Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
PLoS Biol ; 19(6): e3001149, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-34153028

RESUMEN

Synaptic plasticity is a cellular model for learning and memory. However, the expression mechanisms underlying presynaptic forms of plasticity are not well understood. Here, we investigate functional and structural correlates of presynaptic potentiation at large hippocampal mossy fiber boutons induced by the adenylyl cyclase activator forskolin. We performed 2-photon imaging of the genetically encoded glutamate sensor iGluu that revealed an increase in the surface area used for glutamate release at potentiated terminals. Time-gated stimulated emission depletion microscopy revealed no change in the coupling distance between P/Q-type calcium channels and release sites mapped by Munc13-1 cluster position. Finally, by high-pressure freezing and transmission electron microscopy analysis, we found a fast remodeling of synaptic ultrastructure at potentiated boutons: Synaptic vesicles dispersed in the terminal and accumulated at the active zones, while active zone density and synaptic complexity increased. We suggest that these rapid and early structural rearrangements might enable long-term increase in synaptic strength.


Asunto(s)
Fibras Musgosas del Hipocampo/metabolismo , Terminales Presinápticos/metabolismo , Animales , Colforsina/farmacología , Ácido Glutámico/metabolismo , Masculino , Ratones Endogámicos C57BL , Microscopía de Fluorescencia por Excitación Multifotónica , Fibras Musgosas del Hipocampo/efectos de los fármacos , Fibras Musgosas del Hipocampo/ultraestructura , Neurotransmisores/metabolismo , Terminales Presinápticos/efectos de los fármacos , Vesículas Sinápticas/efectos de los fármacos , Vesículas Sinápticas/metabolismo
2.
Cell ; 138(6): 1222-35, 2009 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-19766573

RESUMEN

Plasticity related gene-1 (PRG-1) is a brain-specific membrane protein related to lipid phosphate phosphatases, which acts in the hippocampus specifically at the excitatory synapse terminating on glutamatergic neurons. Deletion of prg-1 in mice leads to epileptic seizures and augmentation of EPSCs, but not IPSCs. In utero electroporation of PRG-1 into deficient animals revealed that PRG-1 modulates excitation at the synaptic junction. Mutation of the extracellular domain of PRG-1 crucial for its interaction with lysophosphatidic acid (LPA) abolished the ability to prevent hyperexcitability. As LPA application in vitro induced hyperexcitability in wild-type but not in LPA(2) receptor-deficient animals, and uptake of phospholipids is reduced in PRG-1-deficient neurons, we assessed PRG-1/LPA(2) receptor-deficient animals, and found that the pathophysiology observed in the PRG-1-deficient mice was fully reverted. Thus, we propose PRG-1 as an important player in the modulatory control of hippocampal excitability dependent on presynaptic LPA(2) receptor signaling.


Asunto(s)
Proteoglicanos/metabolismo , Sinapsis/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Animales , Electroencefalografía , Hipocampo/química , Hipocampo/citología , Hipocampo/metabolismo , Lisofosfolípidos/metabolismo , Ratones , Ratones Noqueados , Proteoglicanos/análisis , Proteoglicanos/genética , Receptores AMPA/metabolismo , Receptores del Ácido Lisofosfatídico/metabolismo , Transducción de Señal , Proteínas de Transporte Vesicular/análisis , Proteínas de Transporte Vesicular/genética
3.
Proc Natl Acad Sci U S A ; 110(6): E526-35, 2013 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-23345427

RESUMEN

Neurotransmission depends on the exocytic fusion of synaptic vesicles (SVs) and their subsequent reformation either by clathrin-mediated endocytosis or budding from bulk endosomes. How synapses are able to rapidly recycle SVs to maintain SV pool size, yet preserve their compositional identity, is poorly understood. We demonstrate that deletion of the endocytic adaptor stonin 2 (Stn2) in mice compromises the fidelity of SV protein sorting, whereas the apparent speed of SV retrieval is increased. Loss of Stn2 leads to selective missorting of synaptotagmin 1 to the neuronal surface, an elevated SV pool size, and accelerated SV protein endocytosis. The latter phenotype is mimicked by overexpression of endocytosis-defective variants of synaptotagmin 1. Increased speed of SV protein retrieval in the absence of Stn2 correlates with an up-regulation of SV reformation from bulk endosomes. Our results are consistent with a model whereby Stn2 is required to preserve SV protein composition but is dispensable for maintaining the speed of SV recycling.


Asunto(s)
Proteínas Adaptadoras del Transporte Vesicular/deficiencia , Vesículas Sinápticas/metabolismo , Proteínas Adaptadoras del Transporte Vesicular/genética , Proteínas Adaptadoras del Transporte Vesicular/metabolismo , Animales , Encéfalo/metabolismo , Encéfalo/ultraestructura , Endocitosis , Endosomas/metabolismo , Endosomas/ultraestructura , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Microscopía Electrónica de Transmisión , Proteínas del Tejido Nervioso/deficiencia , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Plasticidad Neuronal , Transporte de Proteínas , Transmisión Sináptica/genética , Transmisión Sináptica/fisiología , Vesículas Sinápticas/ultraestructura , Sinaptofisina/metabolismo , Sinaptotagmina I/genética , Sinaptotagmina I/metabolismo , Proteína 2 de Membrana Asociada a Vesículas/metabolismo
4.
eNeuro ; 11(7)2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38866497

RESUMEN

Synapsins are highly abundant presynaptic proteins that play a crucial role in neurotransmission and plasticity via the clustering of synaptic vesicles. The synapsin III isoform is usually downregulated after development, but in hippocampal mossy fiber boutons, it persists in adulthood. Mossy fiber boutons express presynaptic forms of short- and long-term plasticity, which are thought to underlie different forms of learning. Previous research on synapsins at this synapse focused on synapsin isoforms I and II. Thus, a complete picture regarding the role of synapsins in mossy fiber plasticity is still missing. Here, we investigated presynaptic plasticity at hippocampal mossy fiber boutons by combining electrophysiological field recordings and transmission electron microscopy in a mouse model lacking all synapsin isoforms. We found decreased short-term plasticity, i.e., decreased facilitation and post-tetanic potentiation, but increased long-term potentiation in male synapsin triple knock-out (KO) mice. At the ultrastructural level, we observed more dispersed vesicles and a higher density of active zones in mossy fiber boutons from KO animals. Our results indicate that all synapsin isoforms are required for fine regulation of short- and long-term presynaptic plasticity at the mossy fiber synapse.


Asunto(s)
Ratones Noqueados , Fibras Musgosas del Hipocampo , Plasticidad Neuronal , Terminales Presinápticos , Sinapsinas , Animales , Sinapsinas/metabolismo , Sinapsinas/genética , Fibras Musgosas del Hipocampo/fisiología , Masculino , Plasticidad Neuronal/fisiología , Terminales Presinápticos/fisiología , Terminales Presinápticos/metabolismo , Ratones Endogámicos C57BL , Ratones , Vesículas Sinápticas/metabolismo , Vesículas Sinápticas/ultraestructura , Potenciales Postsinápticos Excitadores/fisiología
5.
Hippocampus ; 22(1): 57-68, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-20848601

RESUMEN

CA3 pyramidal cells receive three main excitatory inputs: the first one is the mossy fiber input, synapsing mainly on the proximal apical dendrites. Second, entorhinal cortex cells form excitatory connections with CA3 pyramidal cells via the perforant path in the stratum lacunosum moleculare. The third input involves the ipsi-and contralateral connections, termed the associational/commissural (A/C) pathway terminating in the stratum radiatum of CA3, thus forming a feedback loop within this region. Since this excitatory recurrent synapse makes the CA3 region extremely prone to seizure development, understanding the regulation of synaptic strength of this connection is of crucial interest. Several studies suggest that kainate receptors (KAR) play a role in the regulation of synaptic strength. Our aim was to characterize the influence of KAR on A/C synaptic transmission: application of ATPA, a selective agonist of the GluK1 KAR, depressed the amplitude fEPSP without affecting the size of the fiber volley. Blockade of GABA receptors had no influence on this effect, arguing against the influence of interneuronal KARs. Pharmacological and genetic deletion studies could show that this effect was selectively due to GluK1 receptor activation. Several lines of evidence, such as PPF changes, coefficient of variance-analysis and glutamate uncaging experiments strongly argue for a presynaptic locus of suppression. This is accompanied by an ATPA-mediated reduction in Ca(2+) influx at excitatory synaptic terminals, which is most likely mediated by a G-Protein dependent mechanism, as suggested by application of pertussis toxin. Finally, analysis of miniature EPSCs in the presence and absence of extracellular Ca(2+) suggest that presynaptic KAR can also reduce transmitter release downstream and therefore independent of Ca(2+) influx.


Asunto(s)
Región CA3 Hipocampal/fisiología , Señalización del Calcio/fisiología , Neurotransmisores/metabolismo , Terminales Presinápticos/fisiología , Receptores de Ácido Kaínico/fisiología , Transmisión Sináptica/fisiología , Animales , Región CA3 Hipocampal/citología , Región CA3 Hipocampal/metabolismo , Señalización del Calcio/efectos de los fármacos , Ratones , Ratones Noqueados , Técnicas de Cultivo de Órganos/métodos , Terminales Presinápticos/efectos de los fármacos , Terminales Presinápticos/metabolismo , Ratas , Ratas Sprague-Dawley , Receptores de Ácido Kaínico/agonistas , Receptores de Ácido Kaínico/deficiencia , Transmisión Sináptica/efectos de los fármacos , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiónico/farmacología
6.
Eur J Neurosci ; 32(6): 939-47, 2010 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-20726880

RESUMEN

When a single neuron is grown on a small island of glial cells, the neuron forms synapses onto itself. The so-called autaptic culture systems have proven extremely valuable in elucidating basic mechanisms of synaptic transmission, as they allow application of technical approaches that cannot be used in slice preparations. However, this method has been almost exclusively used for pyramidal cells and interneurons. In this study, we generated autaptic cultures from granule cells isolated from the dentate gyrus of rodent hippocampi. Our subsequent morphological and functional characterisation of these cells confirms that this culture model is suitable for investigating basic mechanisms of granule cell synaptic transmission. Importantly, the autosynaptic connectivity allows recordings of pure mossy fibre miniature EPSCs, which are not possible in slice preparations. Further, by fast application of hypertonic sucrose solutions it is possible to directly measure the readily releasable pool and to calculate the probability of vesicular release.


Asunto(s)
Hipocampo/citología , Hipocampo/fisiología , Neurogénesis/fisiología , Neuroglía/citología , Neuroglía/fisiología , Neuronas/citología , Neuronas/fisiología , Animales , Células Cultivadas , Técnicas de Cultivo , Potenciales Postsinápticos Excitadores/fisiología , Ratones , Ratones Endogámicos C57BL , Ratas , Ratas Sprague-Dawley , Sinapsis/fisiología
7.
eNeuro ; 7(3)2020.
Artículo en Inglés | MEDLINE | ID: mdl-32457067

RESUMEN

Dendritic geometry is largely determined during postnatal development and has a substantial impact on neural function. In sensory processing, postnatal development of the dendritic tree is affected by two dominant circuit motifs, ascending sensory feedforward inputs and descending and local recurrent connections. In the three-layered anterior piriform cortex (aPCx), neurons in the sublayers 2a and 2b display vertical segregation of these two circuit motifs. Here, we combined electrophysiology, detailed morphometry, and Ca2+ imaging in acute mouse brain slices and modeling to study circuit-specific aspects of dendritic development. We observed that determination of branching complexity, dendritic length increases, and pruning occurred in distinct developmental phases. Layer 2a and layer 2b neurons displayed developmental phase-specific differences between their apical and basal dendritic trees related to differences in circuit incorporation. We further identified functional candidate mechanisms for circuit-specific differences in postnatal dendritic growth in sublayers 2a and 2b at the mesoscale and microscale levels. Already in the first postnatal week, functional connectivity of layer 2a and layer 2b neurons during early spontaneous network activity scales with differences in basal dendritic growth. During the early critical period of sensory plasticity in the piriform cortex, our data are consistent with a model that proposes a role for dendritic NMDA-spikes in selecting branches for survival during developmental pruning in apical dendrites. The different stages of the morphologic and functional developmental pattern differences between layer 2a and layer 2b neurons demonstrate the complex interplay between dendritic development and circuit specificity.


Asunto(s)
Corteza Piriforme , Animales , Dendritas , Ratones , Neuronas , Células Piramidales
8.
Sci Rep ; 10(1): 16557, 2020 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-33024184

RESUMEN

Synaptic transmission and plasticity in the hippocampus are integral factors in learning and memory. While there has been intense investigation of these critical mechanisms in the brain of rodents, we lack a broader understanding of the generality of these processes across species. We investigated one of the smallest animals with conserved hippocampal macroanatomy-the Etruscan shrew, and found that while synaptic properties and plasticity in CA1 Schaffer collateral synapses were similar to mice, CA3 mossy fiber synapses showed striking differences in synaptic plasticity between shrews and mice. Shrew mossy fibers have lower long term plasticity compared to mice. Short term plasticity and the expression of a key protein involved in it, synaptotagmin 7 were also markedly lower at the mossy fibers in shrews than in mice. We also observed similar lower expression of synaptotagmin 7 in the mossy fibers of bats that are evolutionarily closer to shrews than mice. Species specific differences in synaptic plasticity and the key molecules regulating it, highlight the evolutionary divergence of neuronal circuit functions.


Asunto(s)
Hipocampo/fisiología , Plasticidad Neuronal/genética , Plasticidad Neuronal/fisiología , Transmisión Sináptica/genética , Transmisión Sináptica/fisiología , Animales , Quirópteros , Expresión Génica , Hipocampo/anatomía & histología , Aprendizaje/fisiología , Memoria/fisiología , Ratones , Vías Nerviosas/fisiología , Musarañas , Especificidad de la Especie , Sinaptotagminas/genética , Sinaptotagminas/metabolismo , Sinaptotagminas/fisiología
9.
J Neurosci ; 28(53): 14358-62, 2008 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-19118168

RESUMEN

cAMP is a critical second messenger involved in synaptic transmission and synaptic plasticity. Here, we show that activation of the adenylyl cyclase by forskolin and application of the cAMP-analog Sp-5,6-DCl-cBIMPS both mimicked and occluded tetanus-induced long-term potentiation (LTP) in subicular bursting neurons, but not in subicular regular firing cells. Furthermore, LTP in bursting cells was inhibited by protein kinase A (PKA) inhibitors Rp-8-CPT-cAMP and H-89. Variations in the degree of EPSC blockade by the low-affinity competitive AMPA receptor-antagonist gamma-d-glutamyl-glycine (gamma-DGG), analysis of the coefficient of variance as well as changes in short-term potentiation suggest an increase of glutamate concentration in the synaptic cleft after expression of LTP. We conclude that presynaptic LTP in bursting cells requires activation of PKA by a calcium-dependent adenylyl cyclase while LTP in regular firing cells is independent of elevated cAMP levels. Our results provide evidence for a differential role of cAMP in LTP at hippocampal output synapses.


Asunto(s)
AMP Cíclico/fisiología , Hipocampo/citología , Neuronas/fisiología , Transducción de Señal/fisiología , Sinapsis/fisiología , Potenciales de Acción/efectos de los fármacos , Potenciales de Acción/fisiología , Análisis de Varianza , Animales , Calcio/metabolismo , Colforsina/farmacología , AMP Cíclico/análogos & derivados , AMP Cíclico/farmacología , Estimulación Eléctrica , Antagonistas de Aminoácidos Excitadores/farmacología , Potenciales Postsinápticos Excitadores , Antagonistas del GABA/farmacología , Técnicas In Vitro , Isoquinolinas/farmacología , Neuronas/efectos de los fármacos , Oligopéptidos/farmacología , Técnicas de Placa-Clamp , Inhibidores de Proteínas Quinasas/farmacología , Piridazinas/farmacología , Quinoxalinas/farmacología , Ratas , Transducción de Señal/efectos de los fármacos , Sulfonamidas/farmacología , Sinapsis/efectos de los fármacos , Factores de Tiempo
10.
Neuropharmacology ; 139: 217-225, 2018 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-30025920

RESUMEN

Endogenous cannabinoids are diffusible lipid ligands of the main cannabinoid receptors type 1 and 2 (CB1R and CB2R). In the central nervous system endocannabinoids are produced in an activity-dependent manner and have been identified as retrograde modulators of synaptic transmission. Additionally, some neurons display a cell-autonomous slow self-inhibition (SSI) mediated by endocannabinoids. In these neurons, repetitive action potential firing triggers the production of endocannabinoids, which induce a long-lasting hyperpolarization of the membrane potential, rendering the cells less excitable. Different endocannabinoid receptors and effector mechanisms have been described underlying SSI in different cell types and brain areas. Here, we investigate SSI in neurons of layer 2/3 in the somatosensory cortex. High-frequency bursts of action potentials induced SSI in pyramidal cells (PC) and regular spiking non-pyramidal cells (RSNPC), but not in fast-spiking interneurons (FS). In RSNPCs the hyperpolarization was accompanied by a change in input resistance due to the activation of G protein-coupled inward-rectifying K+ (GIRK) channels. A CB2R-specific agonist induced the long-lasting hyperpolarization, whereas preincubation with a CB2R-specific inverse agonist suppressed SSI. Additionally, using cannabinoid receptor knockout mice, we found that SSI was still intact in CB1R-deficient but abolished in CB2R-deficient mice. Taken together, we describe an additional SSI mechanism in which the activity-induced release of endocannabinoids activates GIRK channels via CB2Rs. These findings expand our knowledge about cell type-specific differential neuronal cannabinoid receptor signaling and suggest CB2R-selective compounds as potential therapeutic approaches.


Asunto(s)
Inhibición Neural/fisiología , Neuronas/metabolismo , Receptor Cannabinoide CB2/metabolismo , Corteza Somatosensorial/metabolismo , Animales , Moduladores de Receptores de Cannabinoides/farmacología , Endocannabinoides/metabolismo , Canales de Potasio Rectificados Internamente Asociados a la Proteína G/metabolismo , Potenciales de la Membrana/efectos de los fármacos , Potenciales de la Membrana/fisiología , Ratones Endogámicos C57BL , Ratones Noqueados , Inhibición Neural/efectos de los fármacos , Neuronas/efectos de los fármacos , Receptor Cannabinoide CB1/deficiencia , Receptor Cannabinoide CB1/genética , Receptor Cannabinoide CB1/metabolismo , Receptor Cannabinoide CB2/agonistas , Receptor Cannabinoide CB2/deficiencia , Receptor Cannabinoide CB2/genética , Corteza Somatosensorial/efectos de los fármacos , Técnicas de Cultivo de Tejidos
11.
Cell Rep ; 19(6): 1110-1116, 2017 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-28494861

RESUMEN

The distinctive firing pattern of grid cells in the medial entorhinal cortex (MEC) supports its role in the representation of space. It is widely believed that the hexagonal firing field of grid cells emerges from neural dynamics that depend on the local microcircuitry. However, local networks within the MEC are still not sufficiently characterized. Here, applying up to eight simultaneous whole-cell recordings in acute brain slices, we demonstrate the existence of unitary excitatory connections between principal neurons in the superficial layers of the MEC. In particular, we find prevalent feed-forward excitation from pyramidal neurons in layer III and layer II onto stellate cells in layer II, which might contribute to the generation or the inheritance of grid cell patterns.


Asunto(s)
Corteza Entorrinal/fisiología , Potenciales Postsinápticos Excitadores , Animales , Corteza Entorrinal/citología , Femenino , Masculino , Red Nerviosa , Células Piramidales/fisiología , Ratas , Ratas Wistar
12.
J Neurosci ; 24(45): 10093-8, 2004 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-15537878

RESUMEN

It has been suggested recently that presynaptic kainate receptors (KARs) are involved in short-term and long-term synaptic plasticity at hippocampal mossy fiber synapses. Using genetic deletion and pharmacology, we here assess the role of GLU(K5) and GLU(K6) in synaptic plasticity at hippocampal mossy fiber synapses. We found that the kainate-induced facilitation was completely abolished in the GLU(K6)-/- mice, whereas it was unaffected in the GLU(K5)-/-. Consistent with this finding, synaptic facilitation was reduced in the GLU(K6)(-/-) and was normal in the GLU(K5)-/-. In agreement with these results and ruling out any compensatory effects in the genetic deletion models, application of the GLU(K5)-specific antagonist LY382884 [(3S,4aR,6S,8aR)-6-(4-carboxyphenyl)methyl-1,2,3,4,4a,5,6,7,8,8a-decahydroisoquinoline-3-carboxylic acid] did not affect short-term and long-term synaptic plasticity at the hippocampal mossy fiber synapses. We therefore conclude that the facilitatory effects of kainate on mossy fiber synaptic transmission are mediated by GLU(K6)-containing KARs.


Asunto(s)
Glicina/análogos & derivados , Fibras Musgosas del Hipocampo/fisiología , Plasticidad Neuronal/fisiología , Receptores de Ácido Kaínico/fisiología , Transmisión Sináptica/fisiología , 2-Amino-5-fosfonovalerato/farmacología , 6-Ciano 7-nitroquinoxalina 2,3-diona/farmacología , Aminoácidos Dicarboxílicos/farmacología , Animales , Benzodiazepinas/farmacología , Ciclopropanos/farmacología , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Potenciales Postsinápticos Excitadores/fisiología , Eliminación de Gen , Glicina/farmacología , Isoquinolinas/farmacología , Isoxazoles/farmacología , Ácido Kaínico/farmacología , Ratones , Ratones Noqueados , Técnicas de Placa-Clamp , Potasio/farmacología , Propionatos/farmacología , Ratas , Ratas Sprague-Dawley , Ratas Wistar , Receptores de Ácido Kaínico/deficiencia , Receptores de Ácido Kaínico/efectos de los fármacos , Receptores de Ácido Kaínico/genética , Receptor de Ácido Kaínico GluK2
13.
Brain Res ; 956(1): 173-7, 2002 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-12426060

RESUMEN

Epileptiform activity induced by 4-AP in hippocampal area CA1 is characterised by short recurrent discharges. These are occasionally superimposed by slow field potential (fp) shifts. Simultaneous recordings of fps and [K(+)](o) in area CA1 and temporal cortex showed a slow fp shift in both regions, but associated rises in [K(+)](o) occurred only in the cortex. Slow fps in area CA1 persisted after disruption of the perforant path, but were abolished after removal of the adjacent cortex from the hippocampus. These findings suggest that slow fps in CA1 can represent far field effects of seizure like events generated in neighbouring cortex.


Asunto(s)
Corteza Entorrinal/fisiología , Potenciales Evocados/fisiología , Hipocampo/fisiología , Convulsiones/fisiopatología , 4-Aminopiridina/farmacología , Corteza Entorrinal/efectos de los fármacos , Potenciales Evocados/efectos de los fármacos , Hipocampo/efectos de los fármacos , Vías Nerviosas/fisiología , Técnicas de Cultivo de Órganos , Potasio/análisis , Bloqueadores de los Canales de Potasio/farmacología , Convulsiones/inducido químicamente
14.
Neurosci Lett ; 354(3): 185-8, 2004 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-14700727

RESUMEN

The information transfer from the superficial layers of the entorhinal cortex (EC) to the hippocampus is regulated in a frequency dependent manner. Phencyclidine and related compounds such as MK-801 produce psychotic symptoms that closely resemble schizophrenia. We studied the effects of systemic administration of MK-801 on the signal transfer from the EC layer III to the hippocampal area CA1. High frequency (above 10 Hz) activation of the bi-synaptic entorhinal input in control animals results in a strong suppression of the field potentials in the stratum lacunosum-moleculare of the area CA1. In contrast, in MK-801 pretreated rats the field response was less reduced. The field potential responses evoked in these two groups of animals by high-frequency activation of the monosynaptic input were similar suggesting selective alterations in layer III of the medial EC. We suggest, that MK-801 causes disinhibition of layer III projection cells and, therefore, may cause strong, pathological activation of direct layer III-CA1 pathway.


Asunto(s)
Corteza Entorrinal/efectos de los fármacos , Antagonistas de Aminoácidos Excitadores/farmacología , Hipocampo/efectos de los fármacos , Conducción Nerviosa/efectos de los fármacos , Vías Nerviosas/efectos de los fármacos , Fenciclidina/farmacología , Potenciales de Acción/efectos de los fármacos , Animales , Animales Recién Nacidos , Maleato de Dizocilpina/farmacología , Relación Dosis-Respuesta en la Radiación , Estimulación Eléctrica/métodos , Corteza Entorrinal/anatomía & histología , Corteza Entorrinal/fisiología , Femenino , Hipocampo/anatomía & histología , Hipocampo/fisiología , Técnicas In Vitro , Vías Nerviosas/anatomía & histología , Vías Nerviosas/fisiología , Ratas
15.
Neuron ; 81(4): 717-9, 2014 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-24559666

RESUMEN

Retrograde signaling is a powerful tool to shape synaptic transmission, typically inducing inhibition of transmitter release. A new study published in this issue of Neuron by Carta et al. (2014) now provides strong support for arachidonic acid as a potentiating retrograde messenger.


Asunto(s)
Hipocampo/metabolismo , Lípidos de la Membrana/metabolismo , Canales de Potasio/metabolismo , Sinapsis/metabolismo , Transmisión Sináptica/fisiología , Animales
16.
Nat Commun ; 4: 2392, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23999086

RESUMEN

The presynaptic terminals of synaptic connections are composed of a complex network of interacting proteins that collectively ensure proper synaptic transmission and plasticity characteristics. The key components of this network are the members of the RIM protein family. Here we show that RIM1α can influence short-term plasticity at cerebellar parallel-fibre synapses. We demonstrate that the loss of a single RIM isoform, RIM1α, leads to reduced calcium influx in cerebellar granule cell terminals, decreased release probability and consequently an enhanced short-term facilitation. In contrast, we find that presynaptic long-term plasticity is fully intact in the absence of RIM1α, arguing against its necessary role in the expression of this important process. Our data argue for a universal role of RIM1α in setting release probability via interaction with voltage-dependent calcium channels at different connections instead of synapse-specific functions.


Asunto(s)
Canales de Calcio/metabolismo , Cerebelo/fisiología , Proteínas de Unión al GTP/metabolismo , Plasticidad Neuronal/fisiología , Animales , Transporte Biológico , Calcio/metabolismo , Cerebelo/metabolismo , Electrofisiología , Proteínas de Unión al GTP/genética , Ratones , Ratones Noqueados , Terminales Presinápticos/metabolismo , Isoformas de Proteínas/metabolismo , Células de Purkinje/fisiología , Sinapsis/metabolismo , Transmisión Sináptica
17.
PLoS One ; 7(9): e45039, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22984605

RESUMEN

The subiculum (SUB) is a pivotal structure positioned between the hippocampus proper and various cortical and subcortical areas. Despite the growing body of anatomical and intrinsic electrophysiological data of subicular neurons, modulation of synaptic transmission in the SUB is not well understood. In the present study we investigated the role of group II metabotropic glutamate receptors (mGluRs), which have been shown to be involved in the regulation of synaptic transmission by suppressing presynaptic cAMP activity. Using field potential and patch-clamp whole cell recordings we demonstrate that glutamatergic transmission at CA1-SUB synapses is depressed by group II mGluRs in a cell-type specific manner. Application of the group II mGluR agonist (2S,1'R,2'R,3'R)-2-(2, 3-dicarboxycyclopropyl)glycine (DCG-IV) led to a significantly higher reduction of excitatory postsynaptic currents in subicular bursting cells than in regular firing cells. We further used low-frequency stimulation protocols and brief high-frequency bursts to test whether synaptically released glutamate is capable of activating presynaptic mGluRs. However, neither frequency facilitation is enhanced in the presence of the group II mGluR antagonist LY341495, nor is a test stimulus given after a high-frequency burst. In summary, we present pharmacological evidence for presynaptic group II mGluRs targeting subicular bursting cells, but both low- and high-frequency stimulation protocols failed to activate presynaptically located mGluRs.


Asunto(s)
Hipocampo/fisiología , Neuronas/fisiología , Receptores de Glutamato Metabotrópico/fisiología , Transmisión Sináptica/fisiología , Aminoácidos/farmacología , Aminoácidos Dicarboxílicos/farmacología , Animales , Región CA1 Hipocampal/citología , Región CA1 Hipocampal/efectos de los fármacos , Región CA1 Hipocampal/fisiología , Región CA3 Hipocampal/citología , Región CA3 Hipocampal/efectos de los fármacos , Región CA3 Hipocampal/fisiología , Ciclopropanos/farmacología , Relación Dosis-Respuesta a Droga , Agonistas de Aminoácidos Excitadores/farmacología , Antagonistas de Aminoácidos Excitadores/farmacología , Femenino , Ácido Glutámico/farmacología , Glicina/análogos & derivados , Glicina/farmacología , Hipocampo/citología , Hipocampo/efectos de los fármacos , Masculino , Neuronas/efectos de los fármacos , Técnicas de Placa-Clamp , Ratas , Ratas Wistar , Receptores de Glutamato Metabotrópico/agonistas , Receptores de Glutamato Metabotrópico/antagonistas & inhibidores , Transmisión Sináptica/efectos de los fármacos , Xantenos/farmacología
18.
PLoS One ; 5(4): e9961, 2010 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-20376354

RESUMEN

BACKGROUND: Synapses exhibit strikingly different forms of plasticity over a wide range of time scales, from milliseconds to hours. Studies on synaptic plasticity typically use constant-frequency stimulation to activate synapses, whereas in vivo activity of neurons is irregular. METHODOLOGY/PRINCIPAL FINDINGS: Using extracellular and whole-cell electrophysiological recordings, we have here studied the synaptic responses at hippocampal mossy fiber synapses in vitro to stimulus patterns obtained from in vivo recordings of place cell firing of dentate gyrus granule cells in behaving rodents. We find that synaptic strength is strongly modulated on short- and long-lasting time scales during the presentation of the natural stimulus trains. CONCLUSIONS/SIGNIFICANCE: We conclude that dynamic short- and long-term synaptic plasticity at the hippocampal mossy fiber synapse plays a prominent role in normal synaptic function.


Asunto(s)
Fibras Musgosas del Hipocampo/fisiología , Plasticidad Neuronal , Sinapsis/fisiología , Potenciales de Acción , Animales , Giro Dentado/citología , Giro Dentado/fisiología , Electrofisiología , Masculino , Ratas , Ratas Long-Evans , Factores de Tiempo
19.
J Cell Sci ; 122(Pt 5): 735-44, 2009 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-19225127

RESUMEN

AMPA-type glutamate receptors mediate fast excitatory synaptic transmission in the vertebrate brain. Their surface expression at synapses between neurons is regulated in an activity-dependent and activity-independent manner. The protein machinery that regulates synaptic targeting, anchoring and turnover of AMPA receptors consists of several types of specialized scaffolding proteins. The FERM domain scaffolding proteins 4.1G and 4.1N were previously suggested to act jointly in binding and regulating synaptic trafficking of the AMPA receptor subunits GluR1 and GluR4. To determine the functions of 4.1G and 4.1N in vivo, we generated a mutant mouse line that lacks 4.1G entirely and expresses 4.1N at 22% of wild-type levels. These mice had combined 4.1G and 4.1N protein expression in the hippocampus at 12% of wild-type levels (equivalent to 8-10% of combined GluR1 and GluR4 expression levels). They show a moderate reduction in synaptosomal expression levels of the AMPA receptor subunit GluR1 at 3 weeks of age, but no change in basic glutamatergic synaptic transmission and long-term potentiation in the hippocampus. Our study indicates that 4.1G and 4.1N do not have a crucial role in glutamatergic synaptic transmission and the induction and maintenance of long-term plastic changes in synaptic efficacy.


Asunto(s)
Proteínas del Citoesqueleto/metabolismo , Ácido Glutámico/metabolismo , Proteínas de la Membrana/metabolismo , Neuropéptidos/metabolismo , Receptores de Glutamato/metabolismo , Sinapsis/metabolismo , Animales , Conducta Animal/fisiología , Encéfalo/anatomía & histología , Encéfalo/metabolismo , Proteínas del Citoesqueleto/genética , Marcación de Gen , Proteínas de la Membrana/genética , Ratones , Ratones Noqueados , Proteínas de Microfilamentos , Neuropéptidos/genética , Técnicas de Placa-Clamp , Receptores de Glutamato/genética , Sinapsis/ultraestructura
20.
Eur J Neurosci ; 19(7): 1987-91, 2004 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-15078573

RESUMEN

In addition to the well-established functional description of the glycine receptor (GlyR) in the spinal cord, GlyR expression has recently been found in higher brain regions, such as the striatum or hippocampus. In this study we have investigated the electrophysiological response of glycine in the rat entorhinal cortex slice. In all recorded cells we found significant current responses to glycine with an EC(50) value of about 100 micro m. Most importantly, we detected a cross-inhibition of glycine responses by GABA but not vice versa. These findings are in line with recent published data of cross-talks between GABA(A)R and GlyR but indicate a novel type of cross-inhibition of these receptors in the entorhinal cortex.


Asunto(s)
Corteza Entorrinal/citología , Glicina/farmacología , Neuronas/metabolismo , Receptores de Glicina/antagonistas & inhibidores , Animales , Animales Recién Nacidos , Bicuculina/farmacología , Relación Dosis-Respuesta a Droga , Antagonistas de Receptores de GABA-A , Hipocampo/metabolismo , Técnicas In Vitro , Potenciales de la Membrana/efectos de los fármacos , Inhibición Neural/efectos de los fármacos , Técnicas de Placa-Clamp/métodos , Ratas , Ratas Wistar , Receptores de GABA-A/metabolismo , Receptores de Glicina/metabolismo , Ácido gamma-Aminobutírico/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA