Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Sensors (Basel) ; 21(5)2021 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-33803442

RESUMEN

This article presents a control system for a cutting tool condition supervision, which recognises tool wear automatically during turning. We used an infrared camera for process control, which-unlike common cameras-captures the thermographic state, in addition to the visual state of the process. Despite challenging environmental conditions (e.g., hot chips) we protected the camera and placed it right up to the cutting knife, so that machining could be observed closely. During the experiment constant cutting conditions were set for the dry machining of workpiece (low alloy carbon steel 1.7225 or 42CrMo4). To build a dataset of over 9000 images, we machined on a lathe with tool inserts of different wear levels. Using a convolutional neural network (CNN), we developed a model for tool wear and tool damage prediction. It determines the state of a cutting tool automatically (none, low, medium, high wear level), based on thermographic process data. The accuracy of classification was 99.55%, which affirms the adequacy of the proposed method. Such a system enables immediate action in the case of cutting tool wear or breakage, regardless of the operator's knowledge and competence.

2.
Sensors (Basel) ; 21(19)2021 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-34641006

RESUMEN

In turning, the wear control of a cutting tool benefits product quality enhancement, tool-related costs' optimisation, and assists in avoiding undesired events. In small series and individual production, the machine operator is the one who determines when to change a cutting tool, based upon their experience. Bad decisions can often lead to greater costs, production downtime, and scrap. In this paper, a Tool Condition Monitoring (TCM) system is presented that automatically classifies tool wear of turning tools into four classes (no, low, medium, high wear). A cutting tool was monitored with infrared (IR) camera immediately after the cut and in the following 60 s. The Convolutional Neural Network Inception V3 was used to analyse and classify the thermographic images, which were divided into different groups depending on the time of acquisition. Based on classification result, one gets information about the cutting capability of the tool for further machining. The proposed model, combining Infrared Thermography, Computer Vision, and Deep Learning, proved to be a suitable method with results of more than 96% accuracy. The most appropriate time of image acquisition is 6-12 s after the cut is finished. While existing temperature based TCM systems focus on measuring a cutting tool absolute temperature, the proposed system analyses a temperature distribution (relative temperatures) on the whole image based on image features.


Asunto(s)
Redes Neurales de la Computación , Termografía
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA