Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Nature ; 452(7187): 604-9, 2008 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-18385733

RESUMEN

Multidrug resistance (MDR) is a serious complication during treatment of opportunistic fungal infections that frequently afflict immunocompromised individuals, such as transplant recipients and cancer patients undergoing cytotoxic chemotherapy. Improved knowledge of the molecular pathways controlling MDR in pathogenic fungi should facilitate the development of novel therapies to combat these intransigent infections. MDR is often caused by upregulation of drug efflux pumps by members of the fungal zinc-cluster transcription-factor family (for example Pdr1p orthologues). However, the molecular mechanisms are poorly understood. Here we show that Pdr1p family members in Saccharomyces cerevisiae and the human pathogen Candida glabrata directly bind to structurally diverse drugs and xenobiotics, resulting in stimulated expression of drug efflux pumps and induction of MDR. Notably, this is mechanistically similar to regulation of MDR in vertebrates by the PXR nuclear receptor, revealing an unexpected functional analogy of fungal and metazoan regulators of MDR. We have also uncovered a critical and specific role of the Gal11p/MED15 subunit of the Mediator co-activator and its activator-targeted KIX domain in antifungal/xenobiotic-dependent regulation of MDR. This detailed mechanistic understanding of a fungal nuclear receptor-like gene regulatory pathway provides novel therapeutic targets for the treatment of multidrug-resistant fungal infections.


Asunto(s)
Candida glabrata/metabolismo , Farmacorresistencia Fúngica , Proteínas Fúngicas/metabolismo , Regulación Fúngica de la Expresión Génica , Receptores de Esteroides/metabolismo , Saccharomyces cerevisiae/metabolismo , Animales , Antifúngicos/metabolismo , Antifúngicos/farmacología , Candida glabrata/efectos de los fármacos , Candida glabrata/genética , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Farmacorresistencia Fúngica/genética , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Regulación Fúngica de la Expresión Génica/genética , Genes Fúngicos/genética , Complejo Mediador , Familia de Multigenes , Receptor X de Pregnano , Estructura Terciaria de Proteína , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Transactivadores/química , Transactivadores/genética , Transactivadores/metabolismo , Factores de Transcripción/metabolismo , Transcripción Genética/genética , Xenobióticos/metabolismo
2.
Med Mycol ; 50(5): 488-96, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22225407

RESUMEN

Fusariosis is an emerging infectious complication of immune deficiency, but models to study this infection are lacking. The use of the soil nematode Caenorhabditis elegans as a model host to study the pathogenesis of Fusarium spp. was investigated. We observed that Fusarium conidia consumed by C. elegans can cause a lethal infection and result in more than 90% killing of the host within 120 hours, and the nematode had a significantly longer survival when challenged with Fusarium proliferatum compared to other species. Interestingly, mycelium production appears to be a major contributor in nematode killing in this model system, and C. elegans mutant strains with the immune response genes, tir-1 (encoding a protein containing a TIR domain that functions upstream of PMK-1) and pmk-1 (the homolog of the mammalian p38 MAPK) lived significantly shorter when challenged with Fusarium compared to the wild type strain. Furthermore, we used the C. elegans model to assess the efficacy and toxicity of various compounds against Fusarium. We demonstrated that amphotericin B, voriconazole, mancozeb, and phenyl mercury acetate significantly prolonged the survival of Fusarium-infected C. elegans, although mancozeb was toxic at higher concentrations. In conclusion, we describe a new model system for the study of Fusarium pathogenesis and evolutionarily preserved host responses to this important fungal pathogen.


Asunto(s)
Caenorhabditis elegans/microbiología , Modelos Animales de Enfermedad , Fusariosis/inmunología , Fusarium/patogenicidad , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Micelio/metabolismo , Animales , Antifúngicos/farmacología , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Fusariosis/microbiología , Fusarium/clasificación , Fusarium/efectos de los fármacos , Interacciones Huésped-Patógeno , Humanos , Proteínas Quinasas Activadas por Mitógenos/genética , Transducción de Señal/inmunología
3.
Infect Immun ; 77(10): 4584-96, 2009 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-19651856

RESUMEN

The trehalose pathway is essential for stress tolerance and virulence in fungi. We investigated the importance of this pathway for virulence of the pathogenic yeast Cryptococcus gattii using the highly virulent Vancouver Island, Canada, outbreak strain R265. Three genes putatively involved in trehalose biosynthesis, TPS1 (trehalose-6-phosphate [T6P] synthase) and TPS2 (T6P phosphatase), and degradation, NTH1 (neutral trehalose), were deleted in this strain, creating the R265tps1 Delta, R265tps2 Delta, and R265nth1 Delta mutants. As in Cryptococcus neoformans, cellular trehalose was reduced in the R265tps1 Delta and R265tps2 Delta mutants, which could not grow and died, respectively, at 37 degrees C on yeast extract-peptone-dextrose agar, suggesting that T6P accumulation in R265tps2 Delta is directly toxic. Characterizations of the cryptococcal hexokinases and trehalose mutants support their linkage to the control of glycolysis in this species. However, unlike C. neoformans, the C. gattii R265tps1 Delta mutant demonstrated, in addition, defects in melanin and capsule production, supporting an influence of T6P on these virulence pathways. Attenuated virulence of the R265tps1 Delta mutant was not due solely to its 37 degrees C growth defect, as shown in worm studies and confirmed by suppressor mutants. Furthermore, an intact trehalose pathway controls protein secretion, mating, and cell wall integrity in C. gattii. Thus, the trehalose synthesis pathway plays a central role in the virulence composites of C. gattii through multiple mechanisms. Deletion of NTH1 had no effect on virulence, but inactivation of the synthesis genes, TPS1 and TPS2, has profound effects on survival of C. gattii in the invertebrate and mammalian hosts. These results highlight the central importance of this pathway in the virulence composites of both pathogenic cryptococcal species.


Asunto(s)
Cryptococcus/metabolismo , Cryptococcus/patogenicidad , Trehalosa/biosíntesis , Animales , Caenorhabditis elegans , Criptococosis/microbiología , Cryptococcus/enzimología , Cryptococcus/crecimiento & desarrollo , ADN de Hongos/química , ADN de Hongos/genética , Modelos Animales de Enfermedad , Proteínas Fúngicas/genética , Eliminación de Gen , Glucosiltransferasas/genética , Ratones , Ratones Endogámicos BALB C , Viabilidad Microbiana , Datos de Secuencia Molecular , Análisis de Secuencia de ADN , Virulencia
4.
PLoS Pathog ; 3(2): e18, 2007 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-17274686

RESUMEN

There is an urgent need for the development of new antifungal agents. A facile in vivo model that evaluates libraries of chemical compounds could solve some of the main obstacles in current antifungal discovery. We show that Candida albicans, as well as other Candida species, are ingested by Caenorhabditis elegans and establish a persistent lethal infection in the C. elegans intestinal track. Importantly, key components of Candida pathogenesis in mammals, such as filament formation, are also involved in nematode killing. We devised a Candida-mediated C. elegans assay that allows high-throughput in vivo screening of chemical libraries for antifungal activities, while synchronously screening against toxic compounds. The assay is performed in liquid media using standard 96-well plate technology and allows the study of C. albicans in non-planktonic form. A screen of 1,266 compounds with known pharmaceutical activities identified 15 (approximately 1.2%) that prolonged survival of C. albicans-infected nematodes and inhibited in vivo filamentation of C. albicans. Two compounds identified in the screen, caffeic acid phenethyl ester, a major active component of honeybee propolis, and the fluoroquinolone agent enoxacin exhibited antifungal activity in a murine model of candidiasis. The whole-animal C. elegans assay may help to study the molecular basis of C. albicans pathogenesis and identify antifungal compounds that most likely would not be identified by in vitro screens that target fungal growth. Compounds identified in the screen that affect the virulence of Candida in vivo can potentially be used as "probe compounds" and may have antifungal activity against other fungi.


Asunto(s)
Antifúngicos/farmacología , Caenorhabditis elegans/microbiología , Candida/efectos de los fármacos , Animales , Biopelículas , Ácidos Cafeicos/farmacología , Enoxacino/farmacología , Femenino , Fluconazol/farmacología , Intestinos/microbiología , Ratones , Ratones Endogámicos BALB C , FN-kappa B/antagonistas & inhibidores , Naftoquinonas/farmacología , Alcohol Feniletílico/análogos & derivados , Alcohol Feniletílico/farmacología
5.
Infect Immun ; 75(7): 3394-405, 2007 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-17502401

RESUMEN

The basidiomycetous fungal pathogen Cryptococcus neoformans is adapted to survive challenges in the soil and environment and within the unique setting of the mammalian host. A C. neoformans mutant was isolated with enhanced virulence in a soil amoeba model that nevertheless exhibits dramatically reduced growth at mammalian body temperature (37 degrees C). This mutant phenotype results from an insertion in the ECA1 gene, which encodes a sarcoplasmic/endoplasmic reticulum (ER) Ca2+-ATPase (SERCA)-type calcium pump. Infection in murine macrophages, amoebae (Acanthamoeba castellanii), nematodes (Caenorhabditis elegans), and wax moth (Galleria mellonella) larvae revealed that the eca1 mutants are virulent or hypervirulent at permissive growth temperatures but attenuated at 37 degrees C. Deletion mutants lacking the entire ECA1 gene were also hypersensitive to the calcineurin inhibitors cyclosporin and FK506 and to ER and osmotic stresses. An eca1Delta cna1Delta mutant lacking both Eca1 and the calcineurin catalytic subunit was more sensitive to high temperature and ER stresses than the single mutants and exhibited reduced survival in C. elegans and attenuated virulence towards wax moth larvae at temperatures that permit normal growth in vitro. Eca1 is likely involved in maintaining ER function, thus contributing to stress tolerance and virulence acting in parallel with Ca2+-calcineurin signaling.


Asunto(s)
ATPasas Transportadoras de Calcio/metabolismo , Cryptococcus neoformans/patogenicidad , Retículo Endoplásmico/enzimología , Respuesta al Choque Térmico , Retículo Sarcoplasmático/enzimología , Acanthamoeba castellanii/microbiología , Animales , Caenorhabditis elegans/microbiología , ATPasas Transportadoras de Calcio/genética , Línea Celular , Cryptococcus neoformans/enzimología , Cryptococcus neoformans/genética , Cryptococcus neoformans/fisiología , Regulación Fúngica de la Expresión Génica , Macrófagos/microbiología , Mariposas Nocturnas/microbiología , Virulencia
6.
Mol Microbiol ; 63(5): 1385-98, 2007 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-17244196

RESUMEN

Yeast cell walls are critical for maintaining cell integrity, particularly in the face of challenges such as growth in mammalian hosts. The pathogenic fungus Cryptococcus neoformans additionally anchors its polysaccharide capsule to the cell surface via alpha(1-3) glucan in the wall. Cryptococcal cells disrupted in their alpha glucan synthase gene were sensitive to stresses, including temperature, and showed difficulty dividing. These cells lacked surface capsule, although they continued to shed capsule material into the environment. Electron microscopy showed that the alpha glucan that is usually localized to the outer portion of the cell wall was absent, the outer region of the wall was highly disorganized, and the inner region was hypertrophic. Analysis of cell wall composition demonstrated complete loss of alpha glucan accompanied by a compensatory increase in chitin/chitosan and a redistribution of beta glucan between cell wall fractions. The mutants were unable to grow ina mouse model of infection, but caused death in nematodes. These studies integrate morphological and biochemical investigations of the role of alpha glucan in the cryptococcal cell wall.


Asunto(s)
Pared Celular/química , Cryptococcus neoformans/patogenicidad , Cryptococcus neoformans/ultraestructura , Glucanos/fisiología , Animales , Caenorhabditis elegans/microbiología , Pared Celular/genética , Pared Celular/ultraestructura , Quitina/análisis , Quitosano/análisis , Cryptococcus neoformans/genética , Cryptococcus neoformans/crecimiento & desarrollo , Modelos Animales de Enfermedad , Eliminación de Gen , Glucosiltransferasas/genética , Ratones , Ratones Endogámicos C57BL , Microscopía Electrónica de Transmisión , Mutagénesis Insercional , Virulencia/genética , beta-Glucanos/análisis
7.
Infect Immun ; 73(12): 8219-25, 2005 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-16299318

RESUMEN

Caenorhabditis elegans can serve as a substitute host for the study of microbial pathogenesis. We found that mutations in genes of the fungal pathogen Cryptococcus neoformans involved in mammalian virulence allow C. elegans to produce greater numbers of progeny than when exposed to wild-type fungus. We used this property to screen a library of C. neoformans mutants for strains that permit larger C. elegans brood sizes. In this screen, we identified a gene homologous to Saccharomyces cerevisiae ROM2. C. neoformans rom2 mutation resulted in a defect in mating and growth defects at elevated temperature or in the presence of cell wall or hyperosmolar stresses. An effect of the C. neoformans rom2 mutation in virulence was confirmed in a murine inhalation infection model. We propose that a screen for progeny-permissive mutants of microorganisms can serve as a high-throughput method for identifying novel loci related to mammalian pathogenesis.


Asunto(s)
Caenorhabditis elegans/microbiología , Criptococosis/microbiología , Cryptococcus neoformans/genética , Cryptococcus neoformans/patogenicidad , Genes Fúngicos , Factores de Intercambio de Guanina Nucleótido/genética , Animales , Femenino , Ratones , Ratones Endogámicos , Mutación , Proteínas de Saccharomyces cerevisiae/genética , Homología de Secuencia de Ácido Nucleico , Virulencia/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA