Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 84
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 187(17): 4656-4673.e28, 2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-38942013

RESUMEN

The ability of proteins and RNA to coalesce into phase-separated assemblies, such as the nucleolus and stress granules, is a basic principle in organizing membraneless cellular compartments. While the constituents of biomolecular condensates are generally well documented, the mechanisms underlying their formation under stress are only partially understood. Here, we show in yeast that covalent modification with the ubiquitin-like modifier Urm1 promotes the phase separation of a wide range of proteins. We find that the drop in cellular pH induced by stress triggers Urm1 self-association and its interaction with both target proteins and the Urm1-conjugating enzyme Uba4. Urmylation of stress-sensitive proteins promotes their deposition into stress granules and nuclear condensates. Yeast cells lacking Urm1 exhibit condensate defects that manifest in reduced stress resilience. We propose that Urm1 acts as a reversible molecular "adhesive" to drive protective phase separation of functionally critical proteins under cellular stress.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Estrés Fisiológico , Ubiquitinas , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Ubiquitinas/metabolismo , Condensados Biomoleculares/metabolismo , Enzimas Ubiquitina-Conjugadoras/metabolismo , Concentración de Iones de Hidrógeno , Gránulos de Estrés/metabolismo
2.
Cell ; 183(2): 457-473.e20, 2020 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-32979320

RESUMEN

Rubisco, the key enzyme of CO2 fixation in photosynthesis, is prone to inactivation by inhibitory sugar phosphates. Inhibited Rubisco undergoes conformational repair by the hexameric AAA+ chaperone Rubisco activase (Rca) in a process that is not well understood. Here, we performed a structural and mechanistic analysis of cyanobacterial Rca, a close homolog of plant Rca. In the Rca:Rubisco complex, Rca is positioned over the Rubisco catalytic site under repair and pulls the N-terminal tail of the large Rubisco subunit (RbcL) into the hexamer pore. Simultaneous displacement of the C terminus of the adjacent RbcL opens the catalytic site for inhibitor release. An alternative interaction of Rca with Rubisco is mediated by C-terminal domains that resemble the small Rubisco subunit. These domains, together with the N-terminal AAA+ hexamer, ensure that Rca is packaged with Rubisco into carboxysomes. The cyanobacterial Rca is a dual-purpose protein with functions in Rubisco repair and carboxysome organization.


Asunto(s)
Cianobacterias/metabolismo , Ribulosa-Bifosfato Carboxilasa/metabolismo , Adenosina Trifosfato/metabolismo , Proteínas Bacterianas/metabolismo , Dominio Catalítico , Cristalografía por Rayos X , Modelos Moleculares , Chaperonas Moleculares/metabolismo , Orgánulos/metabolismo , Fotosíntesis/fisiología , Ribulosa-Bifosfato Carboxilasa/fisiología , Activador de Tejido Plasminógeno/química , Activador de Tejido Plasminógeno/metabolismo
3.
Cell ; 172(3): 605-617.e11, 2018 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-29336887

RESUMEN

The bacterial chaperonin GroEL and its cofactor, GroES, form a nano-cage for a single molecule of substrate protein (SP) to fold in isolation. GroEL and GroES undergo an ATP-regulated interaction cycle to close and open the folding cage. GroEL consists of two heptameric rings stacked back to back. Here, we show that GroEL undergoes transient ring separation, resulting in ring exchange between complexes. Ring separation occurs upon ATP-binding to the trans ring of the asymmetric GroEL:7ADP:GroES complex in the presence or absence of SP and is a consequence of inter-ring negative allostery. We find that a GroEL mutant unable to perform ring separation is folding active but populates symmetric GroEL:GroES2 complexes, where both GroEL rings function simultaneously rather than sequentially. As a consequence, SP binding and release from the folding chamber is inefficient, and E. coli growth is impaired. We suggest that transient ring separation is an integral part of the chaperonin mechanism.


Asunto(s)
Chaperonina 60/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Chaperonina 10/metabolismo , Chaperonina 60/química , Chaperonina 60/genética , Mutación , Unión Proteica
4.
Nature ; 2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-39169181

RESUMEN

Chaperonins are large barrel-shaped complexes that mediate ATP-dependent protein folding1-3. The bacterial chaperonin GroEL forms juxtaposed rings that bind unfolded protein and the lid-shaped cofactor GroES at their apertures. In vitro analyses of the chaperonin reaction have shown that substrate protein folds, unimpaired by aggregation, while transiently encapsulated in the GroEL central cavity by GroES4-6. To determine the functional stoichiometry of GroEL, GroES and client protein in situ, here we visualized chaperonin complexes in their natural cellular environment using cryo-electron tomography. We find that, under various growth conditions, around 55-70% of GroEL binds GroES asymmetrically on one ring, with the remainder populating symmetrical complexes. Bound substrate protein is detected on the free ring of the asymmetrical complex, defining the substrate acceptor state. In situ analysis of GroEL-GroES chambers, validated by high-resolution structures obtained in vitro, showed the presence of encapsulated substrate protein in a folded state before release into the cytosol. Based on a comprehensive quantification and conformational analysis of chaperonin complexes, we propose a GroEL-GroES reaction cycle that consists of linked asymmetrical and symmetrical subreactions mediating protein folding. Our findings illuminate the native conformational and functional chaperonin cycle directly within cells.

5.
Cell ; 157(4): 922-934, 2014 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-24813614

RESUMEN

The GroEL/ES chaperonin system functions as a protein folding cage. Many obligate substrates of GroEL share the (ßα)8 TIM-barrel fold, but how the chaperonin promotes folding of these proteins is not known. Here, we analyzed the folding of DapA at peptide resolution using hydrogen/deuterium exchange and mass spectrometry. During spontaneous folding, all elements of the DapA TIM barrel acquire structure simultaneously in a process associated with a long search time. In contrast, GroEL/ES accelerates folding more than 30-fold by catalyzing segmental structure formation in the TIM barrel. Segmental structure formation is also observed during the fast spontaneous folding of a structural homolog of DapA from a bacterium that lacks GroEL/ES. Thus, chaperonin independence correlates with folding properties otherwise enforced by protein confinement in the GroEL/ES cage. We suggest that folding catalysis by GroEL/ES is required by a set of proteins to reach native state at a biologically relevant timescale, avoiding aggregation or degradation.


Asunto(s)
Chaperonina 10/metabolismo , Chaperonina 60/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Pliegue de Proteína , Secuencia de Aminoácidos , Catálisis , Medición de Intercambio de Deuterio , Escherichia coli/química , Escherichia coli/enzimología , Hidroliasas/química , Hidroliasas/metabolismo , Espectrometría de Masas , Modelos Moleculares , Datos de Secuencia Molecular , Mycoplasma synoviae/enzimología , Mycoplasma synoviae/metabolismo , Oxo-Ácido-Liasas/química , Oxo-Ácido-Liasas/metabolismo , Estructura Terciaria de Proteína
6.
Annu Rev Biochem ; 82: 323-55, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23746257

RESUMEN

The biological functions of proteins are governed by their three-dimensional fold. Protein folding, maintenance of proteome integrity, and protein homeostasis (proteostasis) critically depend on a complex network of molecular chaperones. Disruption of proteostasis is implicated in aging and the pathogenesis of numerous degenerative diseases. In the cytosol, different classes of molecular chaperones cooperate in evolutionarily conserved folding pathways. Nascent polypeptides interact cotranslationally with a first set of chaperones, including trigger factor and the Hsp70 system, which prevent premature (mis)folding. Folding occurs upon controlled release of newly synthesized proteins from these factors or after transfer to downstream chaperones such as the chaperonins. Chaperonins are large, cylindrical complexes that provide a central compartment for a single protein chain to fold unimpaired by aggregation. This review focuses on recent advances in understanding the mechanisms of chaperone action in promoting and regulating protein folding and on the pathological consequences of protein misfolding and aggregation.


Asunto(s)
Chaperonas Moleculares/metabolismo , Pliegue de Proteína , Proteínas/metabolismo , Proteoma/metabolismo , Deficiencias en la Proteostasis/fisiopatología , Humanos , Chaperonas Moleculares/química , Chaperonas Moleculares/fisiología , Proteínas/química
7.
Mol Cell ; 74(1): 88-100.e9, 2019 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-30876804

RESUMEN

Eukaryotic elongation factor 2 (eEF2) is an abundant and essential component of the translation machinery. The biogenesis of this 93 kDa multi-domain protein is assisted by the chaperonin TRiC/CCT. Here, we show in yeast cells that the highly conserved protein Hgh1 (FAM203 in humans) is a chaperone that cooperates with TRiC in eEF2 folding. In the absence of Hgh1, a substantial fraction of newly synthesized eEF2 is degraded or aggregates. We solved the crystal structure of Hgh1 and analyzed the interaction of wild-type and mutant Hgh1 with eEF2. These experiments revealed that Hgh1 is an armadillo repeat protein that binds to the dynamic central domain III of eEF2 via a bipartite interface. Hgh1 binding recruits TRiC to the C-terminal eEF2 module and prevents unproductive interactions of domain III, allowing efficient folding of the N-terminal GTPase module. eEF2 folding is completed upon dissociation of TRiC and Hgh1.


Asunto(s)
Péptidos y Proteínas de Señalización Intracelular/metabolismo , Chaperonas Moleculares/metabolismo , Factor 2 de Elongación Peptídica/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Péptidos y Proteínas de Señalización Intracelular/química , Péptidos y Proteínas de Señalización Intracelular/genética , Modelos Moleculares , Chaperonas Moleculares/química , Chaperonas Moleculares/genética , Mutación , Factor 2 de Elongación Peptídica/química , Factor 2 de Elongación Peptídica/genética , Unión Proteica , Pliegue de Proteína , Dominios y Motivos de Interacción de Proteínas , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Relación Estructura-Actividad
8.
Mol Cell ; 67(5): 744-756.e6, 2017 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-28803776

RESUMEN

How AAA+ chaperones conformationally remodel specific target proteins in an ATP-dependent manner is not well understood. Here, we investigated the mechanism of the AAA+ protein Rubisco activase (Rca) in metabolic repair of the photosynthetic enzyme Rubisco, a complex of eight large (RbcL) and eight small (RbcS) subunits containing eight catalytic sites. Rubisco is prone to inhibition by tight-binding sugar phosphates, whose removal is catalyzed by Rca. We engineered a stable Rca hexamer ring and analyzed its functional interaction with Rubisco. Hydrogen/deuterium exchange and chemical crosslinking showed that Rca structurally destabilizes elements of the Rubisco active site with remarkable selectivity. Cryo-electron microscopy revealed that Rca docks onto Rubisco over one active site at a time, positioning the C-terminal strand of RbcL, which stabilizes the catalytic center, for access to the Rca hexamer pore. The pulling force of Rca is fine-tuned to avoid global destabilization and allow for precise enzyme repair.


Asunto(s)
Proteínas Bacterianas/metabolismo , Chaperonas Moleculares/metabolismo , Proteínas de Plantas/metabolismo , Rhodobacter sphaeroides/enzimología , Ribulosa-Bifosfato Carboxilasa/metabolismo , Activador de Tejido Plasminógeno/metabolismo , Adenosina Trifosfato/metabolismo , Regulación Alostérica , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Sitios de Unión , Dominio Catalítico , Reactivos de Enlaces Cruzados/química , Medición de Intercambio de Deuterio , Estabilidad de Enzimas , Chaperonas Moleculares/química , Chaperonas Moleculares/genética , Simulación del Acoplamiento Molecular , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Estructura Cuaternaria de Proteína , Subunidades de Proteína , Rhodobacter sphaeroides/genética , Ribulosa-Bifosfato Carboxilasa/química , Ribulosa-Bifosfato Carboxilasa/genética , Relación Estructura-Actividad , Factores de Tiempo , Activador de Tejido Plasminógeno/química , Activador de Tejido Plasminógeno/genética
9.
Bioorg Med Chem Lett ; 104: 129728, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38582133

RESUMEN

Antascomicin B is a natural product that similarly to the macrolides FK506 and Rapamycin binds to the FK506-binding protein 12 (FKBP12). FK506 and Rapamycin act as molecular glues by inducing ternary complexes between FKBPs and additional target proteins. Whether Antascomicin B can induce ternary complexes is unknown. Here we show that Antascomicin B binds tightly to larger human FKBP homologs. The cocrystal structure of FKBP51 in complex with Antascomicin B revealed that large parts of Antascomicin B are solvent-exposed and available to engage additional proteins. Cellular studies demonstrated that Antascomicin B enhances the interaction between human FKBP51 and human Akt. Our studies show that molecules with molecular glue-like properties are more prominent in nature than previously thought. We predict the existence of additional 'orphan' molecular glues that evolved to induce ternary protein complexes but where the relevant ternary complex partners are unknown.


Asunto(s)
Proteínas Proto-Oncogénicas c-akt , Proteínas de Unión a Tacrolimus , Tacrolimus , Humanos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Sirolimus/farmacología , Tacrolimus/farmacología , Tacrolimus/análogos & derivados , Proteínas de Unión a Tacrolimus/química , Proteínas de Unión a Tacrolimus/metabolismo
10.
Bioessays ; 44(7): e2100287, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35521968

RESUMEN

Fibrillar protein aggregates are the pathological hallmark of a group of age-dependent neurodegenerative conditions, including Alzheimer's and Parkinson's disease. Aggregates of the microtubule-associated protein Tau are observed in Alzheimer's disease and primary tauopathies. Tau pathology propagates from cell to cell in a prion-like process that is likely subject to modulation by extracellular chaperones such as Clusterin. We recently reported that Clusterin delayed Tau fibril formation but enhanced the activity of Tau oligomers to seed aggregation of endogenous Tau in a cellular model. In contrast, Clusterin inhibited the propagation of α-Synuclein aggregates associated with Parkinson's disease. These findings raise the possibility of a mechanistic link between Clusterin upregulation observed in Alzheimer's disease and the progression of Tau pathology. Here we review the diverse functions of Clusterin in the pathogenesis of neurodegenerative diseases, focusing on evidence that Clusterin may act either as a suppressor or enhancer of pathology.


Asunto(s)
Enfermedad de Alzheimer , Enfermedad de Parkinson , Tauopatías , Enfermedad de Alzheimer/metabolismo , Clusterina , Humanos , Enfermedad de Parkinson/metabolismo , Tauopatías/metabolismo
11.
Subcell Biochem ; 101: 1-39, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36520302

RESUMEN

Molecular chaperones of the Hsp70 family are key components of the cellular protein-folding machinery. Substrate folding is accomplished by iterative cycles of ATP binding, hydrolysis, and release. The ATPase activity of Hsp70 is regulated by two main classes of cochaperones: J-domain proteins stimulate ATPase hydrolysis by Hsp70, while nucleotide exchange factors (NEFs) facilitate the conversion from the ADP-bound to the ATP-bound state, thus closing the chaperone folding cycle. NEF function can additionally be antagonized by ADP dissociation inhibitors. Beginning with the discovery of the prototypical bacterial NEF, GrpE, a large diversity of nucleotide exchange factors for Hsp70 have been identified, connecting it to a multitude of cellular processes in the eukaryotic cell. Here we review recent advances toward structure and function of nucleotide exchange factors from the Hsp110/Grp170, HspBP1/Sil1, and BAG domain protein families and discuss how these cochaperones connect protein folding with cellular quality control and degradation pathways.


Asunto(s)
Proteínas HSP70 de Choque Térmico , Chaperonas Moleculares , Proteínas HSP70 de Choque Térmico/química , Proteínas HSP70 de Choque Térmico/metabolismo , Chaperonas Moleculares/metabolismo , Pliegue de Proteína , Adenosina Trifosfatasas/metabolismo , Adenosina Difosfato/metabolismo , Adenosina Trifosfato/metabolismo
12.
Cell ; 133(6): 1068-79, 2008 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-18555782

RESUMEN

Protein folding by Hsp70 is tightly controlled by cochaperones, including J-domain proteins that trigger ATP hydrolysis and nucleotide exchange factors (NEFs) that remove ADP from Hsp70. Here we present the crystal structure of the yeast NEF Sse1p (Hsp110) in complex with the nucleotide-binding domain (NBD) of Hsp70. Hsp110 proteins are homologous to Hsp70s and consist of an NBD, a beta sandwich domain, and a three helix bundle domain (3HBD). In the complex, the NBD of Sse1p is ATP bound, and together with the 3HBD it embraces the NBD of Hsp70, inducing opening and the release of bound ADP from Hsp70. Mutations that abolish NEF activity are lethal, thus defining nucleotide exchange on Hsp70 as an essential function of Sse1p. Our data suggest that Sse1p does not employ the nucleotide-dependent allostery and peptide-binding mode of canonical Hsp70s, and that direct interactions of substrate with Sse1p may support Hsp70-assisted protein folding in a cooperative process.


Asunto(s)
Proteínas del Choque Térmico HSP110/química , Proteínas del Choque Térmico HSP110/metabolismo , Proteínas del Choque Térmico HSP72/química , Proteínas del Choque Térmico HSP72/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Cristalografía por Rayos X , Análisis Mutacional de ADN , Proteínas del Choque Térmico HSP110/genética , Proteínas HSP70 de Choque Térmico/química , Proteínas HSP70 de Choque Térmico/metabolismo , Humanos , Modelos Moleculares , Pliegue de Proteína , Estructura Terciaria de Proteína , Proteínas de Saccharomyces cerevisiae/genética
13.
Biochem Biophys Res Commun ; 538: 54-62, 2021 01 29.
Artículo en Inglés | MEDLINE | ID: mdl-33039147

RESUMEN

Unprecedented by number of casualties and socio-economic burden occurring worldwide, the coronavirus disease 2019 (Covid-19) pandemic caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the worst health crisis of this century. In order to develop adequate countermeasures against Covid-19, identification and structural characterization of suitable antiviral targets within the SARS-CoV-2 protein repertoire is urgently needed. The nucleocapsid phosphoprotein (N) is a multifunctional and highly immunogenic determinant of virulence and pathogenicity, whose main functions consist in oligomerizing and packaging the single-stranded RNA (ssRNA) viral genome. Here we report the structural and biophysical characterization of the SARS-CoV-2 N C-terminal domain (CTD), on which both N homo-oligomerization and ssRNA binding depend. Crystal structures solved at 1.44 Å and 1.36 Å resolution describe a rhombus-shape N CTD dimer, which stably exists in solution as validated by size-exclusion chromatography coupled to multi-angle light scattering and analytical ultracentrifugation. Differential scanning fluorimetry revealed moderate thermal stability and a tendency towards conformational change. Microscale thermophoresis demonstrated binding to a 7-bp SARS-CoV-2 genomic ssRNA fragment at micromolar affinity. Furthermore, a low-resolution preliminary model of the full-length SARS-CoV N in complex with ssRNA, obtained by cryo-electron microscopy, provides an initial understanding of self-associating and RNA binding functions exerted by the SARS-CoV-2 N.


Asunto(s)
COVID-19/virología , Proteínas de la Nucleocápside de Coronavirus/química , Proteínas de Unión al ARN/química , SARS-CoV-2/genética , Proteínas de la Nucleocápside de Coronavirus/genética , Microscopía por Crioelectrón , Genoma Viral , Humanos , Fosfoproteínas/química , Fosfoproteínas/genética , Unión Proteica , Dominios Proteicos , Multimerización de Proteína , Proteínas de Unión al ARN/genética
14.
Angew Chem Int Ed Engl ; 60(24): 13257-13263, 2021 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-33843131

RESUMEN

Subtype selectivity represents a challenge in many drug discovery campaigns. A typical example is the FK506 binding protein 51 (FKBP51), which has emerged as an attractive drug target. The most advanced FKBP51 ligands of the SAFit class are highly selective vs. FKBP52 but poorly discriminate against the homologs and off-targets FKBP12 and FKBP12.6. During a macrocyclization pilot study, we observed that many of these macrocyclic analogs have unanticipated and unprecedented preference for FKBP51 over FKBP12 and FKBP12.6. Structural studies revealed that these macrocycles bind with a new binding mode featuring a transient conformation, which is disfavored for the small FKBPs. Using a conformation-sensitive assay we show that this binding mode occurs in solution and is characteristic for this new class of compounds. The discovered macrocycles are non-immunosuppressive, engage FKBP51 in cells, and block the cellular effect of FKBP51 on IKKα. Our findings provide a new chemical scaffold for improved FKBP51 ligands and the structural basis for enhanced selectivity.


Asunto(s)
Ligandos , Proteínas de Unión a Tacrolimus/metabolismo , Sitios de Unión , Ciclización , Humanos , Simulación de Dinámica Molecular , Unión Proteica , Estructura Terciaria de Proteína , Rodaminas/química , Rodaminas/metabolismo , Especificidad por Sustrato , Tacrolimus/química , Tacrolimus/metabolismo , Proteína 1A de Unión a Tacrolimus/química , Proteína 1A de Unión a Tacrolimus/metabolismo , Proteínas de Unión a Tacrolimus/química
15.
Trends Biochem Sci ; 41(1): 62-76, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26422689

RESUMEN

The bacterial chaperonin GroEL and its cofactor GroES constitute the paradigmatic molecular machine of protein folding. GroEL is a large double-ring cylinder with ATPase activity that binds non-native substrate protein (SP) via hydrophobic residues exposed towards the ring center. Binding of the lid-shaped GroES to GroEL displaces the bound protein into an enlarged chamber, allowing folding to occur unimpaired by aggregation. GroES and SP undergo cycles of binding and release, regulated allosterically by the GroEL ATPase. Recent structural and functional studies are providing insights into how the physical environment of the chaperonin cage actively promotes protein folding, in addition to preventing aggregation. Here, we review different models of chaperonin action and discuss issues of current debate.


Asunto(s)
Chaperonina 10/metabolismo , Chaperonina 60/metabolismo , Proteínas Mitocondriales/metabolismo , Nanoestructuras , Pliegue de Proteína , Chaperonina 10/química , Chaperonina 60/química , Humanos , Proteínas Mitocondriales/química , Modelos Moleculares
16.
Nat Chem Biol ; 11(1): 33-7, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25436518

RESUMEN

The FK506-binding protein 51 (FKBP51, encoded by the FKBP5 gene) is an established risk factor for stress-related psychiatric disorders such as major depression. Drug discovery for FKBP51 has been hampered by the inability to pharmacologically differentiate against the structurally similar but functional opposing homolog FKBP52, and all known FKBP ligands are unselective. Here, we report the discovery of the potent and highly selective inhibitors of FKBP51, SAFit1 and SAFit2. This new class of ligands achieves selectivity for FKBP51 by an induced-fit mechanism that is much less favorable for FKBP52. By using these ligands, we demonstrate that selective inhibition of FKBP51 enhances neurite elongation in neuronal cultures and improves neuroendocrine feedback and stress-coping behavior in mice. Our findings provide the structural and functional basis for the development of mechanistically new antidepressants.


Asunto(s)
Proteínas de Unión a Tacrolimus/antagonistas & inhibidores , Adaptación Psicológica/efectos de los fármacos , Animales , Antidepresivos/farmacología , Conducta Animal/efectos de los fármacos , Sitios de Unión/efectos de los fármacos , Células Cultivadas , Descubrimiento de Drogas , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Mutación/genética , Neuritas/efectos de los fármacos , Conformación Proteica , Proteínas de Unión a Tacrolimus/química , Proteínas de Unión a Tacrolimus/efectos de los fármacos
17.
Nature ; 475(7356): 324-32, 2011 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-21776078

RESUMEN

Most proteins must fold into defined three-dimensional structures to gain functional activity. But in the cellular environment, newly synthesized proteins are at great risk of aberrant folding and aggregation, potentially forming toxic species. To avoid these dangers, cells invest in a complex network of molecular chaperones, which use ingenious mechanisms to prevent aggregation and promote efficient folding. Because protein molecules are highly dynamic, constant chaperone surveillance is required to ensure protein homeostasis (proteostasis). Recent advances suggest that an age-related decline in proteostasis capacity allows the manifestation of various protein-aggregation diseases, including Alzheimer's disease and Parkinson's disease. Interventions in these and numerous other pathological states may spring from a detailed understanding of the pathways underlying proteome maintenance.


Asunto(s)
Chaperonas Moleculares/metabolismo , Pliegue de Proteína , Proteínas/metabolismo , Envejecimiento , Animales , Enfermedad , Humanos , Chaperonas Moleculares/clasificación , Proteoma/metabolismo , Ribosomas/metabolismo
18.
Nature ; 479(7372): 194-9, 2011 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-22048315

RESUMEN

Ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco) catalyses the fixation of atmospheric CO(2) in photosynthesis, but tends to form inactive complexes with its substrate ribulose 1,5-bisphosphate (RuBP). In plants, Rubisco is reactivated by the AAA(+) (ATPases associated with various cellular activities) protein Rubisco activase (Rca), but no such protein is known for the Rubisco of red algae. Here we identify the protein CbbX as an activase of red-type Rubisco. The 3.0-Å crystal structure of unassembled CbbX from Rhodobacter sphaeroides revealed an AAA(+) protein architecture. Electron microscopy and biochemical analysis showed that ATP and RuBP must bind to convert CbbX into functionally active, hexameric rings. The CbbX ATPase is strongly stimulated by RuBP and Rubisco. Mutational analysis suggests that CbbX functions by transiently pulling the carboxy-terminal peptide of the Rubisco large subunit into the hexamer pore, resulting in the release of the inhibitory RuBP. Understanding Rubisco activation may facilitate efforts to improve CO(2) uptake and biomass production by photosynthetic organisms.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Rhodobacter sphaeroides/enzimología , Ribulosa-Bifosfato Carboxilasa/metabolismo , Adenosina Trifosfato/metabolismo , Regulación Alostérica/efectos de los fármacos , Proteínas Bacterianas/genética , Proteínas Bacterianas/ultraestructura , Dióxido de Carbono/metabolismo , Cristalografía por Rayos X , Activación Enzimática/efectos de los fármacos , Modelos Moleculares , Multimerización de Proteína/efectos de los fármacos , Estructura Cuaternaria de Proteína/efectos de los fármacos , Ribulosafosfatos/metabolismo , Ribulosafosfatos/farmacología , Relación Estructura-Actividad
19.
Proc Natl Acad Sci U S A ; 111(8): 2984-9, 2014 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-24516147

RESUMEN

The ATP-dependent degradation of polyubiquitylated proteins by the 26S proteasome is essential for the maintenance of proteome stability and the regulation of a plethora of cellular processes. Degradation of substrates is preceded by the removal of polyubiquitin moieties through the isopeptidase activity of the subunit Rpn11. Here we describe three crystal structures of the heterodimer of the Mpr1-Pad1-N-terminal domains of Rpn8 and Rpn11, crystallized as a fusion protein in complex with a nanobody. This fusion protein exhibits modest deubiquitylation activity toward a model substrate. Full activation requires incorporation of Rpn11 into the 26S proteasome and is dependent on ATP hydrolysis, suggesting that substrate processing and polyubiquitin removal are coupled. Based on our structures, we propose that premature activation is prevented by the combined effects of low intrinsic ubiquitin affinity, an insertion segment acting as a physical barrier across the substrate access channel, and a conformationally unstable catalytic loop in Rpn11. The docking of the structure into the proteasome EM density revealed contacts of Rpn11 with ATPase subunits, which likely stabilize the active conformation and boost the affinity for the proximal ubiquitin moiety. The narrow space around the Rpn11 active site at the entrance to the ATPase ring pore is likely to prevent erroneous deubiquitylation of folded proteins.


Asunto(s)
Endopeptidasas/química , Modelos Moleculares , Complejo de la Endopetidasa Proteasomal/química , Conformación Proteica , Proteínas Recombinantes de Fusión/química , Proteínas de Saccharomyces cerevisiae/química , Cristalografía , Dimerización , Endopeptidasas/metabolismo , Modelos Biológicos , Poliubiquitina/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteínas Recombinantes de Fusión/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Anticuerpos de Dominio Único/química , Anticuerpos de Dominio Único/metabolismo
20.
Nature ; 463(7278): 197-202, 2010 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-20075914

RESUMEN

Form I Rubisco (ribulose 1,5-bisphosphate carboxylase/oxygenase), a complex of eight large (RbcL) and eight small (RbcS) subunits, catalyses the fixation of atmospheric CO(2) in photosynthesis. The limited catalytic efficiency of Rubisco has sparked extensive efforts to re-engineer the enzyme with the goal of enhancing agricultural productivity. To facilitate such efforts we analysed the formation of cyanobacterial form I Rubisco by in vitro reconstitution and cryo-electron microscopy. We show that RbcL subunit folding by the GroEL/GroES chaperonin is tightly coupled with assembly mediated by the chaperone RbcX(2). RbcL monomers remain partially unstable and retain high affinity for GroEL until captured by RbcX(2). As revealed by the structure of a RbcL(8)-(RbcX(2))(8) assembly intermediate, RbcX(2) acts as a molecular staple in stabilizing the RbcL subunits as dimers and facilitates RbcL(8) core assembly. Finally, addition of RbcS results in RbcX(2) release and holoenzyme formation. Specific assembly chaperones may be required more generally in the formation of complex oligomeric structures when folding is closely coupled to assembly.


Asunto(s)
Chaperonas Moleculares/metabolismo , Pliegue de Proteína , Multimerización de Proteína , Ribulosa-Bifosfato Carboxilasa/química , Ribulosa-Bifosfato Carboxilasa/metabolismo , Synechococcus/química , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Chaperonina 10/metabolismo , Chaperonina 60/metabolismo , Microscopía por Crioelectrón , Holoenzimas/química , Holoenzimas/metabolismo , Modelos Moleculares , Chaperonas Moleculares/química , Unión Proteica , Estructura Cuaternaria de Proteína , Estructura Terciaria de Proteína , Ribulosa-Bifosfato Carboxilasa/ultraestructura , Synechococcus/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA