RESUMEN
The dendritic cells (DCs) of the immune system function in innate and adaptive responses by directing activity of various effector cells rather than serving as effectors themselves. DCs and closely related myeloid lineages share expression of many surface receptors, presenting a challenge in distinguishing their unique in vivo functions. Recent work has taken advantage of unique transcriptional programs to identify and manipulate murine DCs in vivo. This work has assigned several nonredundant in vivo functions to distinct DC lineages, consisting of plasmacytoid DCs and several subsets of classical DCs that promote different immune effector modules in response to pathogens. In parallel, a correspondence between human and murine DC subsets has emerged, underlying structural similarities for the DC lineages between these species. Recent work has begun to unravel the transcriptional circuitry that controls the development and diversification of DCs from common progenitors in the bone marrow.
Asunto(s)
Células de la Médula Ósea/fisiología , Células Dendríticas/fisiología , Regulación de la Expresión Génica , Inmunidad Celular , Animales , Diferenciación Celular , Linaje de la Célula , Perfilación de la Expresión Génica , Redes Reguladoras de Genes , Humanos , Inmunidad Celular/genética , Ratones , Activación TranscripcionalRESUMEN
Classical type 1 dendritic cells (cDC1s) are required for antiviral and antitumor immunity, which necessitates an understanding of their development. Development of the cDC1 progenitor requires an E-protein-dependent enhancer located 41 kilobases downstream of the transcription start site of the transcription factor Irf8 (+41-kb Irf8 enhancer), but its maturation instead requires the Batf3-dependent +32-kb Irf8 enhancer. To understand this switch, we performed single-cell RNA sequencing of the common dendritic cell progenitor (CDP) and identified a cluster of cells that expressed transcription factors that influence cDC1 development, such as Nfil3, Id2 and Zeb2. Genetic epistasis among these factors revealed that Nfil3 expression is required for the transition from Zeb2hi and Id2lo CDPs to Zeb2lo and Id2hi CDPs, which represent the earliest committed cDC1 progenitors. This genetic circuit blocks E-protein activity to exclude plasmacytoid dendritic cell potential and explains the switch in Irf8 enhancer usage during cDC1 development.
Asunto(s)
Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Células Dendríticas/citología , Elementos de Facilitación Genéticos/genética , Proteína 2 Inhibidora de la Diferenciación/metabolismo , Factores Reguladores del Interferón/metabolismo , Caja Homeótica 2 de Unión a E-Box con Dedos de Zinc/metabolismo , Animales , Diferenciación Celular/inmunología , Células Cultivadas , Regulación del Desarrollo de la Expresión Génica/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas Represoras/metabolismo , Células Madre/citologíaRESUMEN
Induction of the transcription factor Irf8 in the common dendritic cell progenitor (CDP) is required for classical type 1 dendritic cell (cDC1) fate specification, but the mechanisms controlling this induction are unclear. In the present study Irf8 enhancers were identified via chromatin profiling of dendritic cells and CRISPR/Cas9 genome editing was used to assess their roles in Irf8 regulation. An enhancer 32 kilobases (kb) downstream of the Irf8 transcriptional start site (+32-kb Irf8) that was active in mature cDC1s was required for the development of this lineage, but not for its specification. Instead, a +41-kb Irf8 enhancer, previously thought to be active only in plasmacytoid dendritic cells, was found to also be transiently accessible in cDC1 progenitors, and deleting this enhancer prevented the induction of Irf8 in CDPs and abolished cDC1 specification. Thus, cryptic activation of the +41-kb Irf8 enhancer in dendritic cell progenitors is responsible for cDC1 fate specification.
Asunto(s)
Células Dendríticas/citología , Elementos de Facilitación Genéticos/genética , Factores Reguladores del Interferón/metabolismo , Macrófagos/citología , Monocitos/citología , Animales , Sistemas CRISPR-Cas/genética , Diferenciación Celular , Linaje de la Célula , Células Dendríticas/inmunología , Regulación de la Expresión Génica , Factores Reguladores del Interferón/genética , Macrófagos/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Monocitos/metabolismo , Células Madre/citología , Células Tumorales CultivadasRESUMEN
Conventional dendritic cells (cDCs), cDC1 and cDC2, act both to initiate immunity and maintain self-tolerance. The tryptophan metabolic enzyme indoleamine 2,3-dioxygenase 1 (IDO1) is used by cDCs in maintaining tolerance, but its role in different subsets remains unclear. At homeostasis, only mature CCR7+ cDC1 expressed IDO1 that was dependent on IRF8. Lipopolysaccharide treatment induced maturation and IDO1-dependent tolerogenic activity in isolated immature cDC1, but not isolated cDC2. However, both human and mouse cDC2 could induce IDO1 and acquire tolerogenic function when co-cultured with mature cDC1 through the action of cDC1-derived l-kynurenine. Accordingly, cDC1-specific inactivation of IDO1 in vivo exacerbated disease in experimental autoimmune encephalomyelitis. This study identifies a previously unrecognized metabolic communication in which IDO1-expressing cDC1 cells extend their immunoregulatory capacity to the cDC2 subset through their production of tryptophan metabolite l-kynurenine. This metabolic axis represents a potential therapeutic target in treating autoimmune demyelinating diseases.
Asunto(s)
Indolamina-Pirrol 2,3,-Dioxigenasa , Quinurenina , Animales , Células Dendríticas , Humanos , Indolamina-Pirrol 2,3,-Dioxigenasa/metabolismo , Quinurenina/metabolismo , Ratones , Transducción de Señal , Triptófano/metabolismoRESUMEN
Variable strengths of signaling via the T cell antigen receptor (TCR) can produce divergent outcomes, but the mechanism of this remains obscure. The abundance of the transcription factor IRF4 increases with TCR signal strength, but how this would induce distinct types of responses is unclear. We compared the expression of genes in the TH2 subset of helper T cells to enhancer occupancy by the BATF-IRF4 transcription factor complex at varying strengths of TCR stimulation. Genes dependent on BATF-IRF4 clustered into groups with distinct TCR sensitivities. Enhancers exhibited a spectrum of occupancy by the BATF-IRF4 ternary complex that correlated with the sensitivity of gene expression to TCR signal strength. DNA sequences immediately flanking the previously defined AICE motif controlled the affinity of BATF-IRF4 for direct binding to DNA. Analysis by the chromatin immunoprecipitation-exonuclease (ChIP-exo) method allowed the identification of a previously unknown high-affinity AICE2 motif at a human single-nucleotide polymorphism (SNP) of the gene encoding the immunomodulatory receptor CTLA-4 that was associated with resistance to autoimmunity. Thus, the affinity of different enhancers for the BATF-IRF4 complex might underlie divergent signaling outcomes in response to various strengths of TCR signaling.
Asunto(s)
Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Antígeno CTLA-4/genética , Elementos de Facilitación Genéticos/genética , Factores Reguladores del Interferón/metabolismo , Complejos Multiproteicos/metabolismo , Receptores de Antígenos de Linfocitos T/metabolismo , Células Th2/fisiología , Animales , Autoinmunidad/genética , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Predisposición Genética a la Enfermedad , Humanos , Ratones , Ratones de la Cepa 129 , Ratones Endogámicos BALB C , Ratones Noqueados , Polimorfismo de Nucleótido Simple , Unión Proteica/genética , Transducción de Señal/genéticaRESUMEN
Splenic red pulp macrophages (RPM) degrade senescent erythrocytes and recycle heme-associated iron. The transcription factor SPI-C is selectively expressed by RPM and is required for their development, but the physiologic stimulus inducing Spic is unknown. Here, we report that Spic also regulated the development of F4/80(+)VCAM1(+) bone marrow macrophages (BMM) and that Spic expression in BMM and RPM development was induced by heme, a metabolite of erythrocyte degradation. Pathologic hemolysis induced loss of RPM and BMM due to excess heme but induced Spic in monocytes to generate new RPM and BMM. Spic expression in monocytes was constitutively inhibited by the transcriptional repressor BACH1. Heme induced proteasome-dependent BACH1 degradation and rapid Spic derepression. Furthermore, cysteine-proline dipeptide motifs in BACH1 that mediate heme-dependent degradation were necessary for Spic induction by heme. These findings are the first example of metabolite-driven differentiation of a tissue-resident macrophage subset and provide new insights into iron homeostasis.
Asunto(s)
Diferenciación Celular , Proteínas de Unión al ADN/metabolismo , Hemo/metabolismo , Hierro/metabolismo , Monocitos/metabolismo , Animales , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Células de la Médula Ósea/citología , Células de la Médula Ósea/metabolismo , Proteínas de Unión al ADN/genética , Femenino , Macrófagos/metabolismo , Masculino , Ratones , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Células Mieloides/metabolismo , Bazo/citología , Bazo/metabolismoRESUMEN
The transcription factors Batf3 and IRF8 are required for the development of CD8α(+) conventional dendritic cells (cDCs), but the basis for their actions has remained unclear. Here we identified two progenitor cells positive for the transcription factor Zbtb46 that separately generated CD8α(+) cDCs and CD4(+) cDCs and arose directly from the common DC progenitor (CDP). Irf8 expression in CDPs required prior autoactivation of Irf8 that was dependent on the transcription factor PU.1. Specification of the clonogenic progenitor of CD8α(+) cDCs (the pre-CD8 DC) required IRF8 but not Batf3. However, after specification of pre-CD8 DCs, autoactivation of Irf8 became Batf3 dependent at a CD8α(+) cDC-specific enhancer with multiple transcription factor AP1-IRF composite elements (AICEs) within the Irf8 superenhancer. CDPs from Batf3(-/-) mice that were specified toward development into pre-CD8 DCs failed to complete their development into CD8α(+) cDCs due to decay of Irf8 autoactivation and diverted to the CD4(+) cDC lineage.
Asunto(s)
Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/inmunología , Células Dendríticas/inmunología , Factores Reguladores del Interferón/inmunología , Proteínas Represoras/inmunología , Células Madre/inmunología , Animales , Secuencia de Bases , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Células de la Médula Ósea/inmunología , Células de la Médula Ósea/metabolismo , Antígeno CD24/inmunología , Antígeno CD24/metabolismo , Antígenos CD8/inmunología , Antígenos CD8/metabolismo , Células Cultivadas , Células Clonales/inmunología , Células Clonales/metabolismo , Células Dendríticas/metabolismo , Citometría de Flujo , Factores Reguladores del Interferón/genética , Factores Reguladores del Interferón/metabolismo , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Datos de Secuencia Molecular , Análisis de Secuencia por Matrices de Oligonucleótidos , Unión Proteica , Receptores Inmunológicos/inmunología , Receptores Inmunológicos/metabolismo , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Homología de Secuencia de Ácido Nucleico , Células Madre/metabolismo , Transcriptoma/genética , Transcriptoma/inmunologíaRESUMEN
Conventional type 1 dendritic cells (cDC1)1 are thought to perform antigen cross-presentation, which is required to prime CD8+ T cells2,3, whereas cDC2 are specialized for priming CD4+ T cells4,5. CD4+ T cells are also considered to help CD8+ T cell responses through a variety of mechanisms6-11, including a process whereby CD4+ T cells 'license' cDC1 for CD8+ T cell priming12. However, this model has not been directly tested in vivo or in the setting of help-dependent tumour rejection. Here we generated an Xcr1Cre mouse strain to evaluate the cellular interactions that mediate tumour rejection in a model requiring CD4+ and CD8+ T cells. As expected, tumour rejection required cDC1 and CD8+ T cell priming required the expression of major histocompatibility class I molecules by cDC1. Unexpectedly, early priming of CD4+ T cells against tumour-derived antigens also required cDC1, and this was not simply because they transport antigens to lymph nodes for processing by cDC2, as selective deletion of major histocompatibility class II molecules in cDC1 also prevented early CD4+ T cell priming. Furthermore, deletion of either major histocompatibility class II or CD40 in cDC1 impaired tumour rejection, consistent with a role for cognate CD4+ T cell interactions and CD40 signalling in cDC1 licensing. Finally, CD40 signalling in cDC1 was critical not only for CD8+ T cell priming, but also for initial CD4+ T cell activation. Thus, in the setting of tumour-derived antigens, cDC1 function as an autonomous platform capable of antigen processing and priming for both CD4+ and CD8+ T cells and of the direct orchestration of their cross-talk that is required for optimal anti-tumour immunity.
Asunto(s)
Linfocitos T CD4-Positivos/inmunología , Reactividad Cruzada , Células Dendríticas/inmunología , Neoplasias/inmunología , Animales , Presentación de Antígeno/inmunología , Linfocitos T CD4-Positivos/citología , Antígenos CD40/inmunología , Antígenos CD40/metabolismo , Linfocitos T CD8-positivos/inmunología , Células Dendríticas/citología , Células Dendríticas/metabolismo , Femenino , Antígenos de Histocompatibilidad Clase II/inmunología , Ratones , Transducción de SeñalRESUMEN
Ly6Clo monocytes are a myeloid subset that specializes in the surveillance of vascular endothelium. Ly6Clo monocytes have been shown to derive from Ly6Chi monocytes. NOTCH2 signaling has been implicated as a trigger for Ly6Clo monocyte development, but the basis for this effect is unclear. Here, we examined the impact of NOTCH2 signaling of myeloid progenitors on the development of Ly6Clo monocytes in vitro. NOTCH2 signaling induced by delta-like ligand 1 (DLL1) efficiently induced the transition of Ly6Chi TREML4- monocytes into Ly6Clo TREML4+ monocytes. We further identified two additional transcriptional requirements for development of Ly6Clo monocytes. Deletion of BCL6 from myeloid progenitors abrogated development of Ly6Clo monocytes. IRF2 was also required for Ly6Clo monocyte development in a cell-intrinsic manner. DLL1-induced in vitro transition into Ly6Clo TREML4+ monocytes required IRF2 but unexpectedly could occur in the absence of NUR77 or BCL6. These results imply a transcriptional hierarchy for these factors in controlling Ly6Clo monocyte development.
Asunto(s)
Endotelio Vascular , Monocitos , Hematopoyesis , Transducción de SeñalRESUMEN
Defense against attaching-and-effacing bacteria requires the sequential generation of interleukin 23 (IL-23) and IL-22 to induce protective mucosal responses. Although CD4(+) and NKp46(+) innate lymphoid cells (ILCs) are the critical source of IL-22 during infection, the precise source of IL-23 is unclear. We used genetic techniques to deplete mice of specific subsets of classical dendritic cells (cDCs) and analyzed immunity to the attaching-and-effacing pathogen Citrobacter rodentium. We found that the signaling receptor Notch2 controlled the terminal stage of cDC differentiation. Notch2-dependent intestinal CD11b(+) cDCs were an obligate source of IL-23 required for survival after infection with C. rodentium, but CD103(+) cDCs dependent on the transcription factor Batf3 were not. Our results demonstrate a nonredundant function for CD11b(+) cDCs in the response to pathogens in vivo.
Asunto(s)
Citrobacter rodentium/inmunología , Células Dendríticas/inmunología , Células Dendríticas/metabolismo , Mucosa Intestinal/inmunología , Mucosa Intestinal/metabolismo , Receptor Notch2/metabolismo , Animales , Antígenos CD/metabolismo , Antígeno CD11b/metabolismo , Diferenciación Celular/genética , Diferenciación Celular/inmunología , Células Dendríticas/citología , Infecciones por Enterobacteriaceae/inmunología , Infecciones por Enterobacteriaceae/microbiología , Infecciones por Enterobacteriaceae/mortalidad , Interacciones Huésped-Patógeno/genética , Interacciones Huésped-Patógeno/inmunología , Interleucina-23/metabolismo , Mucosa Intestinal/microbiología , Lectinas Tipo C/metabolismo , Receptor beta de Linfotoxina/genética , Receptor beta de Linfotoxina/metabolismo , Ratones , Ratones Transgénicos , Antígenos de Histocompatibilidad Menor , Receptor Notch2/deficiencia , Receptores de Superficie Celular/metabolismo , Transducción de Señal , Bazo/inmunología , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Cicatrización de Heridas/genética , Cicatrización de Heridas/inmunologíaRESUMEN
CD4+ T follicular helper (TFH) cells support germinal center (GC) reactions promoting humoral immunity. Dendritic cell (DC) diversification into genetically distinct subsets allows for specialization in promoting responses against several types of pathogens. Whether any classical DC (cDC) subset is required for humoral immunity is unknown, however. We tested several genetic models that selectively ablate distinct DC subsets in mice for their impact on splenic GC reactions. We identified a requirement for Notch2-dependent cDC2s, but not Batf3-dependent cDC1s or Klf4-dependent cDC2s, in promoting TFH and GC B cell formation in response to sheep red blood cells and inactivated Listeria monocytogenes This effect was mediated independent of Il2ra and several Notch2-dependent genes expressed in cDC2s, including Stat4 and Havcr2 Notch2 signaling during cDC2 development also substantially reduced the efficiency of cDC2s for presentation of MHC class II-restricted antigens, limiting the strength of CD4 T cell activation. Together, these results demonstrate a nonredundant role for the Notch2-dependent cDC2 subset in supporting humoral immune responses.
Asunto(s)
Linfocitos B/inmunología , Células Dendríticas/inmunología , Eritrocitos/inmunología , Centro Germinal/inmunología , Receptor Notch2/fisiología , Bazo/inmunología , Linfocitos T Colaboradores-Inductores/inmunología , Animales , Presentación de Antígeno/inmunología , Linfocitos B/metabolismo , Diferenciación Celular , Células Cultivadas , Células Dendríticas/metabolismo , Centro Germinal/metabolismo , Inmunidad Humoral/inmunología , Factor 4 Similar a Kruppel , Activación de Linfocitos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ovinos , Transducción de Señal , Bazo/metabolismo , Linfocitos T Colaboradores-Inductores/metabolismoRESUMEN
The transcription factors c-Myc and N-Myc--encoded by Myc and Mycn, respectively--regulate cellular growth and are required for embryonic development. A third paralogue, Mycl1, is dispensable for normal embryonic development but its biological function has remained unclear. To examine the in vivo function of Mycl1 in mice, we generated an inactivating Mycl1(gfp) allele that also reports Mycl1 expression. We find that Mycl1 is selectively expressed in dendritic cells (DCs) of the immune system and controlled by IRF8, and that during DC development, Mycl1 expression is initiated in the common DC progenitor concurrent with reduction in c-Myc expression. Mature DCs lack expression of c-Myc and N-Myc but maintain L-Myc expression even in the presence of inflammatory signals such as granulocyte-macrophage colony-stimulating factor. All DC subsets develop in Mycl1-deficient mice, but some subsets such as migratory CD103(+) conventional DCs in the lung and liver are greatly reduced at steady state. Importantly, loss of L-Myc by DCs causes a significant decrease in in vivo T-cell priming during infection by Listeria monocytogenes and vesicular stomatitis virus. The replacement of c-Myc by L-Myc in immature DCs may provide for Myc transcriptional activity in the setting of inflammation that is required for optimal T-cell priming.
Asunto(s)
Reactividad Cruzada/inmunología , Células Dendríticas/inmunología , Células Dendríticas/metabolismo , Regulación de la Expresión Génica , Proteínas Proto-Oncogénicas c-myc/metabolismo , Linfocitos T/inmunología , Animales , Antígenos CD/metabolismo , División Celular , Células Dendríticas/citología , Femenino , Factor Estimulante de Colonias de Granulocitos y Macrófagos/metabolismo , Inflamación/inmunología , Inflamación/metabolismo , Cadenas alfa de Integrinas/metabolismo , Factores Reguladores del Interferón/metabolismo , Listeria monocytogenes/inmunología , Hígado/citología , Hígado/inmunología , Pulmón/citología , Pulmón/inmunología , Masculino , Ratones , Proteínas Proto-Oncogénicas c-myc/deficiencia , Transcripción Genética , Vesiculovirus/inmunologíaRESUMEN
RelB is an NF-κB family transcription factor activated in the noncanonical pathway downstream of NF-κB-inducing kinase (NIK) and TNF receptor family members including lymphotoxin-ß receptor (LTßR) and CD40. Early analysis suggested that RelB is required for classical dendritic cell (cDC) development based on a severe reduction of cDCs in Relb-/- mice associated with profound myeloid expansion and perturbations in B and T cells. Subsequent analysis of radiation chimeras generated from wild-type and Relb-/- bone marrow showed that RelB exerts cell-extrinsic actions on some lineages, but it has remained unclear whether the impact of RelB on cDC development is cell-intrinsic or -extrinsic. Here, we reevaluated the role of RelB in cDC and myeloid development using a series of radiation chimeras. We found that there was no cell-intrinsic requirement for RelB for development of most cDC subsets, except for the Notch2- and LTßR-dependent subset of splenic CD4+ cDC2s. These results identify a relatively restricted role of RelB in DC development. Moreover, the myeloid expansion in Relb-/- mice resulted from hematopoietic-extrinsic actions of RelB. This result suggests that there is an unrecognized but critical role for RelB within the nonhematopoietic niche that controls normal myelopoiesis.
Asunto(s)
Células Dendríticas/fisiología , Células Mieloides/fisiología , Factor de Transcripción ReIB/genética , Animales , Linfocitos T CD4-Positivos/metabolismo , Linfocitos T CD8-positivos/metabolismo , Sistema Hematopoyético/citología , Sistema Hematopoyético/metabolismo , Receptor beta de Linfotoxina/metabolismo , Linfotoxina beta/metabolismo , Ratones Endogámicos C57BL , Ratones Mutantes , Proteínas Serina-Treonina Quinasas/metabolismo , Bazo/citología , Bazo/metabolismo , Factor de Transcripción ReIB/metabolismo , Quinasa de Factor Nuclear kappa BRESUMEN
Dendritic cells (DCs) and monocytes develop from a series of bone-marrow-resident progenitors in which lineage potential is regulated by distinct transcription factors. Zeb2 is an E-box-binding protein associated with epithelial-mesenchymal transition and is widely expressed among hematopoietic lineages. Previously, we observed that Zeb2 expression is differentially regulated in progenitors committed to classical DC (cDC) subsets in vivo. Using systems for inducible gene deletion, we uncover a requirement for Zeb2 in the development of Ly-6Chi monocytes but not neutrophils, and we show a corresponding requirement for Zeb2 in expression of the M-CSF receptor in the bone marrow. In addition, we confirm a requirement for Zeb2 in development of plasmacytoid DCs but find that Zeb2 is not required for cDC2 development. Instead, Zeb2 may act to repress cDC1 progenitor specification in the context of inflammatory signals.
Asunto(s)
Células Dendríticas/citología , Regulación de la Expresión Génica , Monocitos/citología , Caja Homeótica 2 de Unión a E-Box con Dedos de Zinc/genética , Caja Homeótica 2 de Unión a E-Box con Dedos de Zinc/fisiología , Animales , Médula Ósea/metabolismo , Linfocitos T CD8-positivos/citología , Linaje de la Célula , Citoplasma/metabolismo , Femenino , Citometría de Flujo , Eliminación de Gen , Perfilación de la Expresión Génica , Inflamación , Integrasas/metabolismo , Masculino , Ratones , Neutrófilos/citología , Neutrófilos/metabolismoRESUMEN
Dendritic cells (DCs) are thought to form a dendritic network across barrier surfaces and throughout organs, including the kidney, to perform an important sentinel function. However, previous studies of DC function used markers, such as CD11c or CX3CR1, that are not unique to DCs. Here, we evaluated the role of DCs in renal inflammation using a CD11c reporter mouse line and two mouse lines with DC-specific reporters, Zbtb46-GFP and Snx22-GFP. Multiphoton microscopy of kidney sections confirmed that most of the dendritically shaped CD11c+ cells forming a network throughout the renal interstitium expressed macrophage-specific markers. In contrast, DCs marked by Zbtb46-GFP or Snx22-GFP were less abundant, concentrated around blood vessels, and round in shape. We confirmed this pattern of localization using imaging mass cytometry. Motility measurements showed that resident macrophages were sessile, whereas DCs were motile before and after inflammation. Although uninflamed glomeruli rarely contained DCs, injury with nephrotoxic antibodies resulted in accumulation of ZBTB46 + cells in the periglomerular region. ZBTB46 identifies all classic DCs, which can be categorized into two functional subsets that express either CD103 or CD11b. Depletion of ZBTB46 + cells attenuated the antibody-induced kidney injury, whereas deficiency of the CD103+ subset accelerated injury through a mechanism that involved increased neutrophil infiltration. RNA sequencing 7 days after nephrotoxic antibody injection showed that CD11b+ DCs expressed the neutrophil-attracting cytokine CXCL2, whereas CD103+ DCs expressed high levels of several anti-inflammatory genes. These results provide new insights into the distinct functions of the two major DC subsets in glomerular inflammation.
Asunto(s)
Células Dendríticas/fisiología , Glomerulonefritis/inmunología , Glomerulonefritis/patología , Animales , Antígenos CD/metabolismo , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Antígenos CD11/genética , Antígeno CD11b/genética , Movimiento Celular , Quimiocina CXCL2/genética , Células Dendríticas/metabolismo , Células Dendríticas/patología , Expresión Génica , Genes Reporteros , Proteínas Fluorescentes Verdes/metabolismo , Cadenas alfa de Integrinas/metabolismo , Macrófagos , Masculino , Ratones , Ratones Noqueados , Neutrófilos/patología , Neutrófilos/fisiología , Proteínas Represoras/genética , Análisis de Secuencia de ARN , Nexinas de Clasificación/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , TranscriptomaRESUMEN
Distinguishing classical dendritic cells from other myeloid cell types is complicated by the shared expression of cell surface markers. ZBTB46 is a zinc finger and BTB domain-containing transcription factor, which is expressed by dendritic cells and committed dendritic cell precursors, but not by plasmacytoid dendritic cells, monocytes, macrophages, or other immune cell populations. In this study, we demonstrate that expression of ZBTB46 identifies human dendritic cell neoplasms. We examined ZBTB46 expression in a range of benign and malignant histiocytic disorders and found that ZBTB46 is able to clearly define the dendritic cell identity of many previously unclassified histiocytic disease subtypes. In particular, all examined cases of Langerhans cell histiocytosis and histiocytic sarcoma expressed ZBTB46, while all cases of blastic plasmacytoid dendritic cell neoplasm, chronic myelomonocytic leukemia, juvenile xanthogranuloma, Rosai-Dorfman disease, and Erdheim-Chester disease failed to demonstrate expression of ZBTB46. Moreover, ZBTB46 expression clarified the identity of diagnostically challenging neoplasms, such as cases of indeterminate cell histiocytosis, classifying a fraction of these entities as dendritic cell malignancies. These findings clarify the lineage origins of human histiocytic disorders and distinguish dendritic cell disorders from all other myeloid neoplasms.
Asunto(s)
Células Dendríticas/metabolismo , Histiocitosis/diagnóstico , Células Mieloides/metabolismo , Factores de Transcripción/metabolismo , Adolescente , Adulto , Anciano , Niño , Preescolar , Células Dendríticas/patología , Diagnóstico Diferencial , Femenino , Histiocitosis/metabolismo , Histiocitosis/patología , Humanos , Lactante , Recién Nacido , Masculino , Persona de Mediana Edad , Células Mieloides/patología , Adulto JovenRESUMEN
Runx1 and Cbfß are critical for the establishment of definitive hematopoiesis and are implicated in leukemic transformation. Despite the absolute requirements for these factors in the development of hematopoietic stem cells and lymphocytes, their roles in the development of bone marrow progenitor subsets have not been defined. Here, we demonstrate that Cbfß is essential for the development of Flt3(+) macrophage-dendritic cell (DC) progenitors in the bone marrow and all DC subsets in the periphery. Besides the loss of DC progenitors, pan-hematopoietic Cbfb-deficient mice also lack CD105(+) erythroid progenitors, leading to severe anemia at 3 to 4 months of age. Instead, Cbfb deficiency results in aberrant progenitor differentiation toward granulocyte-macrophage progenitors (GMPs), resulting in a myeloproliferative phenotype with accumulation of GMPs in the periphery and cellular infiltration of the liver. Expression of the transcription factor Irf8 is severely reduced in Cbfb-deficient progenitors, and overexpression of Irf8 restors DC differentiation. These results demonstrate that Runx proteins and Cbfß restrict granulocyte lineage commitment to facilitate multilineage hematopoietic differentiation and thus identify their novel tumor suppressor function in myeloid leukemia.
Asunto(s)
Subunidad alfa 2 del Factor de Unión al Sitio Principal/metabolismo , Subunidad beta del Factor de Unión al Sitio Principal/metabolismo , Células Dendríticas/metabolismo , Trastornos Mieloproliferativos/metabolismo , Células Madre/metabolismo , Tirosina Quinasa 3 Similar a fms/metabolismo , Anemia/genética , Anemia/metabolismo , Anemia/patología , Animales , Células de la Médula Ósea/metabolismo , Diferenciación Celular/genética , Células Cultivadas , Subunidad alfa 1 del Factor de Unión al Sitio Principal/genética , Subunidad alfa 1 del Factor de Unión al Sitio Principal/metabolismo , Subunidad alfa 2 del Factor de Unión al Sitio Principal/genética , Subunidad alfa 3 del Factor de Unión al Sitio Principal/genética , Subunidad alfa 3 del Factor de Unión al Sitio Principal/metabolismo , Subunidad beta del Factor de Unión al Sitio Principal/genética , Citometría de Flujo , Expresión Génica , Granulocitos/metabolismo , Hematopoyesis/genética , Factores Reguladores del Interferón/genética , Factores Reguladores del Interferón/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Trastornos Mieloproliferativos/genética , Trastornos Mieloproliferativos/patología , Reacción en Cadena de la Polimerasa de Transcriptasa InversaRESUMEN
Conventional type 1 dendritic cells (DC1) contribute to the development of pathogenic T helper type 1 (Th1) cells in part via the production of the proinflammatory cytokine interleukin-12. Thus, depletion of DC1 has the potential to dampen autoimmune responses. Here, we developed X-C motif chemokine receptor 1 (XCR1)-specific chimeric antigen receptor (CAR)-T cells and CAR-Tregs that specifically targeted DC1. XCR1 CAR-T cells were successfully generated as CD4+ and CD8+ T cells, expressed XCR1 CAR efficiently, and induced XCR1-dependent activation, cytokine production and proliferation. XCR1 CAR-T cells selectively depleted DC1 when transferred into RAG2-/- mice with a compensatory increase in conventional type 2 DC (DC2) and plasmacytoid DC (pDC). XCR1 CAR-T cell-mediated depletion of DC1 modestly suppressed the onset of Th1-driven experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis. Diphtheria toxin-mediated DC1 depletion in XCR1-diphtheria toxin receptor mice also suppressed EAE, suggesting that DC1 depletion was responsible for EAE suppression. XCR1 CAR-Tregs were successfully generated and suppressed effector T cells in the presence of XCR1+ cells. Therapeutic treatment with XCR1 CAR-Tregs suppressed Th1-driven EAE. Therefore, we conclude that depletion of DC1 with XCR1 CAR-T cells or immune suppression with XCR1 CAR-Tregs can modestly suppress Th1-driven EAE.
Asunto(s)
Encefalomielitis Autoinmune Experimental , Ratones , Animales , Linfocitos T CD8-positivos/patología , Citocinas/metabolismo , Células TH1 , Células DendríticasRESUMEN
Phagocytosis is a key macrophage function, but how phagocytosis shapes tumor-associated macrophage (TAM) phenotypes and heterogeneity in solid tumors remains unclear. Here, we utilized both syngeneic and novel autochthonous lung tumor models in which neoplastic cells express the fluorophore tdTomato (tdTom) to identify TAMs that have phagocytosed neoplastic cells in vivo. Phagocytic tdTompos TAMs upregulated antigen presentation and anti-inflammatory proteins, but downregulated classic proinflammatory effectors compared to tdTomneg TAMs. Single-cell transcriptomic profiling identified TAM subset-specific and common gene expression changes associated with phagocytosis. We uncover a phagocytic signature that is predominated by oxidative phosphorylation (OXPHOS), ribosomal, and metabolic genes, and this signature correlates with worse clinical outcome in human lung cancer. Expression of OXPHOS proteins, mitochondrial content, and functional utilization of OXPHOS were increased in tdTompos TAMs. tdTompos tumor dendritic cells also display similar metabolic changes. Our identification of phagocytic TAMs as a distinct myeloid cell state links phagocytosis of neoplastic cells in vivo with OXPHOS and tumor-promoting phenotypes.
Asunto(s)
Neoplasias Pulmonares , Macrófagos , Humanos , Macrófagos/metabolismo , Fagocitosis/genética , Neoplasias Pulmonares/patología , Células Mieloides/metabolismo , Estrés Oxidativo , Microambiente TumoralRESUMEN
The BATF3-dependent cDC1 lineage of conventional dendritic cells (cDC) is required for rejection of immunogenic sarcomas and for rejection of progressive sarcomas during checkpoint blockade therapy. One unique function of the cDC1 lineage is the efficient cross-presentation of tumor-derived neoantigens to CD8+ T cells, but it is not clear that this is the only unique function of cDC1 required for tumor rejection. We previously showed that BATF3 functions during cDC1 lineage commitment to maintain IRF8 expression in the specified cDC1 progenitor. However, since cDC1 progenitors do not develop into mature cDC1s in Batf3 -/- mice, it is still unclear whether BATF3 has additional functions in mature cDC1 cells. A transgenic Irf8-Venus reporter allele increases IRF8 protein concentration sufficiently to allow autonomous cDC1 development in spleens of Batf3 -/- mice. These restored Batf3 -/- cDC1s are transcriptionally similar to control wild-type cDC1s but have reduced expression of a restricted set of cDC1-specific genes. Restored Batf3 -/- cDC1s are able to cross-present cell-associated antigens both in vitro and in vivo However, Batf3 -/- cDC1 exhibit altered characteristics in vivo and are unable to mediate tumor rejection. These results show that BATF3, in addition to regulating Irf8 expression to stabilize cDC1 lineage commitment, also controls expression of a small set of genes required for cDC1-mediated tumor rejection. These BATF3-regulated genes may be useful targets in immunotherapies aimed at promoting tumor rejection.