RESUMEN
Accurately and efficiently predicting the infrared (IR) spectra of a molecule can provide insights into the structure-properties relationships of molecular species, which has led to a proliferation of machine learning tools designed for this purpose. However, earlier studies have focused primarily on obtaining normalized IR spectra, which limits their potential for a comprehensive analysis of molecular behavior in the IR range. For instance, to fully understand and predict the optical properties, such as the transparency characteristics, it is necessary to predict the molar absorptivity IR spectra instead. Here, we propose a graph-based communicative message passing neural network algorithm that can predict both the peak positions and absolute intensities corresponding to density functional theory calculated molar absorptivities in the IR domain. By modifying existing spectral loss functions, we show that our method is able to predict with DFT-accuracy level the IR molar absorptivities of a series of hydrocarbons containing up to ten carbon atoms and apply the model to a set of larger molecules. We also compare the predicted spectra with those generated by the direct message passing neural network. The results suggest that both algorithms demonstrate similar predictive capabilities for hydrocarbons, indicating that either model could be effectively used in future research on spectral prediction for such systems.
RESUMEN
Many quantum magnetic materials suffer from structural imperfections. The effects of structural disorder on bulk properties are difficult to assess systematically from a chemical perspective due to the complexities of chemical synthesis. The recently reported S = 1/2 kagome lattice antiferromagnet, (CH3NH3)2NaTi3F12, 1-Ti, with highly symmetric kagome layers and disordered interlayer methylammonium cations, shows no magnetic ordering down to 0.1 K. To study the impact of structural disorder in the titanium fluoride kagome compounds, (CH3NH3)2KTi3F12, 2-Ti, was prepared. It presents no detectable structural disorder and only a small degree of distortion of the kagome lattice. The methylammonium disorder model of 1-Ti and order in 2-Ti were confirmed by atomic-resolution transmission electron microscopy. The antiferromagnetic interactions and band structures of both compounds were calculated based on spin-polarized density functional theory and support the magnetic structure analysis. Three spin-glass-like (SGL) transitions were observed in 2-Ti at 0.5, 1.4, and 2.3 K, while a single SGL transition can be observed in 1-Ti at 0.8 K. The absolute values of the Curie-Weiss temperatures of both 1-Ti (-139.5(7) K) and 2-Ti (-83.5(7) K) are larger than the SGL transition temperatures, which is indicative of geometrically frustrated spin glass (GFSG) states. All the SGL transitions are quenched with an applied field >0.1 T, which indicates novel magnetic phases emerge under small applied magnetic fields. The well-defined structure and the lack of structural disorder in 2-Ti suggest that 2-Ti is an ideal model compound for studying GFSG states and the potential transitions between spin liquid and GFSG states.
RESUMEN
Organosulfur polymers, such as those derived from elemental sulfur, are an important new class of macromolecules that have recently emerged via the inverse vulcanization process. Since the launching of this new field in 2013, the development of new monomers and organopolysulfide materials based on the inverse vulcanization process is now an active area in polymer chemistry. While numerous advances have been made over the last decade concerning this polymerization process, insights into the mechanism of inverse vulcanization and structural characterization of the high-sulfur-content copolymers that are produced remain challenging due to the increasing insolubility of the materials with a higher sulfur content. Furthermore, the high temperatures used in this process can result in side reactions and complex microstructures of the copolymer backbone, complicating detailed characterization. The most widely studied case of inverse vulcanization to date remains the reaction between S8 and 1,3-diisopropenylbenzene (DIB) to form poly(sulfur-random-1,3-diisopropenylbenzene)(poly(S-r-DIB)). Here, to determine the correct microstructure of poly(S-r-DIB), we performed comprehensive structural characterizations of poly(S-r-DIB) using nuclear magnetic resonance spectroscopy (solid state and solution) and analysis of sulfurated DIB units using designer S-S cleavage polymer degradation approaches, along with complementary de novo synthesis of the sulfurated DIB fragments. These studies reveal that the previously proposed repeating units for poly(S-r-DIB) were incorrect and that the polymerization mechanism of this process is significantly more complex than initially proposed. Density functional theory calculations were also conducted to provide mechanistic insights into the formation of the derived nonintuitive microstructure of poly(S-r-DIB).
RESUMEN
Molecular electronic spin qubits are promising candidates for quantum information science applications because they can be reliably produced and engineered via chemical design. Embedding electronic spin qubits within two-dimensional polymers (2DPs) offers the possibility to systematically engineer inter-qubit interactions while maintaining long coherence times, both of which are prerequisites to their technological utility. Here, we introduce electronic spin qubits into a diamagnetic 2DP by n-doping naphthalene diimide subunits with varying amounts of CoCp2 and analyze their spin densities by quantitative electronic paramagnetic resonance spectroscopy. Low spin densities (e.g., 6.0 × 1012 spins mm-3) enable lengthy spin-lattice (T1) and spin-spin relaxation (T2) times across a range of temperatures, ranging from T1 values of 164 ms at 10 K to 30.2 µs at 296 K and T2 values of 2.36 µs at 10 K to 0.49 µs at 296 K for the lowest spin density sample examined. Higher spin densities and temperatures were both found to diminish T1 times, which we attribute to detrimental cross-relaxation from spin-spin dipolar interactions and spin-phonon coupling, respectively. Higher spin densities decreased T2 times and modulated the T2 temperature dependence. We attribute these differences to the competition between hyperfine and dipolar interactions for electron spin decoherence, with the dominant interaction transitioning from the former to the latter as spin density and temperature increase. Overall, this investigation demonstrates that dispersing electronic spin qubits within layered 2DPs enables chemical control of their inter-qubit interactions and spin decoherence times.
RESUMEN
The synthesis of deuterated, sulfurated, proton-free, glassy polymers offers a route to optical polymers for infrared (IR) optics, specifically for midwave IR (MWIR) photonic devices. Deuterated polymers have been utilized to enhance neutron cross-sectional contrast with proteo polymers for morphological neutron scattering measurements but have found limited utility for other applications. We report the synthesis of perdeuterated d14-(1,3-diisopropenylbenzene) with over 99% levels of deuteration and the preparation of proton-free, perdeuterated poly(sulfur-random-d14-(1,3-diisopropenylbenzene)) (poly(S-r-d14-DIB)) via inverse vulcanization with elemental sulfur. Detailed structural analysis and quantum computational calculations of these reactions demonstrate significant kinetic isotope effects, which alter mechanistic pathways to form different copolymer microstructures for deutero vs proteo poly(S-r-DIB). This design also allows for molecular engineering of MWIR transparency by shifting C-H bond vibrations around 3.3 µm/3000 cm-1 observed in proteo poly(S-r-DIB) to 4.2 µm/2200 cm-1. Furthermore, the fabrication of thin-film MWIR optical gratings made from molding of deuterated-sulfurated, proton-free poly(S-r-d14-DIB) is demonstrated; operation of these gratings at 3.39 µm is achieved successfully, while the proteo poly(S-r-DIB) gratings are opaque at these wavelengths, highlighting the promise of MWIR sensors and compact spectrometers from these materials.
RESUMEN
The ability to design and control the chemical characteristics of covalent organic frameworks (COFs) offers a new avenue for the development of functional materials, especially with respect to topological properties. Based on density functional theory calculations, by varying the core units through the choice of bridging groups [O, CâO, CH2, or C(CH3)2] and the linker units [acetylene, diacetylene, or benzene], we have designed heterotriangulene-based COFs that are predicted to be two-dimensional higher-order topological insulators (TIs). The higher-order TI characteristics of these COFs are identified via their topological invariants and the presence of in-gap topological corner modes and gapped edge states. The frontier molecular orbital energies of the building moieties play an important role in determining the size of the higher-order TI gap, which we find to be highly dependent on linker units. We also examined the deposition of the COFs on a boron nitride substrate to assess the feasibility of experimental observation of a higher-order TI phase in the organic layer. This work thus provides new insights into heterotriangulene-based COFs and guidance for the exploration of purely organic topological materials.
RESUMEN
As the features of microprocessors are miniaturized, low-dielectric-constant (low-k) materials are necessary to limit electronic crosstalk, charge build-up, and signal propagation delay. However, all known low-k dielectrics exhibit low thermal conductivities, which complicate heat dissipation in high-power-density chips. Two-dimensional (2D) covalent organic frameworks (COFs) combine immense permanent porosities, which lead to low dielectric permittivities, and periodic layered structures, which grant relatively high thermal conductivities. However, conventional synthetic routes produce 2D COFs that are unsuitable for the evaluation of these properties and integration into devices. Here, we report the fabrication of high-quality COF thin films, which enable thermoreflectance and impedance spectroscopy measurements. These measurements reveal that 2D COFs have high thermal conductivities (1 W m-1 K-1) with ultra-low dielectric permittivities (k = 1.6). These results show that oriented, layered 2D polymers are promising next-generation dielectric layers and that these molecularly precise materials offer tunable combinations of useful properties.
RESUMEN
In bulk-heterojunction organic solar cells, it is well established that the active-layer morphology significantly impacts device performance. However, morphology control remains very challenging. An interesting step in that direction was recently provided by the development of polymer donors that display a temperature-dependent aggregation behavior in solution; the aggregation characteristics were found indeed to play a determining role in the eventual active-layer morphology. Here, a combination of thermodynamic analyses, molecular dynamics simulations, and long-range corrected density functional theory calculations enables us (i) to establish the Flory-Huggins interaction parameter, χ, as a useful figure of merit that allows us to integrate the contributions from all inter-related molecular interactions and to describe the extent of polymer preaggregation in solution at room temperature; (ii) to correlate the χ values for various polymer solutions to the extent of polymer aggregation and the morphological characteristics of the active layers; and (iii) to assess how polymer-polymer and polymer-solvent intermolecular interactions contribute to the variations in χ values among different polymer solutions. We have chosen to examine four representative polymer donors (PBT4T-2OD, PBTff4T-2OD, PffBT4T-2OD, and PffBTff4T-2DT) in solution in chlorobenzene or dichlorobenzene. With χ as a robust bridge, our results provide an unprecedented, detailed description of the relationships among intermolecular interactions, extent of polymer solution aggregation, and morphological features of the active layers.
RESUMEN
Covalent organic frameworks (COFs) are molecule-based 2D and 3D materials that possess a wide range of mechanical and electronic properties. We have performed a joint experimental and theoretical study of the electronic structure of boroxine-linked COFs grown under ultrahigh vacuum conditions and characterized using scanning tunneling spectroscopy on Au(111) and hBN/Cu(111) substrates. Our results show that a single hBN layer electronically decouples the COF from the metallic substrate, thus suppressing substrate-induced broadening and revealing new features in the COF electronic local density of states (LDOS). The resulting sharpening of LDOS features allows us to experimentally determine the COF band gap, bandwidths, and the electronic hopping amplitude between adjacent COF bridge sites. These experimental parameters are consistent with the results of first-principles theoretical predictions.
RESUMEN
The ability to passivate defects and modulate the interface energy-level alignment (IEA) is key to boost the performance of perovskite solar cells (PSCs). Herein, we report a robust route that simultaneously allows defect passivation and reduced energy difference between perovskite and hole transport layer (HTL) via the judicious placement of polar chlorine-terminated silane molecules at the interface. Density functional theory (DFT) points to effective passivation of the halide vacancies on perovskite surface by the silane chlorine atoms. An integrated experimental and DFT study demonstrates that the dipole layer formed by the silane molecules decreases the perovskite work function, imparting an Ohmic character to the perovskite/HTL contact. The corresponding PSCs manifest a nearly 20 % increase in power conversion efficiency over pristine devices and a markedly enhanced device stability. As such, the use of polar molecules to passivate defects and tailor the IEA in PSCs presents a promising platform to advance the performance of PSCs.
RESUMEN
Neutral donor-acceptor (D-Aâ¢) organic radicals have recently attracted a great deal of attention as promising luminescent materials due to their strong doublet emission. Here, we consider a series of emitters based on substituted triarylamine (TAA) donors and a radical-carrying perchlorotriphenylmethyl (PTM) acceptor. We evaluate, by means of quantum-chemical calculations and theoretical modeling, how chemical substitution affects the electronic structures and radiative and nonradiative decay rates. Our calculations show that the radiative decay rates are dominated in all instances by the electronic coupling between the lowest excited state, which has charge-transfer (CT) character, and the ground state. On the other hand, the nonradiative decay rates in the case of TAA-PTM radicals that have high CT energies are defined by the electronic hybridization of the CT state with local excitations (LE) on the PTM moiety; also, these nonradiative rates deviate significantly from the gap law dependence that is observed in the TAA-PTM radicals that have low CT energies. These findings underscore that hybridization of the emissive state with high-energy states can, in analogy with the intensity borrowing effect commonly invoked for radiative transitions, enhance as well the nonradiative decay rates. Our results highlight that in order to understand the emissive properties of D-A⢠radicals, it is required that the electronic hybridization of the CT states with both the ground and the LE states be properly considered.
RESUMEN
Homogeneous two-dimensional (2D) polymerization is a poorly understood process in which topologically planar monomers react to form planar macromolecules, often termed 2D covalent organic frameworks (COFs). While these COFs have traditionally been limited to weakly crystalline aggregated powders, they were recently grown as micron-sized single crystals by temporally resolving the growth and nucleation processes. Here, we present a quantitative analysis of the nucleation and growth rates of 2D COFs via kinetic Monte Carlo (KMC) simulations using COF-5 as an example, which show that nucleation and growth have second-order and first-order dependences on monomer concentration, respectively. The computational results were confirmed experimentally by systematic measurements of COF nucleation and growth rates performed via in situ X-ray scattering, which validated the respective monomer concentration dependencies of the nucleation and elongation processes. A major consequence is that there exists a threshold monomer concentration below which growth dominates over nucleation. Our computational and experimental findings rationalize recent empirical observations that, in the formation of 2D COF single crystals, growth dominates over nucleation when monomers are added slowly, so as to limit their concentrations. This mechanistic understanding of the nucleation and growth processes will inform the rational control of polymerization in two dimensions and ultimately enable access to high-quality samples of designed two-dimensional polymers.
RESUMEN
Emergent quantum phenomena in electronically coupled two-dimensional heterostructures are central to next-generation optical, electronic, and quantum information applications. Tailoring electronic band gaps in coupled heterostructures would permit control of such phenomena and is the subject of significant research interest. Two-dimensional polymers (2DPs) offer a compelling route to tailored band structures through the selection of molecular constituents. However, despite the promise of synthetic flexibility and electronic design, fabrication of 2DPs that form electronically coupled 2D heterostructures remains an outstanding challenge. Here, we report the rational design and optimized synthesis of electronically coupled semiconducting 2DP/2D transition metal dichalcogenide van der Waals heterostructures, demonstrate direct exfoliation of the highly crystalline and oriented 2DP films down to a few nanometers, and present the first thickness-dependent study of 2DP/MoS2 heterostructures. Control over the 2DP layers reveals enhancement of the 2DP photoluminescence by two orders of magnitude in ultrathin sheets and an unexpected thickness-dependent modulation of the ultrafast excited state dynamics in the 2DP/MoS2 heterostructure. These results provide fundamental insight into the electronic structure of 2DPs and present a route to tune emergent quantum phenomena in 2DP hybrid van der Waals heterostructures.
Asunto(s)
Disulfuros/química , Electrones , Molibdeno/química , Polímeros/química , Modelos Moleculares , Conformación MolecularRESUMEN
Here we report that a covalent organic framework (COF), which contains 2,5-di(imine)-substituted 1,4-dihydroxybenzene (diiminol) moieties, undergoes color changes in the presence of solvents or solvent vapor that are rapid, passive, reversible, and easily detectable by the naked eye. A new visible absorption band appears in the presence of polar solvents, especially water, suggesting reversible conversion to another species. This reversibility is attributed to the ability of the diiminol to rapidly tautomerize to an iminol/cis-ketoenamine and its inability to doubly tautomerize to a diketoenamine. Density functional theory (DFT) calculations suggest similar energies for the two tautomers in the presence of water, but the diiminol is much more stable in its absence. Time-dependent DFT calculations confirm that the iminol/cis-ketoenamine absorbs at longer wavelength than the diiminol and indicate that this absorption has significant charge-transfer character. A colorimetric humidity sensing device constructed from an oriented thin film of the COF responded quickly to water vapor and was stable for months. These results suggest that tautomerization-induced electronic structure changes can be exploited in COF platforms to give rapid, reversible sensing in systems that exhibit long-term stability.
RESUMEN
Spin-flip in purely organic molecular systems is often described as a forbidden process; however, it is commonly observed and utilized to harvest triplet excitons in a wide variety of organic material-based applications. Although the initial and final electronic states of spin-flip between the lowest singlet and lowest triplet excited state are self-evident, the exact process and the role of intermediate states through which spin-flip occurs are still far from being comprehensively determined. Here, via experimental photo-physical investigations in solution combined with first-principles quantum-mechanical calculations, we show that efficient spin-flip in multiple donor-acceptor charge-transfer-type organic molecular systems involves the critical role of an intermediate triplet excited state that corresponds to a partial molecular structure of the system. Our proposed mechanism unifies the understanding of the intersystem crossing mechanism in a wide variety of charge-transfer-type molecular systems, opening the way to greater control over spin-flip rates.
RESUMEN
With their unusual electronic structures, organic radical molecules display luminescence properties potentially relevant to lighting applications; yet, their luminescence quantum yield and stability lag behind those of other organic emitters. Here, we designed donor-acceptor neutral radicals based on an electron-poor perchlorotriphenylmethyl or tris(2,4,6-trichlorophenyl)methyl radical moiety combined with different electron-rich groups. Experimental and quantum-chemical studies demonstrate that the molecules do not follow the Aufbau principle: the singly occupied molecular orbital is found to lie below the highest (doubly) occupied molecular orbital. These donor-acceptor radicals have a strong emission yield (up to 54%) and high photostability, with estimated half-lives reaching up to several months under pulsed ultraviolet laser irradiation. Organic light-emitting diodes based on such a radical emitter show deep-red/near-infrared emission with a maximal external quantum efficiency of 5.3%. Our results provide a simple molecular-design strategy for stable, highly luminescent radicals with non-Aufbau electronic structures.
RESUMEN
The performance of organic light-emitting diodes based on thermally activated delayed fluorescence emitters depends on the efficiency of reverse intersystem crossing (RISC) processes, which are promoted by a small energy gap between the lowest singlet (S1) and triplet (T1) excited states and large spin-orbit couplings. Recently, it was proposed that the introduction of secondary donor units into 2,3,4,5,6-penta(9H-carbazol-9-yl)benzonitrile (5CzBN) can significantly increase the mixing between triplet states with charge-transfer (CT) and local-excitation characteristics and consequently increase the spin-orbit couplings. Here, the results of long-range corrected density functional theory calculations show that the main impact on the RISC rates of substituting 5CzBN with secondary donors is due to a decrease in adiabatic singlet-triplet energy gaps and intramolecular reorganization energies rather than to a change in spin-orbit couplings. Our calculations underline that at least two singlet and three triplet excited states contribute to the ISC/RISC processes in 5CzBN and its derivatives. In addition, we find that in all emitters, the lowest singlet excited-state potential energy surface has a double-minimum shape.
RESUMEN
Although it is known that molecular interactions govern morphology formation and purity of mixed domains of conjugated polymer donors and small-molecule acceptors, and thus largely control the achievable performance of organic solar cells, quantifying interaction-function relations has remained elusive. Here, we first determine the temperature-dependent effective amorphous-amorphous interaction parameter, χaa(T), by mapping out the phase diagram of a model amorphous polymer:fullerene material system. We then establish a quantitative 'constant-kink-saturation' relation between χaa and the fill factor in organic solar cells that is verified in detail in a model system and delineated across numerous high- and low-performing materials systems, including fullerene and non-fullerene acceptors. Our experimental and computational data reveal that a high fill factor is obtained only when χaa is large enough to lead to strong phase separation. Our work outlines a basis for using various miscibility tests and future simulation methods that will significantly reduce or eliminate trial-and-error approaches to material synthesis and device fabrication of functional semiconducting blends and organic blends in general.
RESUMEN
The open-circuit voltage of organic solar cells is usually lower than the values achieved in inorganic or perovskite photovoltaic devices with comparable bandgaps. Energy losses during charge separation at the donor-acceptor interface and non-radiative recombination are among the main causes of such voltage losses. Here we combine spectroscopic and quantum-chemistry approaches to identify key rules for minimizing voltage losses: (1) a low energy offset between donor and acceptor molecular states and (2) high photoluminescence yield of the low-gap material in the blend. Following these rules, we present a range of existing and new donor-acceptor systems that combine efficient photocurrent generation with electroluminescence yield up to 0.03%, leading to non-radiative voltage losses as small as 0.21 V. This study provides a rationale to explain and further improve the performance of recently demonstrated high-open-circuit-voltage organic solar cells.
RESUMEN
Since the seminal work of Tang and Vanslyke in 1987 on small-molecule emitters and that of Friend and co-workers in 1990 on conjugated-polymer emitters, organic light-emitting diodes (OLEDs) have attracted much attention from academia as well as industry, as the OLED market is estimated to reach the $30 billion mark by the end of 2018. In these first-generation organic emitters, on the basis of simple spin statistics, electrical excitation resulted in the formation of â¼25% singlet excitons and â¼75% triplet excitons. Radiative decay of the singlet excitons to the singlet ground state leads to a prompt fluorescence emission, while the triplet excitons only lead to weak phosphorescence due to the very small spin-orbit couplings present in purely organic molecules. The consequence is a ca. 75% energy loss, which triggered wide-ranging efforts to try and harvest as many of the triplet excitons as possible. In 1998, Thompson, Forrest, and their co-workers reported second-generation OLED emitters based on coordination complexes with heavy transition metals (e.g., iridium or platinum). Here, the triplet excitons stimulate efficient and fast phosphorescence due to the strong spin-orbit couplings enabled by the heavy-metal atoms. Internal quantum efficiencies (IQE) up to 100% have been reported, which means that for every electron injected into the device, a photon is emitted. While these second-generation emitters are those mainly exploited in current OLED applications, there is strong impetus from both cost and environmental standpoints to find new ways of exploiting purely organic emitters, which in addition can offer greater flexibility to fine-tune the electronic and optical properties by exploiting the synthetic organic chemistry toolbox. In 2012, Adachi and co-workers introduced a promising strategy, based on thermally activated delayed fluorescence (TADF), to harvest the triplet excitons in purely organic molecular materials. These materials now represent the third generation of OLED emitters. Impressive photophysical properties and device performances have been reported, with internal quantum efficiencies also reaching nearly 100%. Our objectives in this Account are threefold: (i) to lay out a comprehensive description, at the molecular level, of the fundamental photophysical processes behind TADF emitters; (ii) to discuss some of the challenges facing the design of TADF emitters, such as the need to balance the efficiency of thermal activation of triplet excitons into the singlet manifold with the efficiency of radiative transition to the ground state; and (iii) to highlight briefly some of the recent molecular-design strategies that pave the way to new classes of TADF materials.