Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 171
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(16): e2314990121, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38593070

RESUMEN

Langya virus (LayV) is a recently discovered henipavirus (HNV), isolated from febrile patients in China. HNV entry into host cells is mediated by the attachment (G) and fusion (F) glycoproteins which are the main targets of neutralizing antibodies. We show here that the LayV F and G glycoproteins promote membrane fusion with human, mouse, and hamster target cells using a different, yet unknown, receptor than Nipah virus (NiV) and Hendra virus (HeV) and that NiV- and HeV-elicited monoclonal and polyclonal antibodies do not cross-react with LayV F and G. We determined cryoelectron microscopy structures of LayV F, in the prefusion and postfusion states, and of LayV G, revealing their conformational landscape and distinct antigenicity relative to NiV and HeV. We computationally designed stabilized LayV G constructs and demonstrate the generalizability of an HNV F prefusion-stabilization strategy. Our data will support the development of vaccines and therapeutics against LayV and closely related HNVs.


Asunto(s)
Virus Hendra , Infecciones por Henipavirus , Henipavirus , Virus Nipah , Humanos , Animales , Ratones , Microscopía por Crioelectrón , Glicoproteínas , Internalización del Virus
2.
Proc Natl Acad Sci U S A ; 119(22): e2122769119, 2022 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-35617431

RESUMEN

Hendra virus (HeV) and Nipah virus (NiV) are deadly zoonotic Henipaviruses (HNVs) responsible for recurrent outbreaks in humans and domestic species of highly fatal (50 to 95%) disease. A HeV variant (HeV-g2) of unprecedented genetic divergence has been identified in two fatally diseased horses, and in two flying fox species in regions of Australia not previously considered at risk for HeV spillover. Given the HeV-g2 divergence from HeV while retaining equivalent pathogenicity and spillover potential, understanding receptor usage and antigenic properties is urgently required to guide One Health biosecurity. Here, we show that the HeV-g2 G glycoprotein shares a conserved receptor tropism with prototypic HeV and that a panel of monoclonal antibodies recognizing the G and F glycoproteins potently neutralizes HeV-g2­ and HeV G/F­mediated entry into cells. We determined a crystal structure of the Fab fragment of the hAH1.3 antibody bound to the HeV G head domain, revealing an antigenic site associated with potent cross-neutralization of both HeV-g2 and HeV. Structure-guided formulation of a tetravalent monoclonal antibody (mAb) mixture, targeting four distinct G head antigenic sites, results in potent neutralization of HeV and HeV-g2 and delineates a path forward for implementing multivalent mAb combinations for postexposure treatment of HNV infections.


Asunto(s)
Anticuerpos Monoclonales , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Virus Hendra , Fragmentos Fab de Inmunoglobulinas , Proteínas del Envoltorio Viral , Anticuerpos Monoclonales/química , Anticuerpos Monoclonales/inmunología , Anticuerpos Neutralizantes/química , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/química , Anticuerpos Antivirales/inmunología , Cristalografía por Rayos X , Epítopos/química , Epítopos/genética , Virus Hendra/genética , Virus Hendra/inmunología , Humanos , Fragmentos Fab de Inmunoglobulinas/química , Pruebas de Neutralización , Profilaxis Posexposición , Dominios Proteicos , Proteínas del Envoltorio Viral/genética , Proteínas del Envoltorio Viral/inmunología
3.
J Virol ; 97(11): e0062123, 2023 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-37931130

RESUMEN

IMPORTANCE: Ephrin-B2 (EFNB2) is a ligand for six Eph receptors in humans and regulates multiple cell developmental and signaling processes. It also functions as the cell entry receptor for Nipah virus and Hendra virus, zoonotic viruses that can cause respiratory and/or neurological symptoms in humans with high mortality. Here, we investigate the sequence basis of EFNB2 specificity for binding the Nipah virus attachment G glycoprotein over Eph receptors. We then use this information to engineer EFNB2 as a soluble decoy receptor that specifically binds the attachment glycoproteins of the Nipah virus and other related henipaviruses to neutralize infection. These findings further mechanistic understanding of protein selectivity and may facilitate the development of diagnostics or therapeutics against henipavirus infection.


Asunto(s)
Efrina-B2 , Virus Hendra , Infecciones por Henipavirus , Virus Nipah , Proteínas Virales , Humanos , Efrina-B2/genética , Efrina-B2/metabolismo , Glicoproteínas/metabolismo , Ligandos , Proteínas Virales/metabolismo
4.
Clin Infect Dis ; 76(3): e439-e449, 2023 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-35608504

RESUMEN

BACKGROUND: Comparison of humoral responses in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccinees, those with SARS-CoV-2 infection, or combinations of vaccine/ infection ("hybrid immunity") may clarify predictors of vaccine immunogenicity. METHODS: We studied 2660 US Military Health System beneficiaries with a history of SARS-CoV-2 infection-alone (n = 705), vaccination-alone (n = 932), vaccine-after-infection (n = 869), and vaccine-breakthrough-infection (n = 154). Peak anti-spike-immunoglobulin G (IgG) responses through 183 days were compared, with adjustment for vaccine product, demography, and comorbidities. We excluded those with evidence of clinical or subclinical SARS-CoV-2 reinfection from all groups. RESULTS: Multivariable regression results indicated that vaccine-after-infection anti-spike-IgG responses were higher than infection-alone (P < .01), regardless of prior infection severity. An increased time between infection and vaccination was associated with greater post-vaccination IgG response (P < .01). Vaccination-alone elicited a greater IgG response but more rapid waning of IgG (P < .01) compared with infection-alone (P < .01). BNT162b2 and mRNA-1273 vaccine-receipt was associated with greater IgG responses compared with JNJ-78436735 vaccine-receipt (P < .01), regardless of infection history. Those with vaccine-after-infection or vaccine-breakthrough-infection had a more durable anti-spike-IgG response compared to infection-alone (P < .01). CONCLUSIONS: Vaccine-receipt elicited higher anti-spike-IgG responses than infection-alone, although IgG levels waned faster in those vaccinated (compared to infection-alone). Vaccine-after-infection elicits a greater humoral response compared with vaccine or infection alone; and the timing, but not disease severity, of prior infection predicted these post-vaccination IgG responses. While differences between groups were small in magnitude, these results offer insights into vaccine immunogenicity variations that may help inform vaccination timing strategies.


Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , Humanos , Vacuna nCoV-2019 mRNA-1273 , Ad26COVS1 , Anticuerpos Antivirales , Vacuna BNT162 , Infección Irruptiva , COVID-19/prevención & control , Inmunidad Humoral , Inmunoglobulina G , SARS-CoV-2 , Vacunación
5.
Emerg Infect Dis ; 29(9): 1925-1928, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37579513

RESUMEN

The optimal approach to COVID-19 surveillance in congregate populations remains unclear. Our study at the US Naval Academy in Annapolis, Maryland, USA, assessed the concordance of antibody prevalence in longitudinally collected dried blood spots and saliva in a setting of frequent PCR-based testing. Our findings highlight the utility of salivary-based surveillance.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , COVID-19/diagnóstico , COVID-19/epidemiología , Saliva , Prueba de COVID-19 , Técnicas de Laboratorio Clínico
6.
Proc Natl Acad Sci U S A ; 117(46): 29190-29201, 2020 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-33139552

RESUMEN

Nipah virus (NiV) is an emerging bat-borne zoonotic virus that causes near-annual outbreaks of fatal encephalitis in South Asia-one of the most populous regions on Earth. In Bangladesh, infection occurs when people drink date-palm sap contaminated with bat excreta. Outbreaks are sporadic, and the influence of viral dynamics in bats on their temporal and spatial distribution is poorly understood. We analyzed data on host ecology, molecular epidemiology, serological dynamics, and viral genetics to characterize spatiotemporal patterns of NiV dynamics in its wildlife reservoir, Pteropus medius bats, in Bangladesh. We found that NiV transmission occurred throughout the country and throughout the year. Model results indicated that local transmission dynamics were modulated by density-dependent transmission, acquired immunity that is lost over time, and recrudescence. Increased transmission followed multiyear periods of declining seroprevalence due to bat-population turnover and individual loss of humoral immunity. Individual bats had smaller host ranges than other Pteropus species (spp.), although movement data and the discovery of a Malaysia-clade NiV strain in eastern Bangladesh suggest connectivity with bats east of Bangladesh. These data suggest that discrete multiannual local epizootics in bat populations contribute to the sporadic nature of NiV outbreaks in South Asia. At the same time, the broad spatial and temporal extent of NiV transmission, including the recent outbreak in Kerala, India, highlights the continued risk of spillover to humans wherever they may interact with pteropid bats and the importance of limiting opportunities for spillover throughout Pteropus's range.


Asunto(s)
Quirópteros/virología , Infecciones por Henipavirus/epidemiología , Infecciones por Henipavirus/transmisión , Infecciones por Henipavirus/veterinaria , Infecciones por Henipavirus/virología , Virus Nipah/clasificación , Virus Nipah/genética , Animales , Asia , Bangladesh/epidemiología , Brotes de Enfermedades , Femenino , Especificidad del Huésped , Humanos , Inmunidad , Masculino , Modelos Biológicos , Epidemiología Molecular , Virus Nipah/inmunología , Filogenia , Zoonosis/epidemiología , Zoonosis/inmunología , Zoonosis/transmisión , Zoonosis/virología
7.
Clin Infect Dis ; 74(5): 897-900, 2022 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-34117878

RESUMEN

Little is known about severe acute respiratory syndrome coronavirus 2 "vaccine-breakthrough" infections (VBIs). Here we characterize 24 VBIs in predominantly young healthy persons. While none required hospitalization, a proportion endorsed severe symptoms and shed live virus as high as 4.13 × 103 plaque-forming units/mL. Infecting genotypes included both variant-of-concern (VOC) and non-VOC strains.


Asunto(s)
COVID-19 , SARS-CoV-2 , COVID-19/prevención & control , Vacunas contra la COVID-19 , Variación Genética , Humanos , Fenotipo , ARN Mensajero , SARS-CoV-2/genética , Vacunas Sintéticas , Esparcimiento de Virus , Vacunas de ARNm
8.
Emerg Infect Dis ; 28(3): 693-704, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35202527

RESUMEN

We identified and isolated a novel Hendra virus (HeV) variant not detected by routine testing from a horse in Queensland, Australia, that died from acute illness with signs consistent with HeV infection. Using whole-genome sequencing and phylogenetic analysis, we determined the variant had ≈83% nt identity with prototypic HeV. In silico and in vitro comparisons of the receptor-binding protein with prototypic HeV support that the human monoclonal antibody m102.4 used for postexposure prophylaxis and current equine vaccine will be effective against this variant. An updated quantitative PCR developed for routine surveillance resulted in subsequent case detection. Genetic sequence consistency with virus detected in grey-headed flying foxes suggests the variant circulates at least among this species. Studies are needed to determine infection kinetics, pathogenicity, reservoir-species associations, viral-host coevolution, and spillover dynamics for this virus. Surveillance and biosecurity practices should be updated to acknowledge HeV spillover risk across all regions frequented by flying foxes.


Asunto(s)
Quirópteros , Virus Hendra , Infecciones por Henipavirus , Enfermedades de los Caballos , Animales , Australia/epidemiología , Virus Hendra/genética , Infecciones por Henipavirus/epidemiología , Infecciones por Henipavirus/veterinaria , Enfermedades de los Caballos/epidemiología , Caballos , Filogenia , Vigilancia de Guardia
9.
Emerg Infect Dis ; 28(4): 828-832, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35203111

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antibodies decay but persist 6 months postvaccination; lower levels of neutralizing titers persist against Delta than wild-type virus. Of 227 vaccinated healthcare workers tested, only 2 experienced outpatient symptomatic breakthrough infections, despite 59/227 exhibiting serologic evidence of SARS-CoV-2 infection, defined as presence of nucleocapsid protein antibodies.


Asunto(s)
COVID-19 , Anticuerpos Antivirales , Formación de Anticuerpos , COVID-19/epidemiología , COVID-19/prevención & control , Vacunas contra la COVID-19 , Personal de Salud , Humanos , SARS-CoV-2 , Vacunación
10.
Proc Natl Acad Sci U S A ; 116(41): 20707-20715, 2019 10 08.
Artículo en Inglés | MEDLINE | ID: mdl-31548390

RESUMEN

Cedar virus (CedV) is a bat-borne henipavirus related to Nipah virus (NiV) and Hendra virus (HeV), zoonotic agents of fatal human disease. CedV receptor-binding protein (G) shares only ∼30% sequence identity with those of NiV and HeV, although they can all use ephrin-B2 as an entry receptor. We demonstrate that CedV also enters cells through additional B- and A-class ephrins (ephrin-B1, ephrin-A2, and ephrin-A5) and report the crystal structure of the CedV G ectodomain alone and in complex with ephrin-B1 or ephrin-B2. The CedV G receptor-binding site is structurally distinct from other henipaviruses, underlying its capability to accommodate additional ephrin receptors. We also show that CedV can enter cells through mouse ephrin-A1 but not human ephrin-A1, which differ by 1 residue in the key contact region. This is evidence of species specific ephrin receptor usage by a henipavirus, and implicates additional ephrin receptors in potential zoonotic transmission.


Asunto(s)
Efrina-B1/metabolismo , Efrina-B2/metabolismo , Efrina-B3/metabolismo , Infecciones por Henipavirus/virología , Henipavirus/fisiología , Receptores Virales/metabolismo , Proteínas del Envoltorio Viral/química , Animales , Fusión Celular , Efrina-B1/genética , Efrina-B2/genética , Efrina-B3/genética , Infecciones por Henipavirus/genética , Infecciones por Henipavirus/metabolismo , Humanos , Ratones , Mutación , Unión Proteica , Conformación Proteica , Receptores Virales/genética , Especificidad de la Especie , Proteínas del Envoltorio Viral/genética , Proteínas del Envoltorio Viral/metabolismo , Internalización del Virus
11.
J Infect Dis ; 224(9): 1462-1472, 2021 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-34331541

RESUMEN

BACKGROUND: The mechanisms underlying the association between obesity and coronavirus disease 2019 (COVID-19) severity remain unclear. After verifying that obesity was a correlate of severe COVID-19 in US Military Health System (MHS) beneficiaries, we compared immunological and virological phenotypes of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in both obese and nonobese participants. METHODS: COVID-19-infected MHS beneficiaries were enrolled, and anthropometric, clinical, and demographic data were collected. We compared the SARS-CoV-2 peak IgG humoral response and reverse-transcription polymerase chain reaction viral load in obese and nonobese patients, stratified by hospitalization, utilizing logistic regression models. RESULTS: Data from 511 COVID-19 patients were analyzed, among whom 24% were obese and 14% severely obese. Obesity was independently associated with hospitalization (adjusted odds ratio [aOR], 1.91; 95% confidence interval [CI], 1.15-3.18) and need for oxygen therapy (aOR, 3.39; 95% CI, 1.61-7.11). In outpatients, severely obese had a log10 (1.89) higher nucleocapsid (N1) genome equivalents (GE)/reaction and log10 (2.62) higher N2 GE/reaction than nonobese (P = 0.03 and P < .001, respectively). We noted a correlation between body mass index and peak anti-spike protein IgG in inpatients and outpatients (coefficient = 5.48, P < .001). CONCLUSIONS: Obesity is a strong correlate of COVID-19 severity in MHS beneficiaries. These findings offer new pathophysiological insights into the relationship between obesity and COVID-19 severity.


Asunto(s)
COVID-19/complicaciones , Obesidad/complicaciones , SARS-CoV-2/genética , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Anticuerpos Antivirales , Peso Corporal , COVID-19/diagnóstico , Femenino , Hospitalización , Humanos , Inmunoglobulina G/sangre , Masculino , Persona de Mediana Edad , Servicios de Salud Militares , Obesidad/epidemiología , Prevalencia , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , SARS-CoV-2/aislamiento & purificación , Índice de Severidad de la Enfermedad , Carga Viral , Adulto Joven
12.
J Infect Dis ; 224(12): 2010-2019, 2021 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-34673956

RESUMEN

BACKGROUND: Characterizing the longevity and quality of cellular immune responses to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) enhances understanding of coronavirus disease 2019 (COVID-19) immunity that influences clinical outcomes. Prior studies suggest SARS-CoV-2-specific T cells are present in peripheral blood 10 months after infection. Analysis of the function, durability, and diversity of cellular response long after natural infection, over a range of ages and disease phenotypes, is needed to identify preventative and therapeutic interventions. METHODS: We identified participants in our multisite longitudinal, prospective cohort study 12 months after SARS-CoV-2 infection representing a range of disease severity. We investigated function, phenotypes, and frequency of T cells specific for SARS-CoV-2 using intracellular cytokine staining and spectral flow cytometry, and compared magnitude of SARS-CoV-2-specific antibodies. RESULTS: SARS-CoV-2-specific antibodies and T cells were detected 12 months postinfection. Severe acute illness was associated with higher frequencies of SARS-CoV-2-specific CD4 T cells and antibodies at 12 months. In contrast, polyfunctional and cytotoxic T cells responsive to SARS-CoV-2 were identified in participants over a wide spectrum of disease severity. CONCLUSIONS: SARS-CoV-2 infection induces polyfunctional memory T cells detectable at 12 months postinfection, with higher frequency noted in those who experienced severe disease.


Asunto(s)
COVID-19/inmunología , COVID-19/virología , Memoria Inmunológica , Células T de Memoria , SARS-CoV-2/inmunología , Subgrupos de Linfocitos T/inmunología , Adulto , Anticuerpos Antivirales , Antígenos Virales , Biomarcadores , COVID-19/diagnóstico , COVID-19/epidemiología , Femenino , Humanos , Inmunidad Celular , Estudios Longitudinales , Masculino , Persona de Mediana Edad , Estudios Prospectivos , Índice de Severidad de la Enfermedad , Subgrupos de Linfocitos T/metabolismo , Factores de Tiempo
13.
BMC Infect Dis ; 21(1): 544, 2021 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-34107889

RESUMEN

BACKGROUND: SARS-CoV-2 is a recently emerged pandemic coronavirus (CoV) capable of causing severe respiratory illness. However, a significant number of infected people present as asymptomatic or pauci-symptomatic. In this prospective assessment of at-risk healthcare workers (HCWs) we seek to determine whether pre-existing antibody or T cell responses to previous seasonal human coronavirus (HCoV) infections affect immunological or clinical responses to SARS-CoV-2 infection or vaccination. METHODS: A cohort of 300 healthcare workers, confirmed negative for SARS-CoV-2 exposure upon study entry, will be followed for up to 1 year with monthly serology analysis of IgM and IgG antibodies against the spike proteins of SARS-CoV-2 and the four major seasonal human coronavirus - HCoV-OC43, HCoV-HKU1, HCoV-229E, and HCoV-NL63. Participants will complete monthly questionnaires that ask about Coronavirus Disease 2019 (COVID-19) exposure risks, and a standardized, validated symptom questionnaire (scoring viral respiratory disease symptoms, intensity and severity) at least twice monthly and any day when any symptoms manifest. SARS-CoV-2 PCR testing will be performed any time participants develop symptoms consistent with COVID-19. For those individuals that seroconvert and/or test positive by SARS-CoV-2 PCR, or receive the SARS-CoV-2 vaccine, additional studies of T cell activation and cytokine production in response to SARS-CoV-2 peptide pools and analysis of Natural Killer cell numbers and function will be conducted on that participant's cryopreserved baseline peripheral blood mononuclear cells (PBMCs). Following the first year of this study we will further analyze those participants having tested positive for COVID-19, and/or having received an authorized/licensed SARS-CoV-2 vaccine, quarterly (year 2) and semi-annually (years 3 and 4) to investigate immune response longevity. DISCUSSION: This study will determine the frequency of asymptomatic and pauci-symptomatic SARS-CoV-2 infection in a cohort of at-risk healthcare workers. Baseline and longitudinal assays will determine the frequency and magnitude of anti-spike glycoprotein antibodies to the seasonal HCoV-OC43, HCoV-HKU1, HCoV-229E, and HCoV-NL63, and may inform whether pre-existing antibodies to these human coronaviruses are associated with altered COVID-19 disease course. Finally, this study will evaluate whether pre-existing immune responses to seasonal HCoVs affect the magnitude and duration of antibody and T cell responses to SARS-CoV-2 vaccination, adjusting for demographic covariates.


Asunto(s)
COVID-19/inmunología , Personal de Salud/estadística & datos numéricos , SARS-CoV-2/inmunología , Seroconversión , Vacunación/estadística & datos numéricos , Anticuerpos Antivirales/sangre , Anticuerpos Antivirales/inmunología , Infecciones Asintomáticas , Vacunas contra la COVID-19/inmunología , Coronavirus/inmunología , Reacciones Cruzadas , Humanos , Estudios Prospectivos , Glicoproteína de la Espiga del Coronavirus/inmunología , Linfocitos T/inmunología
14.
J Infect Dis ; 221(Suppl 4): S471-S479, 2020 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-31686101

RESUMEN

BACKGROUND: Nipah virus (NiV) and Hendra virus (HeV) are zoonotic paramyxoviruses that cause severe disease in both animals and humans. There are no approved vaccines or treatments for use in humans; however, therapeutic treatment of both NiV and HeV infection in ferrets and non-human primates with a cross-reactive, neutralizing human monoclonal antibody (mAb), m102.4, targeting the G glycoprotein has been demonstrated. In a previous study, we isolated, characterized, and humanized a cross-reactive, neutralizing anti-F mAb (h5B3.1). The mAb h5B3.1 blocks the required F conformational change needed to facilitate membrane fusion and virus infection, and the epitope recognized by h5B3.1 has been structurally defined; however, the efficacy of h5B3.1 in vivo is unknown. METHODS: The post-infection antiviral activity of h5B3.1 was evaluated in vivo by administration in ferrets after NiV and HeV virus challenge. RESULTS: All subjects that received h5B3.1 from 1 to several days after infection with a high-dose, oral-nasal virus challenge were protected from disease, whereas all controls died. CONCLUSIONS: This is the first successful post-exposure antibody therapy for NiV and HeV using a humanized cross-reactive mAb targeting the F glycoprotein, and the findings suggest that a combination therapy targeting both F and G should be evaluated as a therapy for NiV/HeV infection.


Asunto(s)
Anticuerpos Monoclonales/uso terapéutico , Virus Hendra , Infecciones por Henipavirus/terapia , Virus Nipah , Proteínas Virales de Fusión/inmunología , Animales , Reacciones Cruzadas , Hurones , Infecciones por Henipavirus/prevención & control , Infecciones por Henipavirus/virología , Humanos
15.
J Infect Dis ; 221(Suppl 4): S407-S413, 2020 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-31682727

RESUMEN

Nipah virus (NiV) is a bat-borne zoonotic pathogen that can cause severe respiratory distress and encephalitis upon spillover into humans. NiV is capable of infecting a broad range of hosts including humans, pigs, ferrets, dogs, cats, hamsters, and at least 2 genera of bats. Little is known about the biology of NiV in the bat reservoir. In this study, we evaluate the potential for the Egyptian fruit bat (EFB), Rousettus aegyptiacus, to serve as a model organism for studying NiV in bats. Our data suggest that NiV does not efficiently replicate in EFBs in vivo. Furthermore, we show no seroconversion against NiV glycoprotein and a lack of viral replication in primary and immortalized EFB-derived cell lines. Our data show that despite using a conserved target for viral entry, NiV replication is limited in some bat species. We conclude that EFBs are not an appropriate organism to model NiV infection or transmission in bats.


Asunto(s)
Quirópteros/clasificación , Quirópteros/virología , Infecciones por Henipavirus/veterinaria , Virus Nipah/fisiología , Replicación Viral/fisiología , Animales , Infecciones por Henipavirus/virología , Especificidad de la Especie
16.
J Infect Dis ; 221(Suppl 4): S436-S447, 2020 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-32022850

RESUMEN

BACKGROUND: The henipaviruses, Hendra virus (HeV) and Nipah virus (NiV), are capable of causing severe and often lethal respiratory and/or neurologic disease in animals and humans. Given the sporadic nature of henipavirus outbreaks, licensure of vaccines and therapeutics for human use will likely require demonstration of efficacy in animal models that faithfully reproduce the human condition. Currently, the African green monkey (AGM) best mimics human henipavirus-induced disease. METHODS: The pathogenic potential of HeV and both strains of NiV (Malaysia, Bangladesh) was assessed in cynomolgus monkeys and compared with henipavirus-infected historical control AGMs. Multiplex gene and protein expression assays were used to compare host responses. RESULTS: In contrast to AGMs, in which henipaviruses cause severe and usually lethal disease, HeV and NiVs caused only mild or asymptomatic infections in macaques. All henipaviruses replicated in macaques with similar kinetics as in AGMs. Infection in macaques was associated with activation and predicted recruitment of cytotoxic CD8+ T cells, Th1 cells, IgM+ B cells, and plasma cells. Conversely, fatal outcome in AGMs was associated with aberrant innate immune signaling, complement dysregulation, Th2 skewing, and increased secretion of MCP-1. CONCLUSION: The restriction factors identified in macaques can be harnessed for development of effective countermeasures against henipavirus disease.


Asunto(s)
Virus Hendra , Infecciones por Henipavirus/veterinaria , Inmunidad Celular , Inmunidad Humoral , Macaca fascicularis , Virus Nipah , Animales , Infecciones por Henipavirus/virología , Masculino , Enfermedades de los Monos/inmunología , Enfermedades de los Monos/virología , Carga Viral , Tropismo Viral
17.
J Infect Dis ; 221(Suppl 4): S375-S382, 2020 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-32034942

RESUMEN

Bat-borne zoonotic pathogens belonging to the family Paramxyoviridae, including Nipah and Hendra viruses, and the family Filoviridae, including Ebola and Marburg viruses, can cause severe disease and high mortality rates on spillover into human populations. Surveillance efforts for henipaviruses and filoviruses have been largely restricted to the Old World; however, recent studies suggest a potentially broader distribution for henipaviruses and filoviruses than previously recognized. In the current study, we screened for henipaviruses and filoviruses in New World bats collected across 4 locations in Trinidad near the coast of Venezuela. Bat tissue samples were screened using previously established reverse-transcription polymerase chain reaction assays. Serum were screened using a multiplex immunoassay to detect antibodies reactive with the envelope glycoprotein of viruses in the genus Henipavirus and the family Filoviridae. Serum samples were also screened by means of enzyme-linked immunosorbent assay for antibodies reactive with Nipah G and F glycoproteins. Of 84 serum samples, 28 were reactive with ≥1 henipavirus glycoprotein by ≥1 serological method, and 6 serum samples were reactive against ≥1 filovirus glycoproteins. These data provide evidence of potential circulation of viruses related to the henipaviruses and filoviruses in New World bats.


Asunto(s)
Quirópteros/virología , Infecciones por Filoviridae/veterinaria , Filoviridae , Infecciones por Henipavirus/veterinaria , Henipavirus , Animales , Quirópteros/sangre , Quirópteros/clasificación , Infecciones por Filoviridae/epidemiología , Infecciones por Filoviridae/virología , Infecciones por Henipavirus/epidemiología , Infecciones por Henipavirus/virología , Pruebas Serológicas , Trinidad y Tobago/epidemiología
18.
J Anim Ecol ; 88(7): 1001-1016, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30908623

RESUMEN

Bats are reservoirs for emerging human pathogens, including Hendra and Nipah henipaviruses and Ebola and Marburg filoviruses. These viruses demonstrate predictable patterns in seasonality and age structure across multiple systems; previous work suggests that they may circulate in Madagascar's endemic fruit bats, which are widely consumed as human food. We aimed to (a) document the extent of henipa- and filovirus exposure among Malagasy fruit bats, (b) explore seasonality in seroprevalence and serostatus in these bat populations and (c) compare mechanistic hypotheses for possible transmission dynamics underlying these data. To this end, we amassed and analysed a unique dataset documenting longitudinal serological henipa- and filovirus dynamics in three Madagascar fruit bat species. We uncovered serological evidence of exposure to Hendra-/Nipah-related henipaviruses in Eidolon dupreanum, Pteropus rufus and Rousettus madagascariensis, to Cedar-related henipaviruses in E. dupreanum and R. madagascariensis and to Ebola-related filoviruses in P. rufus and R. madagascariensis. We demonstrated significant seasonality in population-level seroprevalence and individual serostatus for multiple viruses across these species, linked to the female reproductive calendar. An age-structured subset of the data highlighted evidence of waning maternal antibodies in neonates, increasing seroprevalence in young and decreasing seroprevalence late in life. Comparison of mechanistic epidemiological models fit to these data offered support for transmission hypotheses permitting waning antibodies but retained immunity in adult-age bats. Our findings suggest that bats may seasonally modulate mechanisms of pathogen control, with consequences for population-level transmission. Additionally, we narrow the field of candidate transmission hypotheses by which bats are presumed to host and transmit potentially zoonotic viruses globally.


Asunto(s)
Quirópteros , Filoviridae , Infecciones por Henipavirus , Animales , Femenino , Humanos , Recién Nacido , Madagascar , Estudios Seroepidemiológicos
19.
Emerg Infect Dis ; 24(1): 114-117, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29260678

RESUMEN

To determine whether fruit bats in Singapore have been exposed to filoviruses, we screened 409 serum samples from bats of 3 species by using a multiplex assay that detects antibodies against filoviruses. Positive samples reacted with glycoproteins from Bundibugyo, Ebola, and Sudan viruses, indicating filovirus circulation among bats in Southeast Asia.


Asunto(s)
Quirópteros/sangre , Quirópteros/virología , Ebolavirus , Marburgvirus , Proteínas del Envoltorio Viral/sangre , Animales , Glicoproteínas/sangre , Glicoproteínas/genética , Glicoproteínas/aislamiento & purificación , Estudios Seroepidemiológicos , Singapur/epidemiología
20.
Virol J ; 15(1): 56, 2018 03 27.
Artículo en Inglés | MEDLINE | ID: mdl-29587789

RESUMEN

BACKGROUND: Hendra virus and Nipah virus are zoonotic viruses that have caused severe to fatal disease in livestock and human populations. The isolation of Cedar virus, a non-pathogenic virus species in the genus Henipavirus, closely-related to the highly pathogenic Hendra virus and Nipah virus offers an opportunity to investigate differences in pathogenesis and receptor tropism among these viruses. METHODS: We constructed full-length cDNA clones of Cedar virus from synthetic oligonucleotides and rescued two replication-competent, recombinant Cedar virus variants: a recombinant wild-type Cedar virus and a recombinant Cedar virus that expresses a green fluorescent protein from an open reading frame inserted between the phosphoprotein and matrix genes. Replication kinetics of both viruses and stimulation of the interferon pathway were characterized in vitro. Cellular tropism for ephrin-B type ligands was qualitatively investigated by microscopy and quantitatively by a split-luciferase fusion assay. RESULTS: Successful rescue of recombinant Cedar virus expressing a green fluorescent protein did not significantly affect virus replication compared to the recombinant wild-type Cedar virus. We demonstrated that recombinant Cedar virus stimulated the interferon pathway and utilized the established Hendra virus and Nipah virus receptor, ephrin-B2, but not ephrin-B3 to mediate virus entry. We further characterized virus-mediated membrane fusion kinetics of Cedar virus with the known henipavirus receptors ephrin-B2 and ephrin-B3. CONCLUSIONS: The recombinant Cedar virus platform may be utilized to characterize the determinants of pathogenesis across the henipaviruses, investigate their receptor tropisms, and identify novel pan-henipavirus antivirals. Moreover, these experiments can be conducted safely under BSL-2 conditions.


Asunto(s)
Efrina-B2/metabolismo , Infecciones por Henipavirus/virología , Henipavirus/fisiología , Receptores Virales/metabolismo , Fusión Celular , Línea Celular , Efecto Citopatogénico Viral , Genes Reporteros , Proteínas Fluorescentes Verdes/genética , Henipavirus/genética , Henipavirus/metabolismo , Henipavirus/patogenicidad , Infecciones por Henipavirus/metabolismo , Interferón Tipo I/genética , Pruebas de Neutralización , Unión Proteica , Recombinación Genética , Genética Inversa , Proteínas del Envoltorio Viral/metabolismo , Tropismo Viral , Internalización del Virus , Replicación Viral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA