos/clasificación , Genoma Viral , Escherichia coli/virología , Escherichia coli/genética , Especificidad del Huésped , Pseudomonas putida/virología , Pseudomonas putida/genética , Salmonella enterica/virología , Salmonella enterica/genética , Filogenia
3.
Food Microbiol ; 112: 104240, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36906308

RESUMEN

Phages have been suggested as promising biocontrol agents in food, but trials demonstrating the efficiency of phage treatment under industrial settings are missing. Here we performed a full-scale industrial trial to evaluate the efficacy of a commercial phage product to reduce the prevalence of naturally occurring Salmonella on pork carcasses. A total of 134 carcasses from potentially Salmonella positive finisher herds were chosen to be tested at the slaughterhouse based on the level of antibodies in the blood. During five consecutive runs, carcasses were directed into a cabin spraying phages, resulting in a dosage of approximately 2 × 107 phages per cm2 carcass surface. To evaluate the presence of Salmonella, a predefined area of one half of the carcass was swabbed before phage application and the other half 15 min after. A total of 268 samples were analysed by Real-Time PCR. Under these optimized test conditions, 14 carcasses were found positive before phage application, while only 3 carcasses were positive after. This work shows that phage application allows to achieve approximatively 79% reduction of Salmonella-positive carcasses and demonstrates that implementation of phage application in industrial settings can be used as an additional strategy to control foodborne pathogens.


Asunto(s)
Bacteriófagos , Carne de Cerdo , Carne Roja , Animales , Mataderos , Microbiología de Alimentos , Carne , Salmonella , Porcinos
4.
BMC Vet Res ; 18(1): 382, 2022 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-36320033

RESUMEN

Host genotype is important for enterotoxigenic E. coli (ETEC) susceptibility. We conducted two trials to evaluate the effect of CHCF1 genotype on incidence of ETEC diarrhea. In trial 1 (n = 15 pigs), pigs were inoculated with 108 CFU or 1010 CFU doses of an ETEC F4ac strain. In trial 2 (n = 33 pigs), pigs were inoculated with ETEC F4ab or F4ac. Across trials, all inoculated pigs that developed ETEC diarrhea were CHCF1 heterozygous susceptible (6/6). No inoculated CHCF1 homozygous resistant pigs developed ETEC diarrhea (0/26). Susceptibility towards ETEC F4ac/ab infection might correspond with CHCF1 genotype.


Asunto(s)
Escherichia coli Enterotoxigénica , Infecciones por Escherichia coli , Enfermedades de los Porcinos , Porcinos , Animales , Destete , Proyectos Piloto , Enfermedades de los Porcinos/genética , Diarrea/veterinaria , Infecciones por Escherichia coli/veterinaria , Genotipo
5.
Int J Mol Sci ; 21(15)2020 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-32707941

RESUMEN

Phages are generally considered species- or even strain-specific, yet polyvalent phages are able to infect bacteria from different genera. Here, we characterize the novel polyvalent phage S144, a member of the Loughboroughvirus genus. By screening 211 Enterobacteriaceae strains, we found that phage S144 forms plaques on specific serovars of Salmonella enterica subsp. enterica and on Cronobacter sakazakii. Analysis of phage resistant mutants suggests that the O-antigen of lipopolysaccharide is the phage receptor in both bacterial genera. The S144 genome consists of 53,628 bp and encodes 80 open reading frames (ORFs), but no tRNA genes. In total, 32 ORFs coding for structural proteins were confirmed by ESI-MS/MS analysis, whereas 45 gene products were functionally annotated within DNA metabolism, packaging, nucleotide biosynthesis and phage morphogenesis. Transmission electron microscopy showed that phage S144 is a myovirus, with a prolate head and short tail fibers. The putative S144 tail fiber structure is, overall, similar to the tail fiber of phage Mu and the C-terminus shows amino acid similarity to tail fibers of otherwise unrelated phages infecting Cronobacter. Since all phages in the Loughboroughvirus genus encode tail fibers similar to S144, we suggest that phages in this genus infect Cronobacter sakazakii and are polyvalent.


Asunto(s)
Bacteriófagos/genética , Corticoviridae/genética , Cronobacter sakazakii/genética , ADN Viral/genética , Antígenos O/metabolismo , Fagos de Salmonella/genética , Salmonella/genética , Bacteriófagos/química , Bacteriófagos/metabolismo , Bacteriófagos/ultraestructura , Clasificación , Cronobacter sakazakii/virología , Genoma Viral , Especificidad del Huésped , Microscopía Electrónica de Transmisión , Antígenos O/genética , Sistemas de Lectura Abierta , Proteómica , Salmonella/virología , Análisis de Secuencia de ADN , Espectrometría de Masas en Tándem
6.
Environ Microbiol ; 21(6): 2095-2111, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30888719

RESUMEN

The host range of phages is a key to understand their impact on bacterial ecology and evolution. Because of the complexity of phage-host interactions, the variables that determine the breadth of a phage host range remain poorly understood. Here, we propose a novel holistic approach to identify the host range determinants of a new collection of phages infecting Salmonella, isolated from animal, environmental and wastewater samples that were able to infect 58 of the 71 Salmonella strains in our collection. By using a set of statistic approaches (non-metric dimensional scaling, Bray-Curtis distance, PERMANOVA), we analysed phenotypic (host range on wild-type and receptor mutants) and genetic data (taxonomic assignment and receptor binding proteins) to evaluate the impact of isolation strain and niche, phage receptor and genus on the host range. Statistical analysis revealed that two phage characteristics influence the host range by explaining the most variance: the receptor by 45% and the genus by 51%. Interestingly, phage genus and receptor in combination explained 79% of the variance, establishing these characteristics as the major determinants of the host range. This study demonstrates the power and the novelty of applying statistical approaches to phenotypic and genetic data to investigate the ecology of phage-host interactions.


Asunto(s)
Proteínas Bacterianas/metabolismo , Bacteriófagos/fisiología , Especificidad del Huésped , Receptores Virales/metabolismo , Salmonella/metabolismo , Salmonella/virología , Proteínas Bacterianas/genética , Bacteriófagos/clasificación , Bacteriófagos/genética , Receptores Virales/genética , Salmonella/genética
7.
Biochem Soc Trans ; 47(1): 449-460, 2019 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-30783013

RESUMEN

Bacteriophages and phage tail-like bacteriocins (PTLBs) rely on receptor-binding proteins (RBPs) located in tail fibers or spikes for an initial and specific interaction with susceptible bacteria. Bacteriophages kill bacteria through a lytic, replicative cycle, whereas PTLBs kill the target through membrane depolarization in a single hit mechanism. Extensive efforts in the engineering of RBPs of both phages and PTLBs have been undertaken to obtain a greater understanding of the structural organization of RBPs. In addition, a major goal of engineering RBPs of phages and PTLBs is the production of antibacterials with a customized spectrum. Swapping of the RBP of phages and PTLBs results in a shift in activity spectrum in accordance with the spectrum of the new RBP. The engineering of strictly virulent phages with new RBPs required significant technical advances in the past decades, whereas the engineering of RBPs of PTLBs relied on the traditional molecular techniques used for the manipulation of bacteria and was thus relatively straightforward. While phages and PTLBs share their potential for specificity tuning, specific features of phages such as their lytic killing mechanism, their self-replicative nature and thus different pharmacokinetics and their potential to co-evolve are clear differentiators compared with PTLBs in terms of their antibacterial use.


Asunto(s)
Bacteriocinas/genética , Bacteriófagos/genética , Ingeniería de Proteínas , Proteínas de la Cola de los Virus/genética , Genoma Viral
8.
Microbiology (Reading) ; 163(6): 911-919, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28597819

RESUMEN

Phase variation (PV) creates phenotypic heterogeneity at high frequencies and in a reversible manner. This phenomenon allows bacteria to adapt to a variety of different environments and selective pressures. In Campylobacterjejuni this reversible adaptive process is mediated by mutations in homopolymeric G/C tracts. Many C. jejuni-specific phages are dependent on phase-variable surface structures for successful infection. We previously identified the capsular polysaccharide (CPS) moiety, MeOPN-GalfNAc, as a receptor for phage F336 and showed that phase-variable expression of the transferase for this CPS modification, cj1421, and two other phase-variable CPS genes generated phage resistance in C. jejuni. Here we investigate the population dynamics of C. jejuni NCTC11168 when exposed to phage F336 in vitro using a newly described method - the 28-locus-CJ11168 PV analysis. Dynamic switching was observed in the ON/OFF states of three phase-variable CPS genes, cj1421, cj1422 and cj1426, during phage F336 exposure, with the dominant phage-resistant phasotype differing between cultures. Although loss of the phage receptor was predominately observed, several other PV events also led to phage resistance, a phenomenon that increases the chance of phage-resistant subpopulations being present in any growing culture. No other PV genes were affected and exposure to phage F336 resulted in a highly specific response, only selecting for phase variants of cj1421, cj1422 and cj1426. In summary, C. jejuni may benefit from modification of the surface in multiple ways to inhibit or reduce phage binding, thereby ensuring the survival of the population when exposed to phages.


Asunto(s)
Bacteriófagos/fisiología , Campylobacter jejuni/crecimiento & desarrollo , Campylobacter jejuni/virología , Regulación Bacteriana de la Expresión Génica , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Bacteriófagos/genética , Campylobacter jejuni/genética , Campylobacter jejuni/metabolismo , Mutación
9.
J Virol ; 87(2): 1061-8, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23135714

RESUMEN

Tailed phages are genome delivery machines exhibiting unequaled efficiency acquired over more than 3 billion years of evolution. Siphophages from the P335 and 936 families infect the Gram-positive bacterium Lactococcus lactis using receptor-binding proteins anchored to the host adsorption apparatus (baseplate). Crystallographic and electron microscopy (EM) studies have shed light on the distinct adsorption strategies used by phages of these two families, suggesting that they might also rely on different infection mechanisms. Here, we report electron microscopy reconstructions of the whole phage TP901-1 (P335 species) and propose a composite EM model of this gigantic molecular machine. Our results suggest conservation of structural proteins among tailed phages and add to the growing body of evidence pointing to a common evolutionary origin for these virions. Finally, we propose that host adsorption apparatus architectures have evolved in correlation with the nature of the receptors used during infection.


Asunto(s)
Bacteriófagos/ultraestructura , Lactococcus lactis/virología , Microscopía Electrónica/métodos , Siphoviridae/ultraestructura , Bacteriófagos/aislamiento & purificación , Modelos Biológicos , Modelos Moleculares , Siphoviridae/aislamiento & purificación
10.
Appl Environ Microbiol ; 80(22): 7096-106, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25261508

RESUMEN

Previous studies have identified a specific modification of the capsular polysaccharide as receptor for phages that infect Campylobacter jejuni. Using acapsular kpsM mutants of C. jejuni strains NCTC11168 and NCTC12658, we found that bacteriophage F341 infects C. jejuni independently of the capsule. In contrast, phage F341 does not infect C. jejuni NCTC11168 mutants that either lack the flagellar filaments (ΔflaAB) or that have paralyzed, i.e., nonrotating, flagella (ΔmotA and ΔflgP). Complementing flgP confirmed that phage F341 requires rotating flagella for successful infection. Furthermore, adsorption assays demonstrated that phage F341 does not adsorb to these nonmotile C. jejuni NCTC11168 mutants. Taken together, we propose that phage F341 uses the flagellum as a receptor. Phage-host interactions were investigated using fluorescence confocal and transmission electron microscopy. These data demonstrate that F341 binds to the flagellum by perpendicular attachment with visible phage tail fibers interacting directly with the flagellum. Our data are consistent with the movement of the C. jejuni flagellum being required for F341 to travel along the filament to reach the basal body of the bacterium. The initial binding to the flagellum may cause a conformational change of the phage tail that enables DNA injection after binding to a secondary receptor.


Asunto(s)
Bacteriófagos/fisiología , Campylobacter jejuni/citología , Campylobacter jejuni/virología , Flagelos/virología , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Campylobacter jejuni/genética , Campylobacter jejuni/fisiología
11.
Subcell Biochem ; 66: 161-92, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23479441

RESUMEN

Bacterial pathogens rely on proteolysis for variety of purposes during the infection process. In the cytosol, the main proteolytic players are the conserved Clp and Lon proteases that directly contribute to virulence through the timely degradation of virulence regulators and indirectly by providing tolerance to adverse conditions such as those experienced in the host. In the membrane, HtrA performs similar functions whereas the extracellular proteases, in close contact with host components, pave the way for spreading infections by degrading host matrix components or interfering with host cell signalling to short-circuit host cell processes. Common to both intra- and extracellular proteases is the tight control of their proteolytic activities. In general, substrate recognition by the intracellular proteases is highly selective which is, in part, attributed to the chaperone activity associated with the proteases either encoded within the same polypeptide or on separate subunits. In contrast, substrate recognition by extracellular proteases is less selective and therefore these enzymes are generally expressed as zymogens to prevent premature proteolytic activity that would be detrimental to the cell. These extracellular proteases are activated in complex cascades involving auto-processing and proteolytic maturation. Thus, proteolysis has been adopted by bacterial pathogens at multiple levels to ensure the success of the pathogen in contact with the human host.


Asunto(s)
Bacterias/patogenicidad , Proteínas Bacterianas/metabolismo , Chaperonas Moleculares/metabolismo , Péptido Hidrolasas/metabolismo , Proteolisis , Virulencia , Humanos , Transducción de Señal
12.
Trends Microbiol ; 2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38580606

RESUMEN

Tailocins are high-molecular-weight bacteriocins produced by bacteria to kill related environmental competitors by binding and puncturing their target. Tailocins are promising alternative antimicrobials, yet the diversity of naturally occurring tailocins is limited. The structural similarities between phage tails and tailocins advocate using phages as scaffolds for developing new tailocins. This article reviews three strategies for producing tailocins: disrupting the capsid-tail junction of phage particles, blocking capsid assembly during phage propagation, and creating headless phage particles synthetically. Particularly appealing is the production of tailocins through synthetic biology using phages with contractile tails as scaffolds to unlock the antimicrobial potential of tailocins.

13.
Microbiol Spectr ; 12(1): e0253723, 2024 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-38063386

RESUMEN

IMPORTANCE: This work was undertaken because plasmid-dependent phages can reduce the prevalence of conjugative plasmids and can be leveraged to prevent the acquisition and dissemination of ARGs by bacteria. The two novel phages described in this study, Lu221 and Hi226, can infect Escherichia coli, Salmonella enterica, Kluyvera sp. and Enterobacter sp. carrying conjugative plasmids. This was verified with plasmids carrying resistance determinants and belonging to the most common plasmid families among Gram-negative pathogens. Therefore, the newly isolated phages could have the potential to help control the spread of ARGs and thus help combat the antimicrobial resistance crisis.


Asunto(s)
Bacteriófagos , Salmonella enterica , Humanos , Antibacterianos , Plásmidos/genética , Escherichia coli/genética , Salmonella enterica/genética , Conjugación Genética
14.
iScience ; 27(2): 108826, 2024 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-38322997

RESUMEN

Novel solutions are needed to reduce the risk of transmission of extended spectrum ß-lactamase (ESBL) and AmpC ß-lactamase producing Escherichia coli (ESBL/AmpC E. coli) from livestock to humans. Given that phages are promising biocontrol agents, a collection of 28 phages that infect ESBL/AmpC E. coli were established. Whole genome sequencing showed that all these phages were unique and could be assigned to 15 different genera. Host range analysis showed that 82% of 198 strains, representing the genetic diversity of ESBL/AmpC E. coli, were sensitive to at least one phage. Identifying receptors used for phage binding experimentally as well as in silico predictions, allowed us to combine phages into two different cocktails with broad host range targeting diverse receptors. These phage cocktails efficiently inhibit the growth of ESBL/AmpC E. coli in vitro, thus suggesting the potential of phages as promising biocontrol agents.

15.
Microlife ; 5: uqad047, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38234449

RESUMEN

Bacteriophages in the Agtrevirus genus are known for expressing multiple tail spike proteins (TSPs), but little is known about their genetic diversity and host recognition apart from their ability to infect diverse Enterobacteriaceae species. Here, we aim to determine the genetic differences that may account for the diverse host ranges of Agrevirus phages. We performed comparative genomics of 14 Agtrevirus and identified only a few genetic differences including genes involved in nucleotide metabolism. Most notably was the diversity of the tsp gene cluster, specifically in the receptor-binding domains that were unique among most of the phages. We further characterized agtrevirus AV101 infecting nine diverse Extended Spectrum ß-lactamase (ESBL) Escherichia coli and demonstrated that this phage encoded four unique TSPs among Agtrevirus. Purified TSPs formed translucent zones and inhibited AV101 infection of specific hosts, demonstrating that TSP1, TSP2, TSP3, and TSP4 recognize O8, O82, O153, and O159 O-antigens of E. coli, respectively. BLASTp analysis showed that the receptor-binding domain of TSP1, TSP2, TSP3, and TSP4 are similar to TSPs encoded by E. coli prophages and distant related virulent phages. Thus, Agtrevirus may have gained their receptor-binding domains by recombining with prophages or virulent phages. Overall, combining bioinformatic and biological data expands the understanding of TSP host recognition of Agtrevirus and give new insight into the origin and acquisition of receptor-binding domains of Ackermannviridae phages.

16.
Phage (New Rochelle) ; 4(3): 136-140, 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37841391

RESUMEN

In the light of the worldwide antimicrobial resistance crisis, new substitutes to antibiotics are urgently needed. Tailocins or phage tail-like bacteriocin particles, produced by bacteria for environmental competition, are a potential antimicrobial alternative to antibiotic treatment. Yet, the availability of characterized Tailocins is limited. We explored the possibility to produce new Tailocins from phage particles, using osmotic shock or chemical treatment by the ammonium quaternary compound benzalkonium chloride on Ackermannviridae phage S117 and using Straboviridae phage T4 as control. We report that phage S117 was resistant to such treatment, while successful production of Tailocins by osmotic shock was achieved for phage T4. Finally, chemical treatment with benzalkonium chloride was inefficient on phage S117 but successfully inactivated phage T4 without production of Tailocins. Further studies are needed to implement such treatments of phages for producing Tailocins with killing activity.

17.
Cells ; 12(22)2023 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-37998371

RESUMEN

Due to the extensive use of antibiotics, the increase of infections caused by antibiotic-resistant bacteria is now a global health concern. Phages have proven useful for treating bacterial infections and represent a promising alternative or complement to antibiotic treatment. Yet, other alternatives exist, such as bacteria-produced non-replicative protein complexes that can kill their targeted bacteria by puncturing their membrane (Tailocins). To expand the repertoire of Tailocins available, we suggest a new approach that transforms phages into Tailocins. Here, we genetically engineered the virulent Ackermannviridae phage S117, as well as temperate phages Fels-1, -2 and Gifsy-1 and -2, targeting the food pathogen Salmonella, by deleting the portal vertex or major capsid gene using CRISPR-Cas9. We report the production of Tailocin particles from engineered virulent and temperate phages able to kill their native host. Our work represents a steppingstone that taps into the huge diversity of phages and transforms them into versatile puncturing new antimicrobials.


Asunto(s)
Antiinfecciosos , Bacteriófagos , Fagos de Salmonella , Fagos de Salmonella/genética , Bacteriófagos/genética , Antibacterianos/farmacología , Salmonella , Bacterias
18.
Phage (New Rochelle) ; 4(1): 35-45, 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-37214655

RESUMEN

Introduction: Extended-spectrum ß-lactamase (ESBL)- and AmpC ß-lactamase (AmpC)-producing Escherichia coli from livestock and meat represent a zoonotic risk and biocontrol solutions are needed to prevent transmission to humans. Methods: In this study, we established a representative collection of animal-origin ESBL/AmpC E. coli as target to test the antimicrobial potential of bacteriophages. Results: Bioinformatic analysis of whole-genome sequence data of 198 ESBL/AmpC E. coli from pigs, broilers, and broiler meat identified strains belonging to all known E. coli phylogroups and 65 multilocus sequence types. Various ESBL/AmpC genes and plasmid types were detected with expected source-specific patterns. Plaque assay using 15 phages previously isolated using the E. coli reference collection demonstrated that Warwickvirus phages showed the broadest host range, killing up to 26 strains. Conclusions: 154/198 strains were resistant to infection by all phages tested, suggesting a need for isolating phages specific for ESBL/AmpC E. coli. The strain collection described in this study is a useful resource fulfilling such need.

19.
Viruses ; 15(11)2023 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-38005900

RESUMEN

The focus of this meeting was to discuss the suitability of using bacteriophages as alternative antimicrobials in the agrifood sector. Following a One Health approach, the workshop explored the possibilities of implementing phage application strategies in the agriculture, animal husbandry, aquaculture, and food production sectors. Therefore, the meeting had gathered phage researchers, representatives of the agrifood industry, and policymakers to debate the advantages and potential shortcomings of using bacteriophages as alternatives to traditional antimicrobials and chemical pesticides. Industry delegates showed the latest objectives and demands from consumers. Representatives of regulatory agencies (European Medicines Agency (EMA) and Spanish Agency of Medicines and Health Products (AEMPS)) presented an update of new regulatory aspects that will impact and support the approval and implementation of phage application strategies across the different sectors.


Asunto(s)
Antiinfecciosos , Bacteriófagos , Animales , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Farmacorresistencia Bacteriana , Agricultura , Antiinfecciosos/farmacología , Crianza de Animales Domésticos
20.
Appl Environ Microbiol ; 78(5): 1411-5, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22194296

RESUMEN

The highly alkaline compound trisodium phosphate (TSP) is used as an intervention to reduce the load of Campylobacter on poultry meat in U.S. poultry slaughter plants. The aim of the present study was to investigate the cellular responses of Campylobacter jejuni NCTC11168 when exposed to sublethal concentrations of TSP. Preexposure of C. jejuni to TSP resulted in a significant increase in heat sensitivity, suggesting that a combined heat and TSP treatment may increase reduction of C. jejuni. A microarray analysis identified a limited number of genes that were differently expressed after sublethal TSP exposure; however, the response was mainly associated with ion transport processes. C. jejuni NCTC11168 nhaA1 (Cj1655c) and nhaA2 (Cj1654c), which encode orthologues to the Escherichia coli NhaA cation/proton antiporter, were able to partially restore TSP, alkaline, and sodium resistance phenotypes to an E. coli cation/proton antiporter mutant. In addition, inhibition of resistance-nodulation-cell division (RND) multidrug efflux pumps by the inhibitor PaßN (Phe-Arg ß-naphthylamide dihydrochloride) decreased tolerance to sublethal TSP. Therefore, we propose that NhaA1/NhaA2 cation/proton antiporters and RND multidrug efflux pumps function in tolerance to sublethal TSP exposure in C. jejuni.


Asunto(s)
Antibacterianos/farmacología , Campylobacter jejuni/efectos de los fármacos , Fosfatos/farmacología , Estrés Fisiológico , Transporte Biológico , Campylobacter jejuni/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Perfilación de la Expresión Génica , Análisis por Micromatrices
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA