Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Mol Psychiatry ; 21(9): 1167-79, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27240529

RESUMEN

Major programs in psychiatric genetics have identified >150 risk loci for psychiatric disorders. These loci converge on a small number of functional pathways, which span conventional diagnostic criteria, suggesting a partly common biology underlying schizophrenia, autism and other psychiatric disorders. Nevertheless, the cellular phenotypes that capture the fundamental features of psychiatric disorders have not yet been determined. Recent advances in genetics and stem cell biology offer new prospects for cell-based modeling of psychiatric disorders. The advent of cell reprogramming and induced pluripotent stem cells (iPSC) provides an opportunity to translate genetic findings into patient-specific in vitro models. iPSC technology is less than a decade old but holds great promise for bridging the gaps between patients, genetics and biology. Despite many obvious advantages, iPSC studies still present multiple challenges. In this expert review, we critically review the challenges for modeling of psychiatric disorders, potential solutions and how iPSC technology can be used to develop an analytical framework for the evaluation and therapeutic manipulation of fundamental disease processes.


Asunto(s)
Trastornos Mentales/genética , Trastornos Mentales/metabolismo , Modelos Biológicos , Trastorno Autístico/metabolismo , Reprogramación Celular , Genómica , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Esquizofrenia/metabolismo
3.
Science ; 285(5428): 754-6, 1999 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-10427001

RESUMEN

Self-renewing, totipotent embryonic stem (ES) cells may provide a virtually unlimited donor source for transplantation. A protocol that permits the in vitro generation of precursors for oligodendrocytes and astrocytes from ES cells was devised. Transplantation in a rat model of a human myelin disease shows that these ES cell-derived precursors interact with host neurons and efficiently myelinate axons in brain and spinal cord. Thus, ES cells can serve as a valuable source of cell type-specific somatic precursors for neural transplantation.


Asunto(s)
Astrocitos/citología , Esclerosis Cerebral Difusa de Schilder/terapia , Vaina de Mielina/fisiología , Oligodendroglía/citología , Oligodendroglía/trasplante , Células Madre/citología , Animales , Encéfalo/embriología , Encéfalo/metabolismo , Diferenciación Celular , Línea Celular , Movimiento Celular , Ventrículos Cerebrales/embriología , Ventrículos Cerebrales/cirugía , Esclerosis Cerebral Difusa de Schilder/genética , Embrión de Mamíferos/citología , Sustancias de Crecimiento/farmacología , Humanos , Masculino , Ratones , Proteína Básica de Mielina/biosíntesis , Proteína Proteolipídica de la Mielina/biosíntesis , Proteína Proteolipídica de la Mielina/genética , Oligodendroglía/metabolismo , Oligodendroglía/ultraestructura , Ratas , Médula Espinal , Trasplante de Células Madre
4.
Neuron ; 15(6): 1275-85, 1995 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-8845152

RESUMEN

The stereotyped positions occupied by individual classes of neurons are a fundamental characteristic of CNS cytoarchitecture. To study the regulation of neuronal positioning, we injected genetically labeled neural precursors derived from dorsal and ventral mouse forebrain into the telencephalic vesicles of embryonic rats. Cells from both areas were found to participate in the generation of telencephalic, diencephalic, and mesencephalic brain regions. Donor-derived neurons populated the host brain in distinct patterns and acquired phenotypic features appropriate for their final location. These observations indicate that neuronal migration and differentiation are predominantly regulated by non-cell-autonomous signals. Exploiting this phenomenon, intrauterine transplantation allows generation of controlled chimerism in the mammalian brain.


Asunto(s)
Encéfalo/embriología , Embrión de Mamíferos/fisiología , Neuronas/trasplante , Animales , Encéfalo/citología , Diferenciación Celular , Movimiento Celular , Embrión de Mamíferos/citología , Ratones , Ratones Endogámicos C57BL , Neuronas/citología , Neuronas/fisiología , Ratas , Ratas Sprague-Dawley , Trasplante de Células Madre , Células Madre/citología , Células Madre/fisiología , Trasplante Heterólogo
5.
Nat Biotechnol ; 16(11): 1040-4, 1998 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-9831032

RESUMEN

Limited experimental access to the central nervous system (CNS) is a key problem in the study of human neural development, disease, and regeneration. We have addressed this problem by generating neural chimeras composed of human and rodent cells. Fetal human brain cells implanted into the cerebral ventricles of embryonic rats incorporate individually into all major compartments of the brain, generating widespread CNS chimerism. The human cells differentiate into neurons, astrocytes, and oligodendrocytes, which populate the host fore-, mid-, and hindbrain. These chimeras provide a unique model to study human neural cell migration and differentiation in a functional nervous system.


Asunto(s)
Trasplante de Tejido Encefálico , Encéfalo/embriología , Trasplante de Tejido Fetal , Animales , Biotecnología , Encéfalo/citología , Diferenciación Celular , Ventrículos Cerebrales/citología , Ventrículos Cerebrales/embriología , Quimera , Femenino , Humanos , Modelos Neurológicos , Neuronas/citología , Embarazo , Ratas , Ratas Sprague-Dawley , Células Madre/citología
6.
Nat Biotechnol ; 19(12): 1129-33, 2001 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-11731781

RESUMEN

The remarkable developmental potential and replicative capacity of human embryonic stem (ES) cells promise an almost unlimited supply of specific cell types for transplantation therapies. Here we describe the in vitro differentiation, enrichment, and transplantation of neural precursor cells from human ES cells. Upon aggregation to embryoid bodies, differentiating ES cells formed large numbers of neural tube-like structures in the presence of fibroblast growth factor 2 (FGF-2). Neural precursors within these formations were isolated by selective enzymatic digestion and further purified on the basis of differential adhesion. Following withdrawal of FGF-2, they differentiated into neurons, astrocytes, and oligodendrocytes. After transplantation into the neonatal mouse brain, human ES cell-derived neural precursors were incorporated into a variety of brain regions, where they differentiated into both neurons and astrocytes. No teratoma formation was observed in the transplant recipients. These results depict human ES cells as a source of transplantable neural precursors for possible nervous system repair.


Asunto(s)
Embrión de Mamíferos/citología , Neuronas/citología , Células Madre/citología , Animales , Encéfalo/embriología , Encéfalo/metabolismo , Bromodesoxiuridina/metabolismo , Adhesión Celular , Diferenciación Celular , Linaje de la Célula , Trasplante de Células , Células Cultivadas , Sistema Nervioso Central/citología , Células Epiteliales/metabolismo , Factor 2 de Crecimiento de Fibroblastos/biosíntesis , Humanos , Inmunohistoquímica , Hibridación in Situ , Ratones
7.
Curr Opin Neurobiol ; 6(5): 688-95, 1996 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-8937835

RESUMEN

The clinical prospect of using neural precursor cells for reconstructive approaches in the nervous system has received strong impetus from a recent series of important experimental findings. Transplantation studies in the developing brain have demonstrated that migration and differentiation of neural precursor cells are regulated predominantly by environmental signals. Several observations suggest that the mature CNS retains at least some of these guidance cues. These findings, together with recent evidence for the persistence of neural stem cells in the adult mammalian brain, have made precursor cell recruitment a new focus in CNS reconstruction.


Asunto(s)
Encéfalo/fisiología , Trasplante de Células Madre Hematopoyéticas , Neuronas/fisiología , Neuronas/trasplante , Médula Espinal/fisiología , Animales , Encéfalo/citología , Diferenciación Celular , Supervivencia Celular , Humanos , Mamíferos , Regeneración Nerviosa , Plasticidad Neuronal , Médula Espinal/citología , Trasplante Heterólogo
8.
Oncogene ; 7(6): 1177-83, 1992 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-1375717

RESUMEN

Using retrovirus-mediated gene transfer into neural transplants, we have expressed the human K-fgf/hst oncogene in the central nervous system. Single-cell suspensions of fetal rat brains were removed at embryonic days 13 and 14, exposed to a retroviral vector encoding the K-fgf oncogene and stereotaxically implanted into the caudate putamen of syngenic adult Fisher rats. Recipient animals were sacrificed at intervals of 6-16 months without evidence of neurological impairment. Mock-infected grafts showed the characteristic histopathological appearance of organotypically differentiated neural transplants. In contrast, grafts exposed to the K-fgf gene exhibited abundant capillary proliferation and capillary angiomas. By in situ hybridization analysis and immunohistochemistry, expression of K-fgf was detected in neural cells adjacent to vascular proliferations. Neurons and glia with abundant K-fgf transcripts were morphologically unaffected. In order to examine the transforming potential of the K-fgf gene in the nervous system, we combined retrovirus-mediated transfer of the K-fgf oncogene with a single transplacental exposure of the donor animals to the neurotropic carcinogen N-ethyl-N-nitrosourea (NEU). However, this combination of transforming agents did not result in tumor formation in the grafts. These results provide evidence for a powerful angiogenic effect of K-fgf on the developing brain in vivo.


Asunto(s)
Neoplasias Encefálicas/genética , Trasplante de Tejido Encefálico/patología , Etilnitrosourea/toxicidad , Factores de Crecimiento de Fibroblastos/genética , Neovascularización Patológica , Oncogenes , Proteínas Proto-Oncogénicas/genética , Animales , Elementos sin Sentido (Genética) , Neoplasias Encefálicas/inducido químicamente , Neoplasias Encefálicas/patología , Núcleo Caudado/patología , Endotelio Vascular/fisiología , Etilnitrosourea/administración & dosificación , Femenino , Trasplante de Tejido Fetal/patología , Feto/efectos de los fármacos , Factor 4 de Crecimiento de Fibroblastos , Sustancias de Crecimiento/genética , Humanos , Inyecciones , Neuronas/patología , Placenta , Embarazo , Putamen/patología , Ratas , Ratas Endogámicas F344 , Receptores de Superficie Celular/fisiología , Receptores de Factores de Crecimiento de Fibroblastos , Retroviridae/genética , Transfección
9.
Brain Pathol ; 9(3): 527-45, 1999 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-10416992

RESUMEN

The ability to isolate multipotential neuroepithelial precursor cells from the mammalian nervous system provides exciting perspectives for the in vitro analysis of early nervous system development and the generation of donor cells for neural repair. New models are needed to study the properties of these cells in vivo. Neural chimeras have revealed a remarkable degree of plasticity in the developmental potential of neuroepithelial precursor cells. Following transplantation into the cerebral ventricle of embryonic hosts, precursors derived from various brain regions and developmental stages participate in host brain development and undergo region-specific differentiation into neurons and glia. These findings indicate that in the developing nervous system, migration and differentiation of neural precursors cells are regulated to a large extent by extrinsic signals. Neural chimeras composed of genetically modified cells will permit the study of the molecular mechanisms underlying these guidance cues, which may eventually be exploited for cell replacement strategies in the adult brain. A key problem in neural transplantation is the availability of suitable donor tissue. Neural chimeras composed of embryonic stem (ES) cell-derived neurons and glia depict ES cells as a versatile and virtually unlimited donor source for neural repair. Generation of interspecies neural chimeras composed of human and rodent cells facilitates the translation of these advances into clinical strategies for human nervous system repair.


Asunto(s)
Encéfalo/citología , Encéfalo/crecimiento & desarrollo , Quimera , Neuronas/citología , Trasplante de Células Madre , Células Madre/citología , Animales , Diferenciación Celular , Movimiento Celular , Células Clonales/citología , Embrión de Mamíferos , Supervivencia de Injerto , Humanos , Ratones , Regeneración Nerviosa/fisiología , Neuroglía/citología , Plasticidad Neuronal , Ratas
10.
Brain Pathol ; 2(1): 47-59, 1992 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-1341947

RESUMEN

A gene transfer model was developed which allows for the identification of transformation pathways in the developing nervous system. Transforming genes were introduced into fetal brain transplants using embryonic CNS as donor tissue and replication-defective retroviral vectors as genetic vehicles. This technique relies on the extraordinary organotypic differentiation capacity of neural grafts and the expression of retrovirally transmitted genes in various cell types of CNS transplants. In contrast to transgenic animals but analogous to sporadic tumor formation, target cells for the retroviral vector develop in an environment of unmodified neural tissue. We have introduced a number of neurotropic oncogenes into fetal brain transplants including genes with an associated tyrosine kinase activity (polyoma medium T, v-src), a novel member of the fibroblast growth factor (fgf) gene family and the SV40 large T antigen. These experiments have demonstrated a significant transformation potential of oncogenes in specific target cells of the brain, provided evidence for a dominant complementary transforming effect of simultaneously expressed ras and myc genes in neural precursor cells and have yielded intriguing model systems for human CNS neoplasms such as the cerebellar medulloblastoma. This review describes the transplantation model, demonstrates several striking phenotypes induced by oncogene expression in neural grafts and elaborates on future prospects of this experimental approach.


Asunto(s)
Neoplasias Encefálicas/genética , Trasplante de Tejido Encefálico , Vectores Genéticos , Oncogenes , Retroviridae , Transfección , Animales , Antígenos Transformadores de Poliomavirus/biosíntesis , Antígenos Transformadores de Poliomavirus/genética , Transformación Celular Neoplásica , Neoplasias Cerebelosas/genética , Trasplante de Tejido Fetal , Factores de Crecimiento de Fibroblastos/biosíntesis , Factores de Crecimiento de Fibroblastos/genética , Genes myc , Genes ras , Genes src , Humanos , Meduloblastoma/genética , Familia de Multigenes , Virus 40 de los Simios/genética
11.
Neuroscience ; 24(3): 877-83, 1988 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-3380305

RESUMEN

The activity of the pentose phosphate shunt was assessed under basal conditions in subregions of the hippocampus by measuring the uptake and retention of [1-14C]glucose and [6-14C]glucose and their 14C-labelled metabolites. The relative and absolute retention of carbon-14 from each of the two compounds was nearly identical in all regions examined. For each compound, the highest accumulation of 14C occurred in the granule cell layer of the dentate gyrus and in the pyramidal cell layer. Relatively high retention of radioactivity was also found in the molecular layer of dentate gyrus and in the stratum lacunosum-molecular. The stratum radiatum and stratum oriens contained the lowest levels of radioactivity among hippocampal regions. The equal retention of radioactivity from [1-14C]glucose and [6-14C]glucose implies that pentose phosphate shunt activity is very low throughout the hippocampus under the conditions of this study. The uptake and retention of radioactivity was evaluated in different hippocampal regions 10 or 30 min following intravenous injection of [1-14C]glucose. Although there was significantly more radioactivity at 30 min than at 10 min, the same topographic pattern of radioactivity within the hippocampus was observed in rats after both survival periods, indicating that an equal fraction of the [1-14C]glucose utilized in different hippocampal regions is oxidized to 14CO2 under these conditions. Most regions of high glucose utilization in the hippocampus determined with [1-14C]glucose and [6-14C]glucose correspond to regions of intense histochemical staining for cytochrome oxidase reported in the literature.(ABSTRACT TRUNCATED AT 250 WORDS)


Asunto(s)
Glucosa/farmacocinética , Hipocampo/metabolismo , Animales , Autorradiografía , Radioisótopos de Carbono , Masculino , Ratas , Ratas Endogámicas , Factores de Tiempo
12.
Neuroscience ; 32(3): 813-22, 1989.
Artículo en Inglés | MEDLINE | ID: mdl-2601848

RESUMEN

The uptake and retention of radioactivity was measured in discrete areas of rat brain at different times after i.v. injection of [14C]2-deoxyglucose or [6(-14)C]glucose, in unrestrained rats. In most brain regions, the accumulation of radioactivity from the two compounds was similar when a 30-min survival period for [6(-14)C]glucose was compared to a 45-min survival period for [14C]2-deoxyglucose. However, at those times, autoradiographic images of the hippocampus and piriform cortex appeared distinctly different for [14C]2-deoxyglucose and [6(-14)C]glucose. Relatively more radioactivity accumulated from [14C]2-deoxyglucose, compared to [14C]glucose, in the stratum lacunosum-moleculare of the hippocampus and in layer 4 of the isocortex. In contrast, relatively more radioactivity accumulated from [6(-14)C]glucose, compared to [14C]2-deoxyglucose, in the molecular and granule cell layers of the dentate gyrus, the CA1 pyramidal cell layer of the hippocampus, and in layer 2 of the piriform cortex. When rats were killed 5 min after injection of [6(-14)C]glucose, the relative neuroanatomical distribution of radioactivity was similar to the 30-min survival period, except in layer 4 of the isocortex, where relatively more radioactivity was present at the early time. When rats were killed 5 min after injection of [14C]2-deoxyglucose, in 20 of 24 brain regions examined, the absolute and relative amounts of accumulated radioactivity were similar when compared to that of the 45-min survival period. In contrast, the absolute and relative amounts of radioactivity were significantly greater for the 5-min compared to the 45-min survival period, in the CA1 pyramidal cell field, dentate gyrus, and layer 2 of the piriform cortex. For those regions, the appearance of autoradiograms prepared from rats killed 5 min after administration of [14C]2-deoxyglucose is remarkably similar to the appearance of autoradiograms prepared from rats killed 5 or 30 min after injection of [6(-14)C]glucose. Possible mechanisms are discussed to explain the observed differences in the accumulation of radioactivity in discrete brain regions after injection of [6(-14)C]glucose and [14C]2-deoxyglucose at the different survival times examined.


Asunto(s)
Desoxiazúcares/farmacocinética , Desoxiglucosa/farmacocinética , Lóbulo Frontal/metabolismo , Glucosa/farmacocinética , Animales , Metabolismo Energético , Masculino , Ratas , Ratas Endogámicas
13.
Neurosurgery ; 29(3): 341-50, 1991 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-1922700

RESUMEN

A model of rat arteriovenous fistula (AVF) was created using a proximal common carotid artery to distal external jugular vein anastomosis. Anatomical dissections revealed that the external jugular vein is the primary vessel draining intracranial venous blood. Physiological measurements were made with the AVF open and closed, and during venous outflow occlusion of the contralateral external jugular vein. Opening the AVF increased torcular pressure from 6.5 +/- 0.6 to 13.5 +/- 1.1 mm Hg and decreased mean arterial pressure from 82.7 +/- 1.8 to 62.8 +/- 1.8 mm Hg (both P less than .05), decreasing cerebral perfusion pressure from 76.2 +/- 1.7 to 49.3 +/- 2.2 mm Hg (P less than .05). Middle cerebral artery blood flow velocity (MCA BFV) decreased from 6.8 +/- 1.1 to 4.2 +/- 0.7 cm/s (P less than 0.05). In rats with an AVF, occlusion of venous outflow increased torcular pressure to 34.8 +/- 3.1 mm Hg (P less than 0.05), MCA BFV decreased to 1.8 +/- 0.5 cm/s (P less than 0.05), and severe ischemic changes were seen on the electroencephalogram. Under this condition, torcular pressure and systemic arterial pressure had a positive linear relationship (P less than 0.05), whereas in control rats torcular pressure and arterial pressure had no relationship. Restoration of cerebral perfusion pressure by release of venous outflow occlusion and AVF closure transiently increased MCA BFV to 69% above baseline (P less than 0.05). Histological examination 1 week after permanent venous outflow occlusion revealed venous infarction, subarachnoid hemorrhage, and severe brain edema in rats with an AVF but not in control rats without an AVF. This model of cerebrovascular steal with venous hypertension reproduces both hemodynamic and hemorrhagic complications of human AVF and emphasizes the importance of venous outflow obstruction and venous hypertension in the pathophysiology of these lesions.


Asunto(s)
Fístula Arteriovenosa/fisiopatología , Circulación Cerebrovascular/fisiología , Hipertensión/fisiopatología , Presión Venosa/fisiología , Animales , Fístula Arteriovenosa/complicaciones , Fístula Arteriovenosa/patología , Velocidad del Flujo Sanguíneo , Arterias Carótidas , Electroencefalografía , Hipertensión/complicaciones , Hipertensión/patología , Malformaciones Arteriovenosas Intracraneales/fisiopatología , Venas Yugulares , Ratas , Ratas Endogámicas , Análisis de Regresión
14.
Anat Embryol (Berl) ; 179(1): 1-17, 1988.
Artículo en Inglés | MEDLINE | ID: mdl-3213951

RESUMEN

High resolution autoradiography was used to study the basal pattern of glucose-utilization in the rat thalamus and hypothalamus. Rats were injected via chronic jugular catheter with (1-14C)-glucose and sacrificed 30 min later. The high resolution thaw-mount autoradiographic procedure, using 4 micron frozen sections and nuclear emulsion, permitted discrimination of regional variations in glucose-utilization that have not yet been described. Quantitative data were obtained by means of digital image analysis and computerized densitometry. In the thalamus, high activity was present in the anterodorsal, anteroventral, laterodorsal and reticular nuclei, while low activity was found in the mediodorsal and paraventricular nuclei. The autoradiographic pattern of glucose utilization in the thalamus corresponds largely to classical cytoarchitectonic subdivisions. In the hypothalamus, the median eminence, arcuate nucleus, and periventricular nucleus showed the lowest activity, whereas certain parts of the lateral hypothalamus appeared high. Very high activity was present in mammillary nuclei. The described detailed anatomical data of glucose-utilization may provide insights into the functional circuitry of thalamic and hypothalamic systems and serve as a baseline from which experimental manipulations can be assessed.


Asunto(s)
Glucosa/metabolismo , Hipotálamo/metabolismo , Tálamo/metabolismo , Animales , Autorradiografía , Radioisótopos de Carbono , Hipotálamo/diagnóstico por imagen , Masculino , Radiografía , Ratas , Ratas Endogámicas , Tálamo/diagnóstico por imagen
16.
Curr Mol Med ; 13(5): 832-41, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23642064

RESUMEN

Neurodegenerative diseases are a heterogeneous group of sporadic or familial disorders of the nervous system that mostly lead to a progressive loss of neural cells. A major challenge in studying the molecular pathomechanisms underlying these disorders is the limited experimental access to disease-affected human nervous system tissue. In addition, considering that the molecular disease initiation occurs years or decades before the symptomatic onset of a medical condition, these tissues mostly reflect only the final phase of the disease. To overcome these limitations, various model systems have been established based on gain and loss-of-function studies in transformed cell lines or transgenic animal models. Although these approaches provide valuable insights into disease mechanisms and development they often lack physiological protein expression levels and a humanized context of molecular interaction partners. The generation of human induced pluripotent stem (hiPS) cells from somatic cells provides access to virtually unlimited numbers of patient-specific cells for modeling neurological disorders in vitro. In this review, we focus on the current progress made in hiPS cell-based modeling of neurodegenerative diseases and discuss recent advances in the quality assessment of hiPS cell lines.


Asunto(s)
Células Madre Pluripotentes Inducidas/fisiología , Enfermedades Neurodegenerativas/patología , Animales , Técnicas de Cultivo de Célula/normas , Células Cultivadas , Humanos , Neurociencias , Estándares de Referencia , Esquizofrenia/patología
17.
Curr Mol Med ; 13(5): 707-22, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23642053

RESUMEN

The in vitro differentiation of human pluripotent stem cells represents a convenient approach to generate large numbers of neural cells for basic and translational research. We recently described the derivation of homogeneous populations of long-term self-renewing neuroepithelial-like stem cells from human pluripotent stem cells (lt-NES® cells). These cells constitute a suitable source of neural stem cells for in vitro modelling of early human neural development. Recent evidence demonstrates that microRNAs are important regulators of stem cells and nervous system development. Studies in several model organisms suggest that microRNAs contribute to different stages of neurogenesis - from progenitor self-renewal to survival and function of differentiated neurons. However, the understanding of the impact of microRNA-based regulation in human neural development is still at its dawn. Here, we give an overview on the current state of microRNA biology in stem cells and neural development and examine the role of the neural-associated miR-124, miR- 125b and miR-9/9* in human lt-NES® cells. We show that overexpression of miR-124, as well as overexpression of miR-125b, impair lt-NES® cell self-renewal and induce differentiation into neurons. Overexpression of the miR-9/9* locus also impairs self-renewal of lt-NES® cells and supports their commitment to neuronal differentiation. A detailed examination revealed that overexpression of miR-9 promotes differentiation, while overexpression of miR-9* affects both proliferation and differentiation of lt-NES® cells. This work provides insights into the regulation of early human neuroepithelial cells by microRNAs and highlights the potential of controlling differentiation of human stem cells by modulating the expression of selected microRNAs.


Asunto(s)
MicroARNs/fisiología , Neurogénesis/genética , Células Madre Pluripotentes/fisiología , Animales , Encéfalo/citología , Encéfalo/crecimiento & desarrollo , Encéfalo/metabolismo , Proliferación Celular , Células Cultivadas , Expresión Génica , Humanos , Células-Madre Neurales/fisiología , Interferencia de ARN
20.
Artículo en Alemán | MEDLINE | ID: mdl-18773170

RESUMEN

The remarkable capability of human embryonic stem cells (hES cells) to differentiate into all somatic cell types and tissues opens promising perspectives for the development of novel therapeutic approaches for neurological disorders. This article provides an overview on the current state of research in this field. We present strategies and results on the generation of selected neural subtypes (dopaminergic neurons, retinal progenitors, motoneurons, oligodendrocytes) and discuss problems and risks associated with a potential clinical application of this novel cell source.


Asunto(s)
Diferenciación Celular/fisiología , Enfermedades del Sistema Nervioso Central/terapia , Investigaciones con Embriones , Células Madre Embrionarias/trasplante , Regeneración Nerviosa/fisiología , Neuronas/citología , Células Madre Pluripotentes/trasplante , Ingeniería de Tejidos , Alternativas a las Pruebas en Animales , Animales , Diferenciación Celular/genética , Enfermedades del Sistema Nervioso Central/genética , Análisis Mutacional de ADN , Regulación de la Expresión Génica/genética , Prueba de Histocompatibilidad , Humanos , Neuronas Motoras/citología , Regeneración Nerviosa/genética , Oligodendroglía/citología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA