Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
J Neurosci ; 33(37): 14791-800, 2013 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-24027279

RESUMEN

Intracellular mRNA localization is a conserved mechanism for spatially regulating protein production in polarized cells, such as neurons. The mRNA encoding the translational repressor Nanos (Nos) forms ribonucleoprotein (RNP) particles that are dendritically localized in Drosophila larval class IV dendritic arborization (da) neurons. In nos mutants, class IV da neurons exhibit reduced dendritic branching complexity, which is rescued by transgenic expression of wild-type nos mRNA but not by a localization-compromised nos derivative. While localization is essential for nos function in dendrite morphogenesis, the mechanism underlying the transport of nos RNP particles was unknown. We investigated the mechanism of dendritic nos mRNA localization by analyzing requirements for nos RNP particle motility in class IV da neuron dendrites through live imaging of fluorescently labeled nos mRNA. We show that dynein motor machinery components mediate transport of nos mRNA in proximal dendrites. Two factors, the RNA-binding protein Rumpelstiltskin and the germ plasm protein Oskar, which are required for diffusion/entrapment-mediated localization of nos during oogenesis, also function in da neurons for formation and transport of nos RNP particles. Additionally, we show that nos regulates neuronal function, most likely independent of its dendritic localization and function in morphogenesis. Our results reveal adaptability of localization factors for regulation of a target transcript in different cellular contexts.


Asunto(s)
Dendritas/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Regulación del Desarrollo de la Expresión Génica/genética , Ribonucleoproteínas Nucleares Heterogéneas/metabolismo , Proteínas de Unión al ARN/genética , Células Receptoras Sensoriales/citología , Animales , Animales Modificados Genéticamente , Transporte Biológico/genética , Tipificación del Cuerpo/genética , Drosophila , Dineínas/metabolismo , Ribonucleoproteínas Nucleares Heterogéneas/genética , Larva , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Actividad Motora/genética , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/metabolismo
2.
Int J Cancer ; 133(4): 788-96, 2013 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-23319457

RESUMEN

With the advent of molecularly targeted agents, treatment of metastatic renal cell carcinoma (mRCC) has improved significantly. Agents targeting the vascular endothelial growth factor receptor (VEGFR) and the mammalian target of rapamycin complex 1 (mTORC1) are more effective and less toxic than previous standards of care involving cytotoxic and cytokine therapies. Unfortunately, many patients relapse following treatment with VEGFR and mTORC1 inhibitors as a result of acquired resistance mechanisms, which are thought to lead to the reestablishment of tumor vasculature. Specifically, the loss of negative feedback loops caused by inhibition of mTORC1 leads to upregulation of downstream effectors of the phosphoinositide 3-kinase (PI3K)/AKT/mTOR pathway and subsequent activation of hypoxia-inducible factor, an activator of angiogenesis. De novo resistance involving activated PI3K signaling has also been observed. These observations have led to the development of novel agents targeting PI3K, mTORC1/2 and PI3K/mTORC1/2, which have demonstrated antitumor activity in preclinical models of RCC. Several agents--BKM120, BEZ235 and GDC-0980--are being investigated in clinical trials in patients with metastatic/advanced RCC, and similar agents are being tested in patients with solid tumors. The future success of mRCC treatment will likely involve a combination of agents targeting the multiple pathways involved in angiogenesis, including VEGFR, PI3K and mTORC1/2.


Asunto(s)
Carcinoma de Células Renales/tratamiento farmacológico , Neoplasias Renales/tratamiento farmacológico , Complejos Multiproteicos/antagonistas & inhibidores , Complejos Multiproteicos/efectos de los fármacos , Fosfatidilinositol 3-Quinasas/efectos de los fármacos , Receptores de Factores de Crecimiento Endotelial Vascular/antagonistas & inhibidores , Serina-Treonina Quinasas TOR/antagonistas & inhibidores , Serina-Treonina Quinasas TOR/efectos de los fármacos , Carcinoma de Células Renales/patología , Humanos , Neoplasias Renales/patología , Diana Mecanicista del Complejo 1 de la Rapamicina , Diana Mecanicista del Complejo 2 de la Rapamicina , Metástasis de la Neoplasia
3.
Curr Biol ; 18(10): 745-750, 2008 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-18472422

RESUMEN

Spatial control of mRNA translation can generate cellular asymmetries and functional specialization of polarized cells like neurons. A requirement for the translational repressor Nanos (Nos) in the Drosophila larval peripheral nervous system (PNS) implicates translational control in dendrite morphogenesis [1]. Nos was first identified by its requirement in the posterior of the early embryo for abdomen formation [2]. Nos synthesis is targeted to the posterior pole of the oocyte and early embryo through translational repression of unlocalized nos mRNA coupled with translational activation of nos mRNA localized at the posterior pole [3, 4]. Abolishment of nos localization prevents abdominal development, whereas translational derepression of unlocalized nos mRNA suppresses head/thorax development, emphasizing the importance of spatial regulation of nos mRNA [3, 5]. Loss and overexpression of Nos affect dendrite branching complexity in class IV dendritic arborization (da) neurons, suggesting that nos also might be regulated in these larval sensory neurons [1]. Here, we show that localization and translational control of nos mRNA are essential for da neuron morphogenesis. RNA-protein interactions that regulate nos translation in the oocyte and early embryo also regulate nos in the PNS. Live imaging of nos mRNA shows that the cis-acting signal responsible for posterior localization in the oocyte/embryo mediates localization to the processes of class IV da neurons but suggests a different transport mechanism. Targeting of nos mRNA to the processes of da neurons may reflect a local requirement for Nos protein in dendritic translational control.


Asunto(s)
Dendritas/fisiología , Proteínas de Drosophila/metabolismo , Drosophila/crecimiento & desarrollo , Regulación del Desarrollo de la Expresión Génica , Morfogénesis/fisiología , Proteínas de Unión al ARN/metabolismo , Regiones no Traducidas 3' , Animales , Drosophila/metabolismo , Ribonucleoproteína Heterogénea-Nuclear Grupo F-H/metabolismo , Sistema Nervioso Periférico/metabolismo , Dominios y Motivos de Interacción de Proteínas , ARN Mensajero/metabolismo , Proteínas Represoras/metabolismo
4.
Toxicol Pathol ; 39(3): 478-85, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21411723

RESUMEN

The advent of molecular targeted therapies offers the hope of therapeutic advance in the fight against cancer. However, this hope is tempered by recent findings that certain targeted therapies may have unique side effects. The Hedgehog (HH) pathway is a potential target for treatment of several cancers, including basal cell carcinoma and a subset of medulloblastoma. Recent clinical trials in adults have shown responses to HH pathway inhibition in both basal cell carcinoma and medulloblastoma. However, concerns have been raised about the use of HH pathway inhibitors in children because of the role the HH pathway plays in development. Indeed, young mice treated with the HH pathway inhibitor HhAntag developed severe bone defects, including premature differentiation of chondrocytes, thinning of cortical bone, and fusion of the growth plate. In an effort to lessen the severity of bone defects caused by HhAntag, we treated young mice simultaneously with HhAntag and parathyroid hormone-related protein (PTHrP), which functions downstream of Indian Hedgehog to maintain chondrocytes in a proliferative state. The results show that whereas treatment with PTHrP causes a significant increase in trabecular bone, it does not prevent fusion of the growth plate induced by HhAntag.


Asunto(s)
Placa de Crecimiento/efectos de los fármacos , Placa de Crecimiento/patología , Proteínas Hedgehog/genética , Proteína Relacionada con la Hormona Paratiroidea/farmacología , Animales , Diferenciación Celular/efectos de los fármacos , Condrocitos/citología , Condrocitos/efectos de los fármacos , Femenino , Proteínas Hedgehog/antagonistas & inhibidores , Ratones , Terapia Molecular Dirigida , Embarazo , Transducción de Señal
5.
Cancer Treat Rev ; 40(6): 750-9, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24613036

RESUMEN

The hedgehog (Hh) pathway is aberrantly activated in a number of tumors. In medulloblastoma, basal cell carcinoma, and rhabdomyosarcoma, mutations in Hh pathway genes lead to ligand-independent pathway activation. In many other tumor types, ligand-dependent activation of Hh signaling is potentiated through crosstalk with other critical molecular signaling pathways. Among such pathways, RAS/RAF/MEK/ERK, PI3K/AKT/mTOR, EGFR, and Notch are of particular interest because agents that selectively inhibit these pathways are available and can be readily combined with agents such as vismodegib, sonidegib (LDE225), and BMS-833923, which target smoothened-a key Hh pathway regulator. Numerous preclinical studies have revealed the ways in which Hh intersects with each of these pathways, and combination therapies have resulted in improved antitumor efficacy and survival in animal models. Hh also plays an important role in hematopoiesis and in the maintenance of BCR-ABL-driven leukemic stem cells. Thus, combined inhibition of the Hh pathway and BCR-ABL has emerged as a promising potential therapeutic strategy in chronic myeloid leukemia (CML). A number of clinical trials evaluating combinations of Hh inhibitors with other targeted agents are now underway in CML and a variety of solid tumors. This review highlights these trials and summarizes preclinical evidence of crosstalk between Hh and four other actionable pathways-RAS/RAF/MEK/ERK, PI3K/AKT/mTOR, EGFR, and Notch-as well as the role of Hh in the maintenance of BCR-ABL-driven leukemic stem cells.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Proteínas Hedgehog/metabolismo , Terapia Molecular Dirigida/métodos , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Receptor Cross-Talk/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Animales , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Receptores ErbB/efectos de los fármacos , Receptores ErbB/metabolismo , Proteínas de Fusión bcr-abl/efectos de los fármacos , Proteínas de Fusión bcr-abl/metabolismo , Proteínas Hedgehog/efectos de los fármacos , Humanos , Janus Quinasa 2/antagonistas & inhibidores , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Fosfatidilinositol 3-Quinasas/efectos de los fármacos , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/efectos de los fármacos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Proto-Oncogénicas p21(ras)/efectos de los fármacos , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Receptores Notch/efectos de los fármacos , Receptores Notch/metabolismo , Serina-Treonina Quinasas TOR/efectos de los fármacos , Serina-Treonina Quinasas TOR/metabolismo , Quinasas raf/efectos de los fármacos , Quinasas raf/metabolismo
6.
Dev Biol ; 282(1): 207-17, 2005 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-15936341

RESUMEN

Developmental control of translation is frequently mediated by regulatory elements that reside within 3' untranslated regions (3' UTRs). Two stem-loops within the nanos 3' UTR translational control element (TCE) act independently to direct translational repression of maternal nanos mRNA in the ovary or embryo. We have previously shown that the nanos TCE can also function in select somatic sites. Using an ectopic expression screen, we now identify a new site of TCE function, the dorsal pouch epithelium. Analysis of TCE mutants reveals that TCE activity in the dorsal pouch does not depend on either of the stem-loops required for maternal TCE function, but instead requires a third feature-a sequence that closely matches the Bearded box, a regulatory motif found in the 3' UTRs of several Notch pathway genes. In addition, we identify pleiohomeotic mRNA as an endogenous candidate for regulation by Bearded box-like motifs in the dorsal pouch. Together, these results suggest that the TCE has appropriated a conserved regulatory motif to expand its function to somatic tissues.


Asunto(s)
Regiones no Traducidas 3'/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila/genética , Embrión no Mamífero/embriología , Regulación del Desarrollo de la Expresión Génica/fisiología , Biosíntesis de Proteínas/fisiología , Proteínas de Unión al ARN/metabolismo , Regiones no Traducidas 3'/genética , Animales , Animales Modificados Genéticamente , Secuencia de Bases , Cruzamientos Genéticos , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Proteínas de Drosophila/genética , Embrión no Mamífero/metabolismo , Epitelio/embriología , Epitelio/metabolismo , Componentes del Gen , Hibridación in Situ , Datos de Secuencia Molecular , Proteínas del Grupo Polycomb , Factores de Transcripción/metabolismo , Transgenes/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA