Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 225
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Blood ; 143(13): 1231-1241, 2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38145560

RESUMEN

ABSTRACT: Despite newer targeted therapies, patients with primary refractory or relapsed (r/r) T-cell lymphoma have a poor prognosis. The development of chimeric antigen receptor (CAR) T-cell platforms to treat T-cell malignancies often requires additional gene modifications to overcome fratricide because of shared T-cell antigens on normal and malignant T cells. We developed a CD5-directed CAR that produces minimal fratricide by downmodulating CD5 protein levels in transduced T cells while retaining strong cytotoxicity against CD5+ malignant cells. In our first-in-human phase 1 study (NCT0308190), second-generation autologous CD5.CAR T cells were manufactured from patients with r/r T-cell malignancies. Here, we report safety and efficacy data from a cohort of patients with mature T-cell lymphoma (TCL). Among the 17 patients with TCL enrolled, CD5 CAR T cells were successfully manufactured for 13 out of 14 attempted lines (93%) and administered to 9 (69%) patients. The overall response rate (complete remission or partial response) was 44%, with complete responses observed in 2 patients. The most common grade 3 or higher adverse events were cytopenias. No grade 3 or higher cytokine release syndrome or neurologic events occurred. Two patients died during the immediate toxicity evaluation period due to rapidly progressive disease. These results demonstrated that CD5.CAR T cells are safe and can induce clinical responses in patients with r/r CD5-expressing TCLs without eliminating endogenous T cells or increasing infectious complications. More patients and longer follow-up are needed for validation. This trial was registered at www.clinicaltrials.gov as #NCT0308190.


Asunto(s)
Inmunoterapia Adoptiva , Linfoma de Células T , Humanos , Inmunoterapia Adoptiva/efectos adversos , Inmunoterapia Adoptiva/métodos , Recurrencia Local de Neoplasia/tratamiento farmacológico , Linfocitos T , Enfermedad Crónica , Linfoma de Células T/tratamiento farmacológico , Antígenos CD19
2.
Blood ; 141(10): 1194-1208, 2023 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-36044667

RESUMEN

Acute graft-versus-host disease (aGVHD) limits the therapeutic benefit of allogeneic hematopoietic stem cell transplantation (allo-HSCT) and requires immunosuppressive prophylaxis that compromises antitumor and antipathogen immunity. OX40 is a costimulatory receptor upregulated on circulating T cells in aGVHD and plays a central role in driving the expansion of alloreactive T cells. Here, we show that OX40 is also upregulated on T cells infiltrating GVHD target organs in a rhesus macaque model, supporting the hypothesis that targeted ablation of OX40+ T cells will mitigate GVHD pathogenesis. We thus created an OX40-specific cytotoxic receptor that, when expressed on human T cells, enables selective elimination of OX40+ T cells. Because OX40 is primarily upregulated on CD4+ T cells upon activation, engineered OX40-specific T cells mediated potent cytotoxicity against activated CD4+ T cells and suppressed alloreactive T-cell expansion in a mixed lymphocyte reaction model. OX40 targeting did not inhibit antiviral activity of memory T cells specific to Epstein-Barr virus, cytomegalovirus, and adenoviral antigens. Systemic administration of OX40-targeting T cells fully protected mice from fatal xenogeneic GVHD mediated by human peripheral blood mononuclear cells. Furthermore, combining OX40 targeting with a leukemia-specific chimeric antigen receptor in a single T cell product provides simultaneous protection against leukemia and aGVHD in a mouse xenograft model of residual disease posttransplant. These results underscore the central role of OX40+ T cells in mediating aGVHD pathogenesis and support the feasibility of a bifunctional engineered T-cell product derived from the stem cell donor to suppress both disease relapse and aGVHD following allo-HSCT.


Asunto(s)
Infecciones por Virus de Epstein-Barr , Enfermedad Injerto contra Huésped , Trasplante de Células Madre Hematopoyéticas , Leucemia , Humanos , Animales , Ratones , Leucocitos Mononucleares/patología , Infecciones por Virus de Epstein-Barr/complicaciones , Macaca mulatta , Herpesvirus Humano 4 , Enfermedad Injerto contra Huésped/etiología , Leucemia/complicaciones , Enfermedad Crónica , Trasplante de Células Madre Hematopoyéticas/efectos adversos , Recurrencia
3.
Mol Ther ; 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38822527

RESUMEN

In recent years, the therapeutic landscape for hematological malignancies has markedly advanced, particularly since the inaugural approval of autologous chimeric antigen receptor T cell (CAR-T) therapy in 2017 for relapsed/refractory acute lymphoblastic leukemia (ALL). Autologous CAR-T therapy involves the genetic modification of a patient's T cells to specifically identify and attack cancer cells, while bispecific antibodies (BsAbs) function by binding to both cancer cells and immune cells simultaneously, thereby triggering an immune response against the tumor. The subsequent approval of various CAR-T therapies and BsAbs have revolutionized the treatment of multiple hematological malignancies, highlighting high response rates and a subset of patients achieving prolonged disease control. This review explores the mechanisms underlying autologous CAR-T therapies and BsAbs, focusing on their clinical application in multiple myeloma, ALL, and non-Hodgkin lymphoma. We provide comprehensive insights into their individual efficacy, limitations concerning broad application, and the potential of combination therapies. These upcoming strategies aim to propel the field forward, paving the way for safer and more effective therapeutic interventions in hematological malignancies.

4.
Lancet Oncol ; 25(4): 488-500, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38547893

RESUMEN

BACKGROUND: Pancreatic ductal adenocarcinoma is characterised by low immunogenicity and an immunosuppressive tumour microenvironment. LOAd703, an oncolytic adenovirus with transgenes encoding TMZ-CD40L and 4-1BBL, lyses cancer cells selectively, activates cytotoxic T cells, and induces tumour regression in preclinical models. The aim of this study was to evaluate the safety and feasibility of combining LOAd703 with chemotherapy for advanced pancreatic ductal adenocarcinoma. METHODS: LOKON001 was a non-randomised, phase 1/2 study conducted at the Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA, and consisted of two arms conducted sequentially; the results of arm 1 are presented here. In arm 1, patients 18 years or older with previously treated or treatment-naive unresectable or metastatic pancreatic ductal adenocarcinoma were treated with standard 28-day cycles of intravenous nab-paclitaxel 125 mg/m2 plus gemcitabine 1000 mg/m2 (up to 12 cycles) and intratumoural injections of LOAd703 every 2 weeks. Patients were assigned using Bayesian optimal interval design to receive 500 µL of LOAd703 at 5 × 1010 (dose 1), 1 × 1011 (dose 2), or 5 × 1011 (dose 3) viral particles per injection, injected endoscopically or percutaneously into the pancreatic tumour or a metastasis for six injections. The primary endpoints were safety and treatment-emergent immune response in patients who received at least one dose of LOAd703, and antitumour activity was a secondary endpoint. This study was registered with ClinicalTrials.gov, NCT02705196, arm 2 is ongoing and open to new participants. FINDINGS: Between Dec 2, 2016, and Oct 17, 2019, 23 patients were assessed for eligibility, leading to 22 patients being enrolled. One patient withdrew consent, resulting in 21 patients (13 [62%] men and eight [38%] women) assigned to a dose group (three to dose 1, four to dose 2, and 14 to dose 3). 21 patients were evaluable for safety. Median follow-up time was 6 months (IQR 4-10), and data cutoff was Jan 5, 2023. The most common treatment-emergent adverse events overall were anaemia (96 [8%] of 1237 events), lymphopenia (86 [7%] events), hyperglycaemia (70 [6%] events), leukopenia (63 [5%] events), hypertension (62 [5%] events), and hypoalbuminaemia (61 [5%] events). The most common adverse events attributed to LOAd703 were fever (14 [67%] of 21 patients), fatigue (eight [38%]), chills (seven [33%]), and elevated liver enzymes (alanine aminotransferase in five [24%], alkaline phosphatase in four [19%], and aspartate aminotransferase in four [19%]), all of which were grade 1-2, except for a transient grade 3 aminotransferase elevation occurring at dose 3. A maximum tolerated dose was not reached, thereby establishing dose 3 as the highest-evaluated safe dose when combined with nab-paclitaxel plus gemcitabine. Proportions of CD8+ effector memory cells and adenovirus-specific T cells increased after LOAd703 injections in 15 (94%) of 16 patients for whom T-cell assays could be performed. Eight (44%, 95% CI 25-66) of 18 patients evaluable for activity had an objective response. INTERPRETATION: Combining LOAd703 with nab-paclitaxel plus gemcitabine in patients with advanced pancreatic ductal adenocarcinoma was feasible and safe. To build upon this novel chemoimmunotherapeutic approach, arm 2 of LOKON001, which combines LOAd703, nab-paclitaxel plus gemcitabine, and atezolizumab, is ongoing. FUNDING: Lokon Pharma, the Swedish Cancer Society, and the Swedish Research Council.


Asunto(s)
Adenocarcinoma , Anemia , Virus Oncolíticos , Neoplasias Pancreáticas , Trombocitopenia , Masculino , Humanos , Femenino , Gemcitabina , Virus Oncolíticos/genética , Teorema de Bayes , Neoplasias Pancreáticas/terapia , Neoplasias Pancreáticas/tratamiento farmacológico , Paclitaxel , Anemia/inducido químicamente , Trombocitopenia/inducido químicamente , Adenocarcinoma/terapia , Adenocarcinoma/tratamiento farmacológico , Albúminas , Terapia Genética/efectos adversos , Protocolos de Quimioterapia Combinada Antineoplásica/efectos adversos , Microambiente Tumoral
5.
Blood ; 140(1): 16-24, 2022 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-35325065

RESUMEN

Subsequent malignancies are well-documented complications in long-term follow-up of cancer patients. Recently, genetically modified immune effector (IE) cells have shown benefit in hematologic malignancies and are being evaluated in clinical trials for solid tumors. Although the short-term complications of IE cells are well described, there is limited literature summarizing long-term follow-up, including subsequent malignancies. We retrospectively reviewed data from 340 patients treated across 27 investigator-initiated pediatric and adult clinical trials at our center. All patients received IE cells genetically modified with γ-retroviral vectors to treat relapsed and/or refractory hematologic or solid malignancies. In a cumulative 1027 years of long-term follow-up, 13 patients (3.8%) developed another cancer with a total of 16 events (4 hematologic malignancies and 12 solid tumors). The 5-year cumulative incidence of a first subsequent malignancy in the recipients of genetically modified IE cells was 3.6% (95% confidence interval, 1.8% to 6.4%). For 11 of the 16 subsequent tumors, biopsies were available, and no sample was transgene positive by polymerase chain reaction. Replication-competent retrovirus testing of peripheral blood mononuclear cells was negative in the 13 patients with subsequent malignancies tested. Rates of subsequent malignancy were low and comparable to standard chemotherapy. These results suggest that the administration of IE cells genetically modified with γ retroviral vectors does not increase the risk for subsequent malignancy.


Asunto(s)
Neoplasias Hematológicas , Neoplasias , Adulto , Niño , Estudios de Seguimiento , Neoplasias Hematológicas/genética , Neoplasias Hematológicas/terapia , Humanos , Leucocitos Mononucleares , Neoplasias/genética , Neoplasias/terapia , Estudios Retrospectivos
6.
Cytotherapy ; 26(8): 858-868, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38506769

RESUMEN

BACKGROUND AIMS: Vγ9Vδ2 T cells are an attractive cell platform for the off-the-shelf cancer immunotherapy as the result of their lack of alloreactivity and inherent multi-pronged cytotoxicity, which could be further amplified with chimeric antigen receptors (CARs). In this study, we sought to enhance the in vivo longevity of CAR-Vδ2 T cells by modulating ex vivo manufacturing conditions and selecting an optimal CAR costimulatory domain. METHODS: Specifically, we compared the anti-tumor activity of Vδ2 T cells expressing anti-CD19 CARs with costimulatory endodomains derived from CD28, 4-1BB or CD27 and generated in either standard fetal bovine serum (FBS)- or human platelet lysate (HPL)-supplemented medium. RESULTS: We found that HPL supported greater expansion of CAR-Vδ2 T cells with comparable in vitro cytotoxicity and cytokine secretion to FBS-expanded CAR-Vδ2 T cells. HPL-expanded CAR-Vδ2 T cells showed enhanced in vivo anti-tumor activity with longer T-cell persistence compared with FBS counterparts, with 4-1BB costimulated CAR showing the greatest activity. Mechanistically, HPL-expanded CAR Vδ2 T cells exhibited reduced apoptosis and senescence transcriptional pathways compared to FBS-expanded CAR-Vδ2 T cells and increased telomerase activity. CONCLUSIONS: This study supports enhancement of therapeutic potency of CAR-Vδ2 T cells through a manufacturing improvement.


Asunto(s)
Apoptosis , Plaquetas , Senescencia Celular , Inmunoterapia Adoptiva , Receptores Quiméricos de Antígenos , Humanos , Receptores Quiméricos de Antígenos/metabolismo , Receptores Quiméricos de Antígenos/inmunología , Animales , Inmunoterapia Adoptiva/métodos , Ratones , Plaquetas/metabolismo , Linfocitos T/inmunología , Linfocitos T/metabolismo , Antígenos CD19/inmunología , Antígenos CD19/metabolismo , Línea Celular Tumoral , Antígenos CD28/metabolismo , Antígenos CD28/inmunología , Ensayos Antitumor por Modelo de Xenoinjerto , Miembro 9 de la Superfamilia de Receptores de Factores de Necrosis Tumoral/metabolismo
7.
Trends Immunol ; 42(3): 261-272, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33536140

RESUMEN

Banked allogeneic or 'off-the-shelf' (OTS) T cells from healthy human donors are being developed to address the limitations of autologous cell therapies. Potential challenges of OTS T cell therapies are associated with their allogeneic origin and the possibility of graft-versus-host disease (GvHD) and host-versus-graft immune reactions. While the risk of GvHD from OTS T cells has been proved to be manageable in clinical studies, approaches to prevent immune rejection of OTS cells are at an earlier stage of development. We provide an overview of strategies to generate OTS cell therapies and mitigate alloreactivity-associated adverse events, with a focus on recent advances for preventing immune rejection.


Asunto(s)
Enfermedad Injerto contra Huésped , Linfocitos T , Enfermedad Injerto contra Huésped/terapia , Humanos , Trasplante Homólogo
8.
Mol Ther ; 31(1): 24-34, 2023 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-36086817

RESUMEN

Chimeric antigen receptor (CAR)-mediated targeting of T lineage antigens for the therapy of blood malignancies is frequently complicated by self-targeting of CAR T cells or their excessive differentiation driven by constant CAR signaling. Expression of CARs targeting CD7, a pan-T cell antigen highly expressed in T cell malignancies and some myeloid leukemias, produces robust fratricide and often requires additional mitigation strategies, such as CD7 gene editing. In this study, we show fratricide of CD7 CAR T cells can be fully prevented using ibrutinib and dasatinib, the pharmacologic inhibitors of key CAR/CD3ζ signaling kinases. Supplementation with ibrutinib and dasatinib rescued the ex vivo expansion of unedited CD7 CAR T cells and allowed regaining full CAR-mediated cytotoxicity in vitro and in vivo on withdrawal of the inhibitors. The unedited CD7 CAR T cells persisted long term and mediated sustained anti-leukemic activity in two mouse xenograft models of human T cell acute lymphoblastic leukemia (T-ALL) by self-selecting for CD7-, fratricide-resistant CD7 CAR T cells that were transcriptionally similar to control CD7-edited CD7 CAR T cells. Finally, we showed feasibility of cGMP manufacturing of unedited autologous CD7 CAR T cells for patients with CD7+ malignancies and initiated a phase I clinical trial (ClinicalTrials.gov: NCT03690011) using this approach. These results indicate pharmacologic inhibition of CAR signaling enables generating functional CD7 CAR T cells without additional engineering.


Asunto(s)
Leucemia-Linfoma Linfoblástico de Células T Precursoras , Receptores Quiméricos de Antígenos , Ratones , Animales , Humanos , Linfocitos T , Inmunoterapia Adoptiva/métodos , Dasatinib/metabolismo , Estudios de Factibilidad , Receptores Quiméricos de Antígenos/genética , Receptores Quiméricos de Antígenos/metabolismo
9.
Blood ; 137(19): 2585-2597, 2021 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-33270816

RESUMEN

Relapse after allogeneic hematopoietic stem cell transplantation (HCT) is the leading cause of death in patients with acute myeloid leukemia (AML) or myelodysplastic syndrome (MDS). Infusion of unselected donor lymphocytes (DLIs) enhances the graft-versus-leukemia (GVL) effect. However, because the infused lymphocytes are not selected for leukemia specificity, the GVL effect is often accompanied by life-threatening graft-versus-host disease (GVHD), related to the concurrent transfer of alloreactive lymphocytes. Thus, to minimize GVHD and maximize GVL, we selectively activated and expanded stem cell donor-derived T cells reactive to multiple antigens expressed by AML/MDS cells (PRAME, WT1, Survivin, and NY-ESO-1). Products that demonstrated leukemia antigen specificity were generated from 29 HCT donors. In contrast to DLIs, leukemia-specific T cells (mLSTs) selectively recognized and killed leukemia antigen-pulsed cells, with no activity against recipient's normal cells in vitro. We administered escalating doses of mLSTs (0.5 to 10 × 107 cells per square meter) to 25 trial enrollees, 17 with high risk of relapse and 8 with relapsed disease. Infusions were well tolerated with no grade >2 acute or extensive chronic GVHD seen. We observed antileukemia effects in vivo that translated into not-yet-reached median leukemia-free and overall survival at 1.9 years of follow-up and objective responses in the active disease cohort (1 complete response and 1 partial response). In summary, mLSTs are safe and promising for the prevention and treatment of AML/MDS after HCT. This trial is registered at www.clinicaltrials.com as #NCT02494167.


Asunto(s)
Efecto Injerto vs Leucemia , Trasplante de Células Madre Hematopoyéticas , Leucemia Mieloide Aguda/terapia , Transfusión de Linfocitos , Síndromes Mielodisplásicos/terapia , Terapia Recuperativa , Linfocitos T/trasplante , Adolescente , Adulto , Anciano , Aloinjertos , Antígenos de Neoplasias/inmunología , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Terapia Combinada , Femenino , Enfermedad Injerto contra Huésped/etiología , Enfermedad Injerto contra Huésped/prevención & control , Humanos , Leucemia Mieloide Aguda/tratamiento farmacológico , Transfusión de Linfocitos/efectos adversos , Masculino , Persona de Mediana Edad , Síndromes Mielodisplásicos/tratamiento farmacológico , Recurrencia , Especificidad del Receptor de Antígeno de Linfocitos T , Linfocitos T/inmunología , Donantes de Tejidos , Adulto Joven
10.
Haematologica ; 108(7): 1840-1850, 2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-36373249

RESUMEN

Defects in T-cell immunity to SARS-CoV-2 have been linked to an increased risk of severe COVID-19 (even after vaccination), persistent viral shedding and the emergence of more virulent viral variants. To address this T-cell deficit, we sought to prepare and cryopreserve banks of virus-specific T cells, which would be available as a partially HLA-matched, off-the-shelf product for immediate therapeutic use. By interrogating the peripheral blood of healthy convalescent donors, we identified immunodominant and protective T-cell target antigens, and generated and characterized polyclonal virus-specific T-cell lines with activity against multiple clinically important SARS-CoV-2 variants (including 'delta' and 'omicron'). The feasibility of making and safely utilizing such virus-specific T cells clinically was assessed by administering partially HLA-matched, third-party, cryopreserved SARS-CoV-2-specific T cells (ALVR109) in combination with other antiviral agents to four individuals who were hospitalized with COVID-19. This study establishes the feasibility of preparing and delivering off-the-shelf, SARS-CoV-2-directed, virus-specific T cells to patients with COVID-19 and supports the clinical use of these products outside of the profoundly immune compromised setting (ClinicalTrials.gov number, NCT04401410).


Asunto(s)
COVID-19 , Trasplante de Células Madre Hematopoyéticas , Humanos , Linfocitos , SARS-CoV-2
11.
Mol Ther ; 30(9): 2881-2890, 2022 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-35821636

RESUMEN

Chimeric antigen receptor (CAR) T cell therapy has created a paradigm shift in the treatment of hematologic malignancies but has not been as effective toward solid tumors. For such tumors, the primary obstacles facing CAR T cells are scarcity of tumor-specific antigens and the hostile and complex tumor microenvironment. Glycosylation, the process by which sugars are post-translationally added to proteins or lipids, is profoundly dysregulated in cancer. Abnormally glycosylated glycoproteins expressed on cancer cells offer unique targets for CAR T therapy as they are specific to tumor cells. Tumor stromal cells also express abnormal glycoproteins and thus also have the potential to be targeted by glycan-binding CAR T cells. This review will discuss the state of CAR T cells in the therapy of solid tumors, the cancer glycoproteome and its potential for use as a therapeutic target, and the landscape and future of glycan-binding CAR T cell therapy.


Asunto(s)
Inmunoterapia Adoptiva , Neoplasias , Glicoproteínas , Humanos , Polisacáridos , Receptores de Antígenos de Linfocitos T/metabolismo , Microambiente Tumoral
12.
Cytotherapy ; 24(3): 282-290, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34955406

RESUMEN

BACKGROUND AIMS: Efforts to safely and effectively treat acute myeloid leukemia (AML) by targeting a single leukemia-associated antigen with chimeric antigen receptor (CAR) T cells have met with limited success, due in part to heterogeneous expression of myeloid antigens. The authors hypothesized that T cells expressing CARs directed toward two different AML-associated antigens would eradicate tumors and prevent relapse. METHODS: For co-transduction with the authors' previously optimized CLL-1 CAR currently in clinical study (NCT04219163), the authors generated two CARs targeting either CD123 or CD33. The authors then tested the anti-tumor activity of T cells expressing each of the three CARs either alone or after co-transduction. The authors analyzed CAR T-cell phenotype, expansion and transduction efficacy and assessed function by in vitro and in vivo activity against AML cell lines expressing high (MOLM-13: CD123 high, CD33 high, CLL-1 intermediate), intermediate (HL-60: CD123 low, CD33 intermediate, CLL-1 intermediate/high) or low (KG-1a: CD123 low, CD33 low, CLL-1 low) levels of the target antigens. RESULTS: The in vitro benefit of dual expression was most evident when the target cell line expressed low antigen levels (KG-1a). Mechanistically, dual expression was associated with higher pCD3z levels in T cells compared with single CAR T cells on exposure to KG-1a (P < 0.0001). In vivo, combinatorial targeting with CD123 or CD33 and CLL-1 CAR T cells improved tumor control and animal survival for all lines (KG-1a, MOLM-13 and HL-60); no antigen escape was detected in residual tumors. CONCLUSIONS: Overall, these findings demonstrate that combinatorial targeting of CD33 or CD123 and CLL-1 with CAR T cells can control growth of heterogeneous AML tumors.


Asunto(s)
Leucemia Linfocítica Crónica de Células B , Leucemia Mieloide Aguda , Animales , Línea Celular Tumoral , Inmunoterapia Adoptiva , Subunidad alfa del Receptor de Interleucina-3 , Leucemia Mieloide Aguda/terapia , Linfocitos T
13.
Mol Ther ; 29(5): 1808-1820, 2021 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-33571680

RESUMEN

The immunosuppressive tumor microenvironment (TME) is a formidable barrier to the success of adoptive cell therapies for solid tumors. Oncolytic immunotherapy with engineered adenoviruses (OAd) may disrupt the TME by infecting tumor cells, as well as surrounding stroma, to improve the functionality of tumor-directed chimeric antigen receptor (CAR)-T cells, yet efficient delivery of OAds to solid tumors has been challenging. Here we describe how mesenchymal stromal cells (MSCs) can be used to systemically deliver a binary vector containing an OAd together with a helper-dependent Ad (HDAd; combinatorial Ad vector [CAd]) that expresses interleukin-12 (IL-12) and checkpoint PD-L1 (programmed death-ligand 1) blocker. CAd-infected MSCs deliver and produce functional virus to infect and lyse lung tumor cells while stimulating CAR-T cell anti-tumor activity by release of IL-12 and PD-L1 blocker. The combination of this approach with administration of HER.2-specific CAR-T cells eliminates 3D tumor spheroids in vitro and suppresses tumor growth in two orthotopic lung cancer models in vivo. Treatment with CAd MSCs increases the overall numbers of human T cells in vivo compared to CAR-T cell only treatment and enhances their polyfunctional cytokine secretion. These studies combine the predictable targeting of CAR-T cells with the advantages of cancer cell lysis and TME disruption by systemic MSC delivery of oncolytic virotherapy: incorporation of immunostimulation by cytokine and checkpoint inhibitor production through the HDAd further enhances anti-tumor activity.


Asunto(s)
Anticuerpos Monoclonales/genética , Dependovirus/fisiología , Virus Helper/fisiología , Interleucina-12/metabolismo , Neoplasias Pulmonares/terapia , Células Madre Mesenquimatosas/virología , Receptores de Antígenos de Linfocitos T/metabolismo , Células A549 , Animales , Anticuerpos Monoclonales/farmacología , Antígeno B7-H1/antagonistas & inhibidores , Línea Celular Tumoral , Terapia Combinada , Dependovirus/genética , Virus Helper/genética , Humanos , Inmunoterapia Adoptiva , Interleucina-12/antagonistas & inhibidores , Interleucina-12/genética , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas/inmunología , Viroterapia Oncolítica , Receptor ErbB-2/inmunología , Microambiente Tumoral , Tropismo Viral , Ensayos Antitumor por Modelo de Xenoinjerto
14.
Mol Ther ; 28(5): 1251-1262, 2020 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-32145203

RESUMEN

No single cancer immunotherapy will likely defeat all evasion mechanisms of solid tumors, including plasticity of tumor antigen expression and active immune suppression by the tumor environment. In this study, we increase the breadth, potency, and duration of anti-tumor activity of chimeric antigen receptor (CAR) T cells using an oncolytic virus (OV) that produces cytokine, checkpoint blockade, and a bispecific tumor-targeted T cell engager (BiTE) molecule. First, we constructed a BiTE molecule specific for CD44 variant 6 (CD44v6), since CD44v6 is widely expressed on tumor but not normal tissue, and a CD44v6 antibody has been safely administered to cancer patients. We then incorporated this BiTE sequence into an oncolytic-helper binary adenovirus (CAdDuo) encoding an immunostimulatory cytokine (interleukin [IL]-12) and an immune checkpoint blocker (PD-L1Ab) to form CAdTrio. CD44v6 BiTE from CAdTrio enabled HER2-specific CAR T cells to kill multiple CD44v6+ cancer cell lines and to produce more rapid and sustained disease control of orthotopic HER2+ and HER2-/- CD44v6+ tumors than any component alone. Thus, the combination of CAdTrio with HER2.CAR T cells ensures dual targeting of two tumor antigens by engagement of distinct classes of receptor (CAR and native T cell receptor [TCR]), and significantly improves tumor control and survival.


Asunto(s)
Adenoviridae/metabolismo , Anticuerpos Biespecíficos/uso terapéutico , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Inmunoterapia Adoptiva/métodos , Interleucina-12/uso terapéutico , Neoplasias/terapia , Viroterapia Oncolítica/métodos , Virus Oncolíticos/metabolismo , Receptores Quiméricos de Antígenos/uso terapéutico , Animales , Femenino , Humanos , Receptores de Hialuranos/inmunología , Receptores de Hialuranos/metabolismo , Inhibidores de Puntos de Control Inmunológico/metabolismo , Interleucina-12/metabolismo , Masculino , Ratones Endogámicos NOD , Ratones SCID , Neoplasias/metabolismo , Neoplasias/patología , Células PC-3 , Receptor ErbB-2/inmunología , Receptor ErbB-2/metabolismo , Receptores Quiméricos de Antígenos/inmunología , Resultado del Tratamiento , Ensayos Antitumor por Modelo de Xenoinjerto
15.
Blood ; 132(22): 2351-2361, 2018 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-30262660

RESUMEN

Autologous T cells targeting Epstein-Barr virus (EBV) latent membrane proteins (LMPs) have shown safety and efficacy in the treatment of patients with type 2 latency EBV-associated lymphomas for whom standard therapies have failed, including high-dose chemotherapy followed by autologous stem-cell rescue. However, the safety and efficacy of allogeneic donor-derived LMP-specific T cells (LMP-Ts) have not been established for patients who have undergone allogeneic hematopoietic stem-cell transplantation (HSCT). Therefore, we evaluated the safety and efficacy of donor-derived LMP-Ts in 26 patients who had undergone allogeneic HSCT for EBV-associated natural killer/T-cell or B-cell lymphomas. Seven patients received LMP-Ts as therapy for active disease, and 19 were treated with adjuvant therapy for high-risk disease. There were no immediate infusion-related toxicities, and only 1 dose-limiting toxicity potentially related to T-cell infusion was seen. The 2-year overall survival (OS) was 68%. Additionally, patients who received T-cell therapy while in complete remission after allogeneic HSCT had a 78% OS at 2 years. Patients treated for B-cell disease (n = 10) had a 2-year OS of 80%. Patients with T-cell disease had a 2-year OS of 60%, which suggests an improvement compared with published posttransplantation 2-year OS rates of 30% to 50%. Hence, this study shows that donor-derived LMP-Ts are a safe and effective therapy to prevent relapse after transplantation in patients with B cell- or T cell-derived EBV-associated lymphoma or lymphoproliferative disorder and supports the infusion of LMP-Ts as adjuvant therapy to improve outcomes in the posttransplantation setting. These trials were registered at www.clinicaltrials.gov as #NCT00062868 and #NCT01956084.


Asunto(s)
Infecciones por Virus de Epstein-Barr/complicaciones , Trasplante de Células Madre Hematopoyéticas/métodos , Herpesvirus Humano 4/inmunología , Linfoma de Células B/terapia , Linfoma de Células T/terapia , Recurrencia Local de Neoplasia/prevención & control , Linfocitos T/trasplante , Adolescente , Adulto , Niño , Preescolar , Infecciones por Virus de Epstein-Barr/inmunología , Femenino , Herpesvirus Humano 4/aislamiento & purificación , Humanos , Linfoma de Células B/inmunología , Linfoma de Células B/virología , Linfoma de Células T/inmunología , Linfoma de Células T/virología , Masculino , Persona de Mediana Edad , Recurrencia Local de Neoplasia/inmunología , Linfocitos T/inmunología , Trasplante Homólogo/métodos , Resultado del Tratamiento , Proteínas de la Matriz Viral/inmunología , Adulto Joven
16.
Mol Ther ; 27(1): 272-280, 2019 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-30391141

RESUMEN

Chimeric antigen receptor (CAR) T cell therapy for the treatment of acute myeloid leukemia (AML) has the risk of toxicity to normal myeloid cells. CD7 is expressed by the leukemic blasts and malignant progenitor cells of approximately 30% of AML patients but is absent on normal myeloid and erythroid cells. Since CD7 expression by malignant blasts is also linked with chemoresistance and poor outcomes, targeting this antigen may be beneficial for this subset of AML patients. Here, we show that expression of a CD7-directed CAR in CD7 gene-edited (CD7KO) T cells effectively eliminates CD7+ AML cell lines, primary CD7+ AML, and colony-forming cells but spares myeloid and erythroid progenitor cells and their progeny. In a xenograft model, CD7 CAR T cells protect mice against systemic leukemia, prolonging survival. Our results support the feasibility of using CD7KO CD7 CAR T cells for the non-myeloablative treatment of CD7+ AML.


Asunto(s)
Inmunoterapia Adoptiva/métodos , Leucemia Mieloide Aguda/terapia , Animales , Antígenos CD7/metabolismo , Humanos , Leucemia Mieloide Aguda/metabolismo , Ratones , Células Mieloides/metabolismo , Linfocitos T/metabolismo
17.
Blood ; 130(3): 285-296, 2017 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-28539325

RESUMEN

Extending the success of chimeric antigen receptor (CAR) T cells to T-cell malignancies is problematic because most target antigens are shared between normal and malignant cells, leading to CAR T-cell fratricide. CD7 is a transmembrane protein highly expressed in acute T-cell leukemia (T-ALL) and in a subset of peripheral T-cell lymphomas. Normal expression of CD7 is largely confined to T cells and natural killer (NK) cells, reducing the risk of off-target-organ toxicity. Here, we show that the expression of a CD7-specific CAR impaired expansion of transduced T cells because of residual CD7 expression and the ensuing fratricide. We demonstrate that targeted genomic disruption of the CD7 gene prevented this fratricide and enabled expansion of CD7 CAR T cells without compromising their cytotoxic function. CD7 CAR T cells produced robust cytotoxicity against malignant T-cell lines and primary tumors and were protective in a mouse xenograft model of T-ALL. Although CD7 CAR T cells were also toxic against unedited (CD7+) T and NK lymphocytes, we show that the CD7-edited T cells themselves can respond to viral peptides and therefore could be protective against pathogens. Hence, genomic disruption of a target antigen overcomes fratricide of CAR T cells and establishes the feasibility of using CD7 CAR T cells for the targeted therapy of T-cell malignancies.


Asunto(s)
Antígenos CD7/inmunología , Citotoxicidad Inmunológica , Inmunoterapia Adoptiva/métodos , Leucemia-Linfoma Linfoblástico de Células T Precursoras/terapia , Receptores de Antígenos de Linfocitos T/genética , Proteínas Recombinantes de Fusión/inmunología , Linfocitos T/trasplante , Animales , Antígenos CD7/genética , Línea Celular Tumoral , Proliferación Celular , Femenino , Expresión Génica , Silenciador del Gen , Humanos , Células Asesinas Naturales/citología , Células Asesinas Naturales/inmunología , Activación de Linfocitos , Masculino , Ratones , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células T Precursoras/inmunología , Leucemia-Linfoma Linfoblástico de Células T Precursoras/patología , Receptores de Antígenos de Linfocitos T/inmunología , Proteínas Recombinantes de Fusión/genética , Linfocitos T/citología , Linfocitos T/inmunología , Transducción Genética , Trasplante Heterólogo
18.
Blood ; 130(25): 2739-2749, 2017 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-29079582

RESUMEN

Adoptively transferred T-cell receptor (TCR)-engineered T cells depend on host-derived costimulation and cytokine signals for their full and sustained activation. However, in patients with cancer, both signals are frequently impaired. Hence, we developed a novel strategy that combines both essential signals in 1 transgene by expressing the nonlymphoid hematopoietic growth factor receptor c-MPL (myeloproliferative leukemia), the receptor for thrombopoietin (TPO), in T cells. c-MPL signaling activates pathways shared with conventional costimulatory and cytokine receptor signaling. Thus, we hypothesized that host-derived TPO, present in the tumor microenvironment, or pharmacological c-MPL agonists approved by the US Food and Drug Administration could deliver both signals to c-MPL-engineered TCR-transgenic T cells. We found that c-MPL+ polyclonal T cells expand and proliferate in response to TPO, and persist longer after adoptive transfer in immunodeficient human TPO-transgenic mice. In TCR-transgenic T cells, c-MPL activation enhances antitumor function, T-cell expansion, and cytokine production and preserves a central memory phenotype. c-MPL signaling also enables sequential tumor cell killing, enhances the formation of effective immune synapses, and improves antileukemic activity in vivo in a leukemia xenograft model. We identify the type 1 interferon pathway as a molecular mechanism by which c-MPL mediates immune stimulation in T cells. In conclusion, we present a novel immunotherapeutic strategy using c-MPL-enhanced transgenic T cells responding to either endogenously produced TPO (a microenvironment factor in hematologic malignancies) or c-MPL-targeted pharmacological agents.


Asunto(s)
Inmunoterapia Adoptiva/métodos , Receptores de Trombopoyetina/fisiología , Animales , Proliferación Celular/efectos de los fármacos , Citocinas/metabolismo , Xenoinjertos , Humanos , Interferón Tipo I/metabolismo , Ratones , Receptores de Trombopoyetina/agonistas , Receptores de Trombopoyetina/metabolismo , Transducción de Señal/efectos de los fármacos
19.
Mol Ther ; 26(12): 2727-2737, 2018 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-30309819

RESUMEN

Second-generation (2G) chimeric antigen receptors (CARs) targeting CD19 are highly active against B cell malignancies, but it is unknown whether any of the costimulatory domains incorporated in the CAR have superior activity to others. Because CD28 and 4-1BB signaling activate different pathways, combining them in a single third-generation (3G) CAR may overcome the limitations of each individual costimulatory domain. We designed a clinical trial in which two autologous CD19-specific CAR-transduced T cell products (CD19.CARTs), 2G (with CD28 only) and 3G (CD28 and 4-1BB), were infused simultaneously in 16 patients with relapsed or refractory non-Hodgkin's lymphoma. 3G CD19.CARTs had superior expansion and longer persistence than 2G CD19.CARTs. This difference was most striking in the five patients with low disease burden and few circulating normal B cells, in whom 2G CD19.CARTs had limited expansion and persistence and correspondingly reduced area under the curve. Of the 11 patients with measurable disease, three achieved complete responses and three had partial responses. Cytokine release syndrome occurred in six patients but was mild, and no patient required anti-IL-6 therapy. Hence, 3G CD19.CARTs combining 4-1BB with CD28 produce superior CART expansion and may be of particular value when treating low disease burden in patients whose normal B cells are depleted by prior therapy.


Asunto(s)
Antígenos CD19/inmunología , Inmunoterapia Adoptiva , Linfoma no Hodgkin/inmunología , Linfoma no Hodgkin/terapia , Receptores de Antígenos de Linfocitos T/metabolismo , Receptores Quiméricos de Antígenos/metabolismo , Linfocitos T/inmunología , Anciano , Terapia Combinada , Femenino , Trasplante de Células Madre Hematopoyéticas , Humanos , Inmunoterapia Adoptiva/efectos adversos , Inmunoterapia Adoptiva/métodos , Linfoma no Hodgkin/diagnóstico , Masculino , Persona de Mediana Edad , Tomografía Computarizada por Tomografía de Emisión de Positrones , Receptores de Antígenos de Linfocitos T/genética , Receptores Quiméricos de Antígenos/genética , Linfocitos T/metabolismo , Trasplante Autólogo , Resultado del Tratamiento
20.
Biol Blood Marrow Transplant ; 24(7): 1424-1431, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29550628

RESUMEN

Hematopoietic stem cell transplantation (HSCT) is the only curative option for a subset of patients with high-risk or relapsed acute lymphoblastic leukemia (ALL). Given evolving practices, it is important to continually evaluate outcomes for pediatric ALL following HSCT. Outcomes after HSCT are influenced by the type of donor used as this determines the degree and method of T cell depletion used and, consequently, specific transplant-related morbidities. We retrospectively analyzed HSCT data from our center for transplants performed between January 2008 and May 2016, comparing outcomes among different donor types. One hundred and twenty-four pediatric patients underwent HSCT from a matched sibling donor (MSD; n = 48), an unrelated matched donor (UMD; n = 56), or a haploidentical donor (n = 20). We observed a similar 3-year event-free survival (EFS) for MSD recipients (of .64) and for UMD recipients (.62), but a significantly lower EFS for recipients of haploidentical transplants (.35; P = .01). Relapse was the main cause of HSCT failure and was significantly higher in the haploidentical donor group (.47 versus .19 for MSD and .24 for UMD; P = .02). Treatment-related mortality was evenly distributed among the donor groups (.17, .16, and .15 for the MSD, UMD, and haploidentical groups, respectively). Rates of infection-related mortality were lower than previously reported. Relapse is the main obstacle for successful HSCT in the contemporary era, and this effect is most evident in recipients of haploidentical donor grafts. Newer methods to improve graft-versus-leukemia effect are being evaluated and will need to be incorporated into the management of high-risk patients.


Asunto(s)
Trasplante de Células Madre Hematopoyéticas/métodos , Leucemia-Linfoma Linfoblástico de Células Precursoras/terapia , Acondicionamiento Pretrasplante/métodos , Trasplante Homólogo/métodos , Adolescente , Niño , Preescolar , Femenino , Historia del Siglo XXI , Humanos , Lactante , Recién Nacido , Masculino , Leucemia-Linfoma Linfoblástico de Células Precursoras/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA