Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 133
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Nat Immunol ; 13(7): 691-700, 2012 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-22683743

RESUMEN

The human leukocyte antigens HLA-B27 and HLA-B57 are associated with protection against progression of disease that results from infection with human immunodeficiency virus type 1 (HIV-1), yet most people with alleles encoding HLA-B27 and HLA-B57 are unable to control HIV-1. Here we found that HLA-B27-restricted CD8(+) T cells in people able to control infection with HIV-1 (controllers) and those who progress to disease after infection with HIV-1 (progressors) differed in their ability to inhibit viral replication through targeting of the immunodominant epitope of group-associated antigen (Gag) of HIV-1. This was associated with distinct T cell antigen receptor (TCR) clonotypes, characterized by superior control of HIV-1 replication in vitro, greater cross-reactivity to epitope variants and enhanced loading and delivery of perforin. We also observed clonotype-specific differences in antiviral efficacy for an immunodominant HLA-B57-restricted response in controllers and progressors. Thus, the efficacy of such so-called 'protective alleles' is modulated by specific TCR clonotypes selected during natural infection, which provides a functional explanation for divergent HIV-1 outcomes.


Asunto(s)
Infecciones por VIH/inmunología , VIH-1/inmunología , Antígenos HLA-B/inmunología , Antígeno HLA-B27/inmunología , Receptores de Antígenos de Linfocitos T/inmunología , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/virología , Células Cultivadas , Epítopos de Linfocito T/inmunología , Infecciones por VIH/sangre , Infecciones por VIH/virología , Sobrevivientes de VIH a Largo Plazo , Humanos , Perforina/inmunología , Replicación Viral/inmunología , Productos del Gen gag del Virus de la Inmunodeficiencia Humana/inmunología
2.
J Infect Dis ; 227(7): 838-849, 2023 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-35668700

RESUMEN

BACKGROUND: Longer-term humoral responses to 2-dose coronavirus disease 2019 (COVID-19) vaccines remain incompletely characterized in people living with human immunodeficiency virus (HIV) (PLWH), as do initial responses to a third dose. METHODS: We measured antibodies against the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein receptor-binding domain, angiotensin-converting enzyme 2 (ACE2) displacement, and viral neutralization against wild-type and Omicron strains up to 6 months after 2-dose vaccination, and 1 month after the third dose, in 99 PLWH receiving suppressive antiretroviral therapy and 152 controls. RESULTS: Although humoral responses naturally decline after 2-dose vaccination, we found no evidence of lower antibody concentrations or faster rates of antibody decline in PLWH compared with controls after accounting for sociodemographic, health, and vaccine-related factors. We also found no evidence of poorer viral neutralization in PLWH after 2 doses, nor evidence that a low nadir CD4+ T-cell count compromised responses. Post-third-dose humoral responses substantially exceeded post-second-dose levels, though Omicron-specific responses were consistently weaker than responses against wild-type virus. Nevertheless, post-third-dose responses in PLWH were comparable to or higher than controls. An mRNA-1273 third dose was the strongest consistent correlate of higher post-third-dose responses. CONCLUSION: PLWH receiving suppressive antiretroviral therapy mount strong antibody responses after 2- and 3-dose COVID-19 vaccination. Results underscore the immune benefits of third doses in light of Omicron.


Asunto(s)
COVID-19 , Infecciones por VIH , Humanos , VIH , Vacunas contra la COVID-19 , COVID-19/prevención & control , SARS-CoV-2 , Anticuerpos , Vacunación , Infecciones por VIH/tratamiento farmacológico , Anticuerpos Antivirales
3.
Retrovirology ; 20(1): 3, 2023 03 31.
Artículo en Inglés | MEDLINE | ID: mdl-37004071

RESUMEN

BACKGROUND: Nef performs multiple cellular activities that enhance HIV-1 pathogenesis. The role of Nef-mediated down-regulation of the host restriction factor SERINC5 in HIV-1 pathogenesis is not well-defined. We aimed to investigate if SERINC5 down-regulation activity contributes to HIV-1 subtype C disease progression, to assess the relative contribution of this activity to overall Nef function, and to identify amino acids required for optimal activity. We measured the SERINC5 down-regulation activity of 106 subtype C Nef clones, isolated from individuals in early infection, for which the Nef activities of CD4 and HLA-I down-regulation as well as alteration of TCR signalling were previously measured. The relationship between SERINC5 down-regulation and markers of disease progression, and the relative contribution of SERINC5 down-regulation to a Nef fitness model-derived E value (a proxy for overall Nef fitness in vivo), were assessed. RESULTS: No overall relationship was found between SERINC5 down-regulation and viral load set point (p = 0.28) or rate of CD4+ T cell decline (p = 0.45). CD4 down-regulation (p = 0.02) and SERINC5 down-regulation (p = 0.003) were significant determinants of E values in univariate analyses, with the greatest relative contribution for SERINC5 down-regulation, and only SERINC5 down-regulation remained significant in the multivariate analysis (p = 0.003). Using a codon-by-codon analysis, several amino acids were significantly associated with increased (10I, 11V, 38D, 51T, 65D, 101V, 188H and, 191H) or decreased (10K, 38E, 65E, 135F, 173T, 176T and, 191R) SERINC5 down-regulation activity. Site-directed mutagenesis experiments of selected mutants confirmed a substantial reduction in SERINC5 down-regulation activity associated with the mutation 173T, while mutations 10K, 135F, and 176T were associated with more modest reductions in activity that were not statistically significant. CONCLUSIONS: These results suggest that SERINC5 down-regulation is a significant contributor to overall Nef function and identify potential genetic determinants of this Nef function that may have relevance for vaccines or therapeutics.


Asunto(s)
Infecciones por VIH , VIH-1 , Humanos , Regulación hacia Abajo , VIH-1/fisiología , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Productos del Gen nef del Virus de la Inmunodeficiencia Humana/genética , Productos del Gen nef del Virus de la Inmunodeficiencia Humana/metabolismo , Linfocitos T
4.
J Infect Dis ; 225(7): 1129-1140, 2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-34888688

RESUMEN

BACKGROUND: The magnitude and durability of immune responses to coronavirus disease 2019 (COVID-19) mRNA vaccines remain incompletely characterized in the elderly. METHODS: Anti-spike receptor-binding domain (RBD) antibodies, angiotensin-converting enzyme 2 (ACE2) competition, and virus neutralizing activities were assessed in plasma from 151 health care workers and older adults (range, 24-98 years of age) 1 month following the first vaccine dose, and 1 and 3 months following the second dose. RESULTS: Older adults exhibited significantly weaker responses than younger health care workers for all humoral measures evaluated and at all time points tested, except for ACE2 competition activity after 1 vaccine dose. Moreover, older age remained independently associated with weaker responses even after correction for sociodemographic factors, chronic health condition burden, and vaccine-related variables. By 3 months after the second dose, all humoral responses had declined significantly in all participants, and remained significantly lower among older adults, who also displayed reduced binding antibodies and ACE2 competition activity towards the Delta variant. CONCLUSIONS: Humoral responses to COVID-19 mRNA vaccines are significantly weaker in older adults, and antibody-mediated activities in plasma decline universally over time. Older adults may thus remain at elevated risk of infection despite vaccination.


Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , Anciano , Anticuerpos Neutralizantes , Anticuerpos Antivirales , COVID-19/prevención & control , Humanos , Inmunidad Humoral , Lactante , ARN Mensajero , SARS-CoV-2 , Vacunas Sintéticas , Vacunas de ARNm
5.
J Infect Dis ; 226(6): 983-994, 2022 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-35543278

RESUMEN

BACKGROUND: Third coronavirus disease 2019 (COVID-19) vaccine doses are broadly recommended, but immunogenicity data remain limited, particularly in older adults. METHODS: We measured circulating antibodies against the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein receptor-binding domain, ACE2 displacement, and virus neutralization against ancestral and omicron (BA.1) strains from prevaccine up to 1 month following the third dose, in 151 adults aged 24-98 years who received COVID-19 mRNA vaccines. RESULTS: Following 2 vaccine doses, humoral immunity was weaker, less functional, and less durable in older adults, where a higher number of chronic health conditions was a key correlate of weaker responses and poorer durability. One month after the third dose, antibody concentrations and function exceeded post-second-dose levels, and responses in older adults were comparable in magnitude to those in younger adults at this time. Humoral responses against omicron were universally weaker than against the ancestral strain after both the second and third doses. Nevertheless, after 3 doses, anti-omicron responses in older adults reached equivalence to those in younger adults. One month after 3 vaccine doses, the number of chronic health conditions, but not age, was the strongest consistent correlate of weaker humoral responses. CONCLUSIONS: Results underscore the immune benefits of third COVID-19 vaccine doses, particularly in older adults.


Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , Anciano , Enzima Convertidora de Angiotensina 2 , Anticuerpos Neutralizantes , Anticuerpos Antivirales , COVID-19/prevención & control , Humanos , ARN Mensajero , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , Vacunas Sintéticas , Vacunas de ARNm
6.
J Antimicrob Chemother ; 77(4): 979-988, 2022 03 31.
Artículo en Inglés | MEDLINE | ID: mdl-35061879

RESUMEN

BACKGROUND: Routine HIV drug resistance genotyping identified an integrase sequence harbouring T97A, E138K, G140S and Q148H, with high predicted resistance to all integrase strand transfer inhibitors (INSTIs). OBJECTIVES: To assess the impact of these substitutions alone and together on phenotypic INSTI susceptibility. METHODS: We constructed recombinant NL4.3 viruses harbouring all mutation combinations in the autologous integrase sequence. Viruses were grown in GFP-reporter CD4+ T-cells in the presence of 0.01-1000 nM raltegravir, elvitegravir, dolutegravir, bictegravir, and cabotegravir. Infection was measured by imaging cytometry. RESULTS: Q148H-containing viruses lacking G140S failed to propagate or mutated in vitro, consistent with fitness costs. Statistically significant reductions in INSTI susceptibility were observed for several mutation combinations, as follows. T97A or G140S alone conferred 3.6- to 5.6-fold decreased susceptibility to raltegravir and elvitegravir. Two-mutation combinations conferred low-to-moderate resistance to raltegravir and elvitegravir only, except G140S/Q148H which eliminated raltegravir and elvitegravir activity and conferred 24.6-, 7.9-, and 107.5-fold reduced susceptibility to dolutegravir, bictegravir and cabotegravir. Addition of E138K to G140S/Q148H conferred 35.5, 11.6 and 208-fold reduced susceptibility to dolutegravir, bictegravir, and cabotegravir, while addition of T97A to G140S/Q148H conferred 318, 121 and >1000-fold reduced susceptibility to these drugs. T97A/E138K/G140S/Q148H in the autologous backbone conferred >300-fold reduced susceptibility to all INSTIs. Notably, bictegravir EC50 was significantly lower when T97A/E138K/G140S/Q148H was introduced into NL4.3, suggesting that other mutations in the autologous sequence enhanced resistance. CONCLUSIONS: High-level dolutegravir, bictegravir and cabotegravir resistance requires multiple integrase substitutions including compensatory mutations. T97A and E138K further enhance the resistance conferred by G140S/Q148H, yielding >300-fold decreased susceptibility to all INSTIs when all four mutations are present.


Asunto(s)
Infecciones por VIH , Inhibidores de Integrasa VIH , Integrasa de VIH , VIH-1 , Farmacorresistencia Viral/genética , Infecciones por VIH/tratamiento farmacológico , Integrasa de VIH/genética , Inhibidores de Integrasa VIH/farmacología , Inhibidores de Integrasa VIH/uso terapéutico , VIH-1/genética , Compuestos Heterocíclicos con 3 Anillos/farmacología , Compuestos Heterocíclicos con 3 Anillos/uso terapéutico , Humanos , Mutación , Piridonas/farmacología , Raltegravir Potásico/farmacología , Raltegravir Potásico/uso terapéutico
7.
PLoS Pathog ; 16(9): e1008813, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32925973

RESUMEN

HIV Nef counteracts cellular host restriction factors SERINC3 and SERINC5, but our understanding of how naturally occurring global Nef sequence diversity impacts these activities is limited. Here, we quantify SERINC3 and SERINC5 internalization function for 339 Nef clones, representing the major pandemic HIV-1 group M subtypes A, B, C and D. We describe distinct subtype-associated hierarchies for Nef-mediated internalization of SERINC5, for which subtype B clones display the highest activities on average, and of SERINC3, for which subtype B clones display the lowest activities on average. We further identify Nef polymorphisms that modulate its ability to counteract SERINC proteins, including substitutions in the N-terminal domain that selectively impair SERINC3 internalization. Our findings demonstrate that the SERINC antagonism activities of HIV Nef differ markedly among major viral subtypes and between individual isolates within a subtype, suggesting that variation in these functions may contribute to global differences in viral pathogenesis.


Asunto(s)
Infecciones por VIH/virología , VIH-1/fisiología , Glicoproteínas de Membrana/antagonistas & inhibidores , Proteínas de la Membrana/antagonistas & inhibidores , Polimorfismo Genético , Replicación Viral , Productos del Gen nef del Virus de la Inmunodeficiencia Humana/metabolismo , Infecciones por VIH/genética , Infecciones por VIH/metabolismo , Seropositividad para VIH , Interacciones Huésped-Patógeno , Humanos , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras/virología , Células Tumorales Cultivadas , Productos del Gen nef del Virus de la Inmunodeficiencia Humana/genética
8.
J Biol Chem ; 295(41): 14084-14099, 2020 10 09.
Artículo en Inglés | MEDLINE | ID: mdl-32788215

RESUMEN

A sterilizing or functional cure for HIV is currently precluded by resting CD4+ T cells that harbor latent but replication-competent provirus. The "shock-and-kill" pharmacological ap-proach aims to reactivate provirus expression in the presence of antiretroviral therapy and target virus-expressing cells for elimination. However, no latency reversal agent (LRA) to date effectively clears viral reservoirs in humans, suggesting a need for new LRAs and LRA combinations. Here, we screened 216 compounds from the pan-African Natural Product Library and identified knipholone anthrone (KA) and its basic building block anthralin (dithranol) as novel LRAs that reverse viral latency at low micromolar concentrations in multiple cell lines. Neither agent's activity depends on protein kinase C; nor do they inhibit class I/II histone deacetylases. However, they are differentially modulated by oxidative stress and metal ions and induce distinct patterns of global gene expression from established LRAs. When applied in combination, both KA and anthralin synergize with LRAs representing multiple functional classes. Finally, KA induces both HIV RNA and protein in primary cells from HIV-infected donors. Taken together, we describe two novel LRAs that enhance the activities of multiple "shock-and-kill" agents, which in turn may inform ongoing LRA combination therapy efforts.


Asunto(s)
Antracenos/farmacología , Antralina/farmacología , Infecciones por VIH/tratamiento farmacológico , VIH-1/fisiología , Latencia del Virus/efectos de los fármacos , Evaluación Preclínica de Medicamentos , Infecciones por VIH/metabolismo , Infecciones por VIH/patología , Humanos , Células Jurkat
9.
J Virol ; 94(14)2020 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-32376625

RESUMEN

Downregulation of BST-2/tetherin and CD4 by HIV-1 viral protein U (Vpu) promotes viral egress and allows infected cells to evade host immunity. Little is known however about the natural variability in these Vpu functions among the genetically diverse viral subtypes that contribute to the HIV-1 pandemic. We collected Vpu isolates from 332 treatment-naive individuals living with chronic HIV-1 infection in Uganda, Rwanda, South Africa, and Canada. Together, these Vpu isolates represent four major HIV-1 group M subtypes (A [n = 63], B [n = 84], C [n = 94], and D [n = 59]) plus intersubtype recombinants and uncommon strains (n = 32). The ability of each Vpu clone to downregulate endogenous CD4 and tetherin was quantified using flow cytometry following transfection into an immortalized T-cell line and compared to that of a reference Vpu clone derived from HIV-1 subtype B NL4.3. Overall, the median CD4 downregulation function of natural Vpu isolates was similar to that of NL4.3 (1.01 [interquartile range {IQR}, 0.86 to 1.18]), while the median tetherin downregulation function was moderately lower than that of NL4.3 (0.90 [0.79 to 0.97]). Both Vpu functions varied significantly among HIV-1 subtypes (Kruskal-Wallis P < 0.0001). Specifically, subtype C clones exhibited the lowest CD4 and tetherin downregulation activities, while subtype D and B clones were most functional for both activities. We also identified Vpu polymorphisms associated with CD4 or tetherin downregulation function and validated six of these using site-directed mutagenesis. Our results highlight the marked extent to which Vpu function varies among global HIV-1 strains, raising the possibility that natural variation in this accessory protein may contribute to viral pathogenesis and/or spread.IMPORTANCE The HIV-1 accessory protein Vpu enhances viral spread by downregulating CD4 and BST-2/tetherin on the surface of infected cells. Natural variability in these Vpu functions may contribute to HIV-1 pathogenesis, but this has not been investigated among the diverse viral subtypes that contribute to the HIV-1 pandemic. In this study, we found that Vpu function differs significantly among HIV-1 subtypes A, B, C, and D. On average, subtype C clones displayed the lowest ability to downregulate both CD4 and tetherin, while subtype B and D clones were more functional. We also identified Vpu polymorphisms that associate with functional differences among HIV-1 isolates and subtypes. Our study suggests that genetic diversity in Vpu may play an important role in the differential pathogenesis and/or spread of HIV-1.


Asunto(s)
Antígenos CD/biosíntesis , Antígenos CD4/biosíntesis , Regulación hacia Abajo , Infecciones por VIH , VIH-1/metabolismo , Proteínas del Virus de la Inmunodeficiencia Humana/metabolismo , Proteínas Reguladoras y Accesorias Virales/metabolismo , Antígenos CD/genética , Antígenos CD4/genética , Línea Celular Transformada , Enfermedad Crónica , Proteínas Ligadas a GPI/biosíntesis , Proteínas Ligadas a GPI/genética , VIH-1/genética , Proteínas del Virus de la Inmunodeficiencia Humana/genética , Humanos , Proteínas Reguladoras y Accesorias Virales/genética
10.
J Virol ; 94(5)2020 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-31776273

RESUMEN

The HIV reservoir, which comprises diverse proviruses integrated into the genomes of infected, primarily CD4+ T cells, is the main barrier to developing an effective HIV cure. Our understanding of the genetics and dynamics of proviruses persisting within distinct CD4+ T cell subsets, however, remains incomplete. Using single-genome amplification, we characterized subgenomic proviral sequences (nef region) from naive, central memory, transitional memory, and effector memory CD4+ T cells from five HIV-infected individuals on long-term combination antiretroviral therapy (cART) and compared these to HIV RNA sequences isolated longitudinally from archived plasma collected prior to cART initiation, yielding HIV data sets spanning a median of 19.5 years (range, 10 to 20 years) per participant. We inferred a distribution of within-host phylogenies for each participant, from which we characterized proviral ages, phylogenetic diversity, and genetic compartmentalization between CD4+ T cell subsets. While three of five participants exhibited some degree of proviral compartmentalization between CD4+ T cell subsets, combined analyses revealed no evidence that any particular CD4+ T cell subset harbored the longest persisting, most genetically diverse, and/or most genetically distinctive HIV reservoir. In one participant, diverse proviruses archived within naive T cells were significantly younger than those in memory subsets, while for three other participants we observed no significant differences in proviral ages between subsets. In one participant, "old" proviruses were recovered from all subsets, and included one sequence, estimated to be 21.5 years old, that dominated (>93%) their effector memory subset. HIV eradication strategies will need to overcome within- and between-host genetic complexity of proviral landscapes, possibly via personalized approaches.IMPORTANCE The main barrier to HIV cure is the ability of a genetically diverse pool of proviruses, integrated into the genomes of infected CD4+ T cells, to persist despite long-term suppressive combination antiretroviral therapy (cART). CD4+ T cells, however, constitute a heterogeneous population due to their maturation across a developmental continuum, and the genetic "landscapes" of latent proviruses archived within them remains incompletely understood. We applied phylogenetic techniques, largely novel to HIV persistence research, to reconstruct within-host HIV evolutionary history and characterize proviral diversity in CD4+ T cell subsets in five individuals on long-term cART. Participants varied widely in terms of proviral burden, genetic diversity, and age distribution between CD4+ T cell subsets, revealing that proviral landscapes can differ between individuals and between infected cell types within an individual. Our findings expose each within-host latent reservoir as unique in its genetic complexity and support personalized strategies for HIV eradication.


Asunto(s)
Antirretrovirales/uso terapéutico , Linfocitos T CD4-Positivos/virología , Variación Genética , VIH-1/genética , Provirus/genética , Adolescente , Secuencia de Bases , Niño , ADN Viral/genética , Infecciones por VIH/tratamiento farmacológico , Infecciones por VIH/virología , Humanos , Filogenia , Subgrupos de Linfocitos T/virología , Carga Viral , Adulto Joven
11.
Proc Natl Acad Sci U S A ; 115(38): E8958-E8967, 2018 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-30185556

RESUMEN

Given that HIV evolution and latent reservoir establishment occur continually within-host, and that latently infected cells can persist long-term, the HIV reservoir should comprise a genetically heterogeneous archive recapitulating within-host HIV evolution. However, this has yet to be conclusively demonstrated, in part due to the challenges of reconstructing within-host reservoir establishment dynamics over long timescales. We developed a phylogenetic framework to reconstruct the integration dates of individual latent HIV lineages. The framework first involves inference and rooting of a maximum-likelihood phylogeny relating plasma HIV RNA sequences serially sampled before the initiation of suppressive antiretroviral therapy, along with putative latent sequences sampled thereafter. A linear model relating root-to-tip distances of plasma HIV RNA sequences to their sampling dates is used to convert root-to-tip distances of putative latent lineages to their establishment (integration) dates. Reconstruction of the ages of putative latent sequences sampled from chronically HIV-infected individuals up to 10 y following initiation of suppressive therapy revealed a genetically heterogeneous reservoir that recapitulated HIV's within-host evolutionary history. Reservoir sequences were interspersed throughout multiple within-host lineages, with the oldest dating to >20 y before sampling; historic genetic bottleneck events were also recorded therein. Notably, plasma HIV RNA sequences isolated from a viremia blip in an individual receiving otherwise suppressive therapy were highly genetically diverse and spanned a 20-y age range, suggestive of spontaneous in vivo HIV reactivation from a large latently infected cell pool. Our framework for reservoir dating provides a potentially powerful addition to the HIV persistence research toolkit.


Asunto(s)
Infecciones por VIH/genética , VIH-1/genética , Interacciones Huésped-Patógeno/genética , Filogenia , Latencia del Virus/genética , Conjuntos de Datos como Asunto , Infecciones por VIH/sangre , Infecciones por VIH/virología , VIH-1/aislamiento & purificación , Humanos , Modelos Genéticos , Provirus/genética , Provirus/aislamiento & purificación , ARN Viral/genética , ARN Viral/aislamiento & purificación , Análisis de Secuencia de ADN , Análisis de Secuencia de ARN , Factores de Tiempo , Viremia/sangre , Viremia/genética , Viremia/virología , Integración Viral/genética
12.
Retrovirology ; 17(1): 3, 2020 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-31918727

RESUMEN

The HIV accessory protein Nef downregulates the viral entry receptor CD4, the Human Leukocyte Antigen (HLA)-A and -B molecules, the Serine incorporator 5 (SERINC5) protein and other molecules from the infected cell surface, thereby promoting viral infectivity, replication and immune evasion. The nef locus also represents one of the most genetically variable regions in the HIV genome, and nef sequences undergo substantial evolution within a single individual over the course of infection. Few studies however have simultaneously characterized the impact of within-host nef sequence evolution on Nef protein function over prolonged timescales. Here, we isolated 50 unique Nef clones by single-genome amplification over an 11-year period from the plasma of an individual who was largely naïve to antiretroviral treatment during this time. Together, these clones harbored nonsynonymous substitutions at 13% of nef's codons. We assessed their ability to downregulate cell-surface CD4, HLA and SERINC5 and observed that all three Nef functions declined modestly over time, where the reductions in CD4 and HLA downregulation (an average of 0.6% and 2.0% per year, respectively) achieved statistical significance. The results from this case study support all three Nef activities as being important to maintain throughout untreated HIV infection, but nevertheless suggest that, despite nef's mutational plasticity, within-host viral evolution can compromise Nef function, albeit modestly, over prolonged periods.


Asunto(s)
Evolución Molecular , Infecciones por VIH/virología , Interacciones Huésped-Patógeno/genética , Proteínas de la Membrana/genética , Productos del Gen nef del Virus de la Inmunodeficiencia Humana/genética , Antígenos CD4/genética , Linfocitos T CD4-Positivos/inmunología , Estudios de Casos y Controles , Regulación hacia Abajo , Infecciones por VIH/genética , Antígenos HLA-A/genética , Humanos , Estudios Longitudinales , Masculino , Mutación
13.
J Virol ; 93(6)2019 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-30602611

RESUMEN

The HIV accessory protein Nef modulates key immune evasion and pathogenic functions, and its encoding gene region exhibits high sequence diversity. Given the recent identification of early HIV-specific adaptive immune responses as novel correlates of HIV reservoir size, we hypothesized that viral factors that facilitate the evasion of such responses-namely, Nef genetic and functional diversity-might also influence reservoir establishment and/or persistence. We isolated baseline plasma HIV RNA-derived nef clones from 30 acute/early-infected individuals who participated in a clinical trial of early combination antiretroviral therapy (cART) (<6 months following infection) and assessed each Nef clone's ability to downregulate CD4 and human leukocyte antigen (HLA) class I in vitro We then explored the relationships between baseline clinical, immunological, and virological characteristics and the HIV reservoir size measured 48 weeks following initiation of suppressive cART (where the reservoir size was quantified in terms of the proviral DNA loads as well as the levels of replication-competent HIV in CD4+ T cells). Maximal within-host Nef-mediated downregulation of HLA, but not CD4, correlated positively with post-cART proviral DNA levels (Spearman's R = 0.61, P = 0.0004) and replication-competent reservoir sizes (Spearman's R = 0.36, P = 0.056) in univariable analyses. Furthermore, the Nef-mediated HLA downregulation function was retained in final multivariable models adjusting for established clinical and immunological correlates of reservoir size. Finally, HIV subtype B-infected persons (n = 25) harbored significantly larger viral reservoirs than non-subtype B-infected persons (2 infected with subtype CRF01_AE and 3 infected with subtype G). Our results highlight a potentially important role of viral factors-in particular, HIV subtype and accessory protein function-in modulating viral reservoir establishment and persistence.IMPORTANCE While combination antiretroviral therapies (cART) have transformed HIV infection into a chronic manageable condition, they do not act upon the latent HIV reservoir and are therefore not curative. As HIV cure or remission should be more readily achievable in individuals with smaller HIV reservoirs, achieving a deeper understanding of the clinical, immunological, and virological determinants of reservoir size is critical to eradication efforts. We performed a post hoc analysis of 30 participants of a clinical trial of early cART who had previously been assessed in detail for their clinical, immunological, and reservoir size characteristics. We observed that the HIV subtype and autologous Nef-mediated HLA downregulation function correlated with the viral reservoir size measured approximately 1 year post-cART initiation. Our findings highlight virological characteristics-both genetic and functional-as possible novel determinants of HIV reservoir establishment and persistence.


Asunto(s)
Infecciones por VIH/inmunología , VIH/inmunología , Evasión Inmune/inmunología , Productos del Gen nef del Virus de la Inmunodeficiencia Humana/inmunología , Adulto , Antirretrovirales/farmacología , Antígenos CD4/inmunología , Linfocitos T CD4-Positivos/inmunología , Regulación hacia Abajo/efectos de los fármacos , Regulación hacia Abajo/inmunología , VIH/efectos de los fármacos , Infecciones por VIH/tratamiento farmacológico , Antígenos HLA/inmunología , Humanos , Evasión Inmune/efectos de los fármacos , Masculino , Persona de Mediana Edad , Latencia del Virus/efectos de los fármacos , Latencia del Virus/inmunología , Adulto Joven
14.
J Virol ; 93(1)2019 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-30305354

RESUMEN

The extent to which viral genetic context influences HIV adaptation to human leukocyte antigen (HLA) class I-restricted immune pressures remains incompletely understood. The Ugandan HIV epidemic, where major pandemic group M subtypes A1 and D cocirculate in a single host population, provides an opportunity to investigate this question. We characterized plasma HIV RNA gag, pol, and nef sequences, along with host HLA genotypes, in 464 antiretroviral-naive individuals chronically infected with HIV subtype A1 or D. Using phylogenetically informed statistical approaches, we identified HLA-associated polymorphisms and formally compared their strengths of selection between viral subtypes. A substantial number (32%) of HLA-associated polymorphisms identified in subtype A1 and/or D had previously been reported in subtype B, C, and/or circulating recombinant form 01_AE (CRF01_AE), confirming the shared nature of many HLA-driven escape pathways regardless of viral genetic context. Nevertheless, 34% of the identified HLA-associated polymorphisms were significantly differentially selected between subtypes A1 and D. Experimental investigation of select examples of subtype-specific escape revealed distinct underlying mechanisms with important implications for vaccine design: whereas some were attributable to subtype-specific sequence variation that influenced epitope-HLA binding, others were attributable to differential mutational barriers to immune escape. Overall, our results confirm that HIV genetic context is a key modulator of viral adaptation to host cellular immunity and highlight the power of combined bioinformatic and mechanistic studies, paired with knowledge of epitope immunogenicity, to identify appropriate viral regions for inclusion in subtype-specific and universal HIV vaccine strategies.IMPORTANCE The identification of HIV polymorphisms reproducibly selected under pressure by specific HLA alleles and the elucidation of their impact on viral function can help identify immunogenic viral regions where immune escape incurs a fitness cost. However, our knowledge of HLA-driven escape pathways and their functional costs is largely limited to HIV subtype B and, to a lesser extent, subtype C. Our study represents the first characterization of HLA-driven adaptation pathways in HIV subtypes A1 and D, which dominate in East Africa, and the first statistically rigorous characterization of differential HLA-driven escape across viral subtypes. The results support a considerable impact of viral genetic context on HIV adaptation to host HLA, where HIV subtype-specific sequence variation influences both epitope-HLA binding and the fitness costs of escape. Integrated bioinformatic and mechanistic characterization of these and other instances of differential escape could aid rational cytotoxic T-lymphocyte-based vaccine immunogen selection for both subtype-specific and universal HIV vaccines.


Asunto(s)
Técnicas de Genotipaje/métodos , Infecciones por VIH/sangre , VIH-1/patogenicidad , Antígenos HLA/genética , Proteínas del Virus de la Inmunodeficiencia Humana/genética , Vacunas contra el SIDA , Genotipo , Infecciones por VIH/inmunología , Infecciones por VIH/virología , VIH-1/clasificación , VIH-1/genética , VIH-1/inmunología , Antígenos HLA/sangre , Proteínas del Virus de la Inmunodeficiencia Humana/sangre , Humanos , Evasión Inmune , Inmunidad Celular , Filogenia , Polimorfismo Genético , Uganda , Productos del Gen gag del Virus de la Inmunodeficiencia Humana/sangre , Productos del Gen gag del Virus de la Inmunodeficiencia Humana/genética , Productos del Gen nef del Virus de la Inmunodeficiencia Humana/sangre , Productos del Gen nef del Virus de la Inmunodeficiencia Humana/genética , Productos del Gen pol del Virus de la Inmunodeficiencia Humana/sangre , Productos del Gen pol del Virus de la Inmunodeficiencia Humana/genética
15.
PLoS Pathog ; 14(9): e1007257, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30180214

RESUMEN

HIV-1 can downregulate HLA-C on infected cells, using the viral protein Vpu, and the magnitude of this downregulation varies widely between primary HIV-1 variants. The selection pressures that result in viral downregulation of HLA-C in some individuals, but preservation of surface HLA-C in others are not clear. To better understand viral immune evasion targeting HLA-C, we have characterized HLA-C downregulation by a range of primary HIV-1 viruses. 128 replication competent viral isolates from 19 individuals with effective anti-retroviral therapy, show that a substantial minority of individuals harbor latent reservoir virus which strongly downregulates HLA-C. Untreated infections display no change in HLA-C downregulation during the first 6 months of infection, but variation between viral quasispecies can be detected in chronic infection. Vpu molecules cloned from plasma of 195 treatment naïve individuals in chronic infection demonstrate that downregulation of HLA-C adapts to host HLA genotype. HLA-C alleles differ in the pressure they exert for downregulation, and individuals with higher levels of HLA-C expression favor greater viral downregulation of HLA-C. Studies of primary and mutant molecules identify 5 residues in the transmembrane region of Vpu, and 4 residues in the transmembrane domain of HLA-C, which determine interactions between Vpu and HLA. The observed adaptation of Vpu-mediated downregulation to host genotype indicates that HLA-C alleles differ in likelihood of mediating a CTL response that is subverted by viral downregulation, and that preservation of HLA-C expression is favored in the absence of these responses. Finding that latent reservoir viruses can downregulate HLA-C could have implications for HIV-1 cure therapy approaches in some individuals.


Asunto(s)
Infecciones por VIH/genética , Infecciones por VIH/inmunología , VIH-1/patogenicidad , Antígenos HLA-C/genética , Secuencia de Aminoácidos , Reservorios de Enfermedades/virología , Regulación hacia Abajo , Variación Genética , Genotipo , Infecciones por VIH/virología , VIH-1/inmunología , Interacciones Huésped-Patógeno/genética , Interacciones Huésped-Patógeno/inmunología , Proteínas del Virus de la Inmunodeficiencia Humana/química , Proteínas del Virus de la Inmunodeficiencia Humana/genética , Proteínas del Virus de la Inmunodeficiencia Humana/inmunología , Humanos , Evasión Inmune , Proteínas Reguladoras y Accesorias Virales/química , Proteínas Reguladoras y Accesorias Virales/genética , Proteínas Reguladoras y Accesorias Virales/inmunología
16.
J Med Virol ; 92(8): 1182-1190, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-31944317

RESUMEN

Identification of CD8+ T lymphocyte (CTL) escape mutations that compromise the pathogenic functions of the Nef protein may be relevant for an HIV-1 attenuation-based vaccine. Previously, HLA-associated mutations 102H, 105R, 108D, and 199Y were individually statistically associated with decreased Nef-mediated HLA-I downregulation ability in a cohort of 298 HIV-1 subtype C infected individuals. In the present study, these mutations were introduced by site-directed mutagenesis into different patient-derived Nef sequence backgrounds of high similarity to the consensus C Nef sequence, and their ability to downregulate HLA-I was measured by flow cytometry in a CEM-derived T cell line. A substantial negative effect of 199Y on HLA-I downregulation and Nef expression was observed, while 102H and 105R displayed negative effects on HLA-I downregulation ability and Nef expression to a lesser extent. The total magnitude of CTL responses in individuals harboring the 199Y mutation was lower than those without the mutation, although this was not statistically significant. Overall, a modest positive relationship between Nef-mediated HLA-I downregulation ability and total magnitude of CTL responses was observed, suggesting that there is a higher requirement for HLA-I downregulation with increased CTL pressure. These results highlight a region of Nef that could be targeted by vaccine-induced CTL to reduce HLA-I downregulation and maximize CTL efficacy.


Asunto(s)
Genes MHC Clase I/genética , VIH-1/genética , Productos del Gen nef del Virus de la Inmunodeficiencia Humana/genética , Linfocitos T CD8-positivos/inmunología , Línea Celular , Regulación hacia Abajo , Infecciones por VIH/inmunología , VIH-1/clasificación , Humanos , Mutagénesis Sitio-Dirigida , Mutación
17.
BMC Public Health ; 20(1): 1104, 2020 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-32664891

RESUMEN

BACKGROUND: Africa bears a disproportionately high burden of globally significant disease but has lagged in knowledge production to address its health challenges. In this contribution, we discuss the challenges and approaches to health research capacity strengthening in sub-Saharan Africa and propose that the recent shift to an African-led approach is the most optimal. METHODS AND FINDINGS: We introduce several capacity building approaches and recent achievements, explore why African-led research on the continent is a potentially paradigm-shifting and innovative approach, and discuss the advantages and challenges thereof. We reflect on the approaches used by the African Academy of Sciences (AAS)-funded Sub-Saharan African Network for TB/HIV Research Excellence (SANTHE) consortium as an example of an effective African-led science and capacity building programme. We recommend the following as crucial components of future efforts: 1. Directly empowering African-based researchers, 2. Offering quality training and career development opportunities to large numbers of junior African scientists and support staff, and 3. Effective information exchange and collaboration. Furthermore, we argue that long-term investment from international donors and increasing funding commitments from African governments and philanthropies will be needed to realise a critical mass of local capacity and to create and sustain world-class research hubs that will be conducive to address Africa's intractable health challenges. CONCLUSIONS: Our experiences so far suggest that African-led research has the potential to overcome the vicious cycle of brain-drain and may ultimately lead to improvement of health and science-led economic transformation of Africa into a prosperous continent.


Asunto(s)
Investigación Biomédica/organización & administración , Investigación Biomédica/estadística & datos numéricos , Creación de Capacidad , Intercambio de Información en Salud , Colaboración Intersectorial , Investigadores/educación , Adulto , África del Sur del Sahara , Femenino , Humanos , Masculino , Persona de Mediana Edad , Proyectos de Investigación
18.
J Virol ; 92(19)2018 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-29997209

RESUMEN

CD8+ T cell-mediated escape mutations in Gag can reduce HIV-1 replication capacity (RC) and alter disease progression, but less is known about immune-mediated attenuation in other HIV-1 proteins. We generated 487 recombinant viruses encoding RT-integrase from individuals with chronic (n = 406) and recent (n = 81) HIV-1 subtype C infection and measured their in vitro RC using a green fluorescent protein (GFP) reporter T cell assay. In recently infected individuals, reverse transcriptase (RT)-integrase-driven RC correlated significantly with viral load set point (r = 0.25; P = 0.03) and CD4+ T cell decline (P = 0.013). Moreover, significant associations between RT integrase-driven RC and viral load (r = 0.28; P < 0.0001) and CD4+ T cell count (r = -0.29; P < 0.0001) remained in chronic infection. In early HIV infection, host expression of the protective HLA-B*81 allele was associated with lower RC (P = 0.05), as was expression of HLA-B*07 (P = 0.02), suggesting early immune-driven attenuation of RT-integrase by these alleles. In chronic infection, HLA-A*30:09 (in linkage disequilibrium with HLA-B*81) was significantly associated with lower RC (P = 0.05), and all 6 HLA-B alleles with the lowest RC measurements represented protective alleles, consistent with long-term effects of host immune pressures on lowering RT-integrase RC. The polymorphisms V241I, I257V, P272K, and E297K in reverse transcriptase and I201V in integrase, all relatively uncommon polymorphisms occurring in or adjacent to optimally described HLA-restricted cytotoxic T-lymphocyte epitopes, were associated with reduced RC. Together, our data suggest that RT-integrase-driven RC is clinically relevant and provide evidence that immune-driven selection of mutations in RT-integrase can compromise RC.IMPORTANCE Identification of viral mutations that compromise HIV's ability to replicate may aid rational vaccine design. However, while certain escape mutations in Gag have been shown to reduce HIV replication and influence clinical progression, less is known about the consequences of mutations that naturally arise in other HIV proteins. Pol is a highly conserved protein, but the impact of Pol function on HIV disease progression is not well defined. Here, we generated recombinant viruses using the RT-integrase region of Pol derived from HIV-1C-infected individuals with recent and chronic infection and measured their ability to replicate in vitro We demonstrate that RT-integrase-driven replication ability significantly impacts HIV disease progression. We further show evidence of immune-mediated attenuation in RT-integrase and identify specific polymorphisms in RT-integrase that significantly decrease HIV-1 replication ability, suggesting which Pol epitopes could be explored in vaccine development.


Asunto(s)
Infecciones por VIH/genética , Integrasa de VIH/genética , Transcriptasa Inversa del VIH/genética , VIH-1/genética , Interacciones Huésped-Patógeno , Productos del Gen gag del Virus de la Inmunodeficiencia Humana/genética , Alelos , Recuento de Linfocito CD4 , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/virología , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/virología , Estudios de Cohortes , Progresión de la Enfermedad , Epítopos de Linfocito T/genética , Epítopos de Linfocito T/inmunología , Regulación de la Expresión Génica , Genes Reporteros , Genotipo , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/inmunología , Infecciones por VIH/inmunología , Infecciones por VIH/virología , Integrasa de VIH/inmunología , Transcriptasa Inversa del VIH/inmunología , VIH-1/clasificación , VIH-1/inmunología , VIH-1/patogenicidad , Antígenos HLA-A/genética , Antígenos HLA-A/inmunología , Antígenos HLA-B/genética , Antígenos HLA-B/inmunología , Humanos , Desequilibrio de Ligamiento , Polimorfismo de Nucleótido Simple , Transducción de Señal , Carga Viral , Replicación Viral , Productos del Gen gag del Virus de la Inmunodeficiencia Humana/inmunología
19.
J Virol ; 92(1)2018 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-29046444

RESUMEN

Patient-derived HIV-1 subtype B Nef clones downregulate HLA-A more efficiently than HLA-B. However, it remains unknown whether this property is common to Nef proteins across primate lentiviruses and how antiviral immune responses may be affected. We examined 263 Nef clones from diverse primate lentiviruses including different pandemic HIV-1 group M subtypes for their ability to downregulate major histocompatibility complex class A (MHC-A) and MHC-B from the cell surface. Though lentiviral Nef proteins differed markedly in their absolute MHC-A and MHC-B downregulation abilities, all lentiviral Nef lineages downregulated MHC-A, on average, 11 to 32% more efficiently than MHC-B. Nef genotype/phenotype analyses in a cohort of HIV-1 subtype C-infected patients (n = 168), together with site-directed mutagenesis, revealed Nef position 9 as a subtype-specific determinant of differential HLA-A versus HLA-B downregulation activity. Nef clones harboring nonconsensus variants at codon 9 downregulated HLA-B (though not HLA-A) significantly better than those harboring the consensus sequence at this site, resulting in reduced recognition of infected target cells by HIV-1-specific CD8+ effector cells in vitro Among persons expressing protective HLA class I alleles, carriage of Nef codon 9 variants was also associated with reduced ex vivo HIV-specific T cell responses. Our results demonstrate that Nef's inferior ability to downregulate MHC-B compared to that of MHC-A is conserved across primate lentiviruses and suggest that this property influences antiviral cellular immune responses.IMPORTANCE Primate lentiviruses encode the Nef protein that plays an essential role in establishing persistent infection in their respective host species. Nef interacts with the cytoplasmic region of MHC-A and MHC-B molecules and downregulates them from the infected cell surface to escape recognition by host cellular immunity. Using a panel of Nef alleles isolated from diverse primate lentiviruses including pandemic HIV-1 group M subtypes, we demonstrate that Nef proteins across all lentiviral lineages downregulate MHC-A approximately 20% more effectively than MHC-B. We further identify a naturally polymorphic site at Nef position 9 that contributes to the MHC-B downregulation function in HIV-1 subtype C and show that carriage of Nef variants with enhanced MHC-B downregulation ability is associated with reduced breadth and magnitude of MHC-B-restricted cellular immune responses in HIV-infected individuals. Our study underscores an evolutionarily conserved interaction between lentiviruses and primate immune systems that may contribute to pathogenesis.


Asunto(s)
Infecciones por VIH/inmunología , Antígenos HLA-A/genética , Antígenos HLA-B/genética , Lentivirus de los Primates/genética , Linfocitos T/inmunología , Productos del Gen nef del Virus de la Inmunodeficiencia Humana/genética , Alelos , Codón , Regulación hacia Abajo , Infecciones por VIH/genética , Infecciones por VIH/virología , VIH-1/inmunología , Antígenos HLA-A/inmunología , Antígenos HLA-B/inmunología , Humanos , Evasión Inmune , Inmunidad Celular , Mutagénesis Sitio-Dirigida , Fenotipo , Productos del Gen nef del Virus de la Inmunodeficiencia Humana/química , Productos del Gen nef del Virus de la Inmunodeficiencia Humana/clasificación , Productos del Gen nef del Virus de la Inmunodeficiencia Humana/inmunología
20.
J Virol ; 92(2)2018 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-29093100

RESUMEN

HIV circumvents HLA class I-restricted CD8+ T-cell responses through selection of escape mutations that leave characteristic mutational "footprints," also known as HLA-associated polymorphisms (HAPs), on HIV sequences at the population level. While many HLA footprints are universal across HIV subtypes and human populations, others can be region specific as a result of the unique immunogenetic background of each host population. Using a published probabilistic phylogenetically informed model, we compared HAPs in HIV Gag and Pol (PR-RT) in 1,612 subtype B-infected, antiretroviral treatment-naive individuals from Mexico and 1,641 individuals from Canada/United States. A total of 252 HLA class I allele subtypes were represented, including 140 observed in both cohorts, 67 unique to Mexico, and 45 unique to Canada/United States. At the predefined statistical threshold of a q value of <0.2, 358 HAPs (201 in Gag, 157 in PR-RT) were identified in Mexico, while 905 (534 in Gag and 371 in PR-RT) were identified in Canada/United States. HAPs identified in Mexico included both canonical HLA-associated escape pathways and novel associations, in particular with HLA alleles enriched in Amerindian and mestizo populations. Remarkably, HLA footprints on HIV in Mexico were not only fewer but also, on average, significantly weaker than those in Canada/United States, although some exceptions were noted. Moreover, exploratory analyses suggested that the weaker HLA footprint on HIV in Mexico may be due, at least in part, to weaker and/or less reproducible HLA-mediated immune pressures on HIV in this population. The implications of these differences for natural and vaccine-induced anti-HIV immunity merit further investigation.IMPORTANCE HLA footprints on HIV identify viral regions under intense and consistent pressure by HLA-restricted immune responses and the common mutational pathways that HIV uses to evade them. In particular, HLA footprints can identify novel immunogenic regions and/or epitopes targeted by understudied HLA alleles; moreover, comparative analyses across immunogenetically distinct populations can illuminate the extent to which HIV immunogenic regions and escape pathways are shared versus population-specific pathways, information which can in turn inform the design of universal or geographically tailored HIV vaccines. We compared HLA-associated footprints on HIV in two immunogenetically distinct North American populations, those of Mexico and Canada/United States. We identify both shared and population-specific pathways of HIV adaptation but also make the surprising observation that HLA footprints on HIV in Mexico overall are fewer and weaker than those in Canada/United States, raising the possibility that HLA-restricted antiviral immune responses in Mexico are weaker, and/or escape pathways somewhat less consistent, than those in other populations.


Asunto(s)
Infecciones por VIH/genética , Infecciones por VIH/inmunología , VIH/inmunología , Antígenos HLA/genética , Antígenos HLA/inmunología , Interacciones Huésped-Patógeno/genética , Interacciones Huésped-Patógeno/inmunología , Alelos , Secuencia de Aminoácidos , Canadá , Análisis por Conglomerados , Estudios de Cohortes , Frecuencia de los Genes , Antecedentes Genéticos , Variación Genética , Genética de Población , Infecciones por VIH/virología , Proteasa del VIH/genética , Proteasa del VIH/inmunología , Transcriptasa Inversa del VIH/genética , Transcriptasa Inversa del VIH/inmunología , Antígenos de Histocompatibilidad Clase I/genética , Antígenos de Histocompatibilidad Clase I/inmunología , Humanos , Evasión Inmune/genética , Fenómenos Inmunogenéticos , México , Mutación , Filogenia , Estados Unidos , Carga Viral , Productos del Gen gag del Virus de la Inmunodeficiencia Humana/genética , Productos del Gen gag del Virus de la Inmunodeficiencia Humana/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA