Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Breast Cancer Res ; 25(1): 131, 2023 10 30.
Artículo en Inglés | MEDLINE | ID: mdl-37904250

RESUMEN

BACKGROUND: Mammary physiology is distinguished in containing adult stem/progenitor cells that are actively amending the breast tissue throughout the reproductive lifespan of women. Despite their importance in both mammary gland development, physiological maintenance, and reproduction, the exact role of mammary stem/progenitor cells in mammary tumorigenesis has not been fully elucidated in humans or animal models. The implications of modulating adult stem/progenitor cells in women could lead to a better understanding of not only their function, but also toward possible breast cancer prevention led us to evaluate the efficacy of rapamycin in reducing mammary stem/progenitor cell activity and malignant progression markers. METHODS: We analyzed a large number of human breast tissues for their basal and luminal cell composition with flow cytometry and their stem and progenitor cell function with sphere formation assay with respect to age and menopausal status in connection with a clinical study (NCT02642094) involving a low-dose (2 mg/day) and short-term (5-7 days) treatment of the mTOR inhibitor sirolimus. The expression of biomarkers in biopsies and surgical breast samples were measured with quantitative analysis of immunohistochemistry. RESULTS: Sirolimus treatment significantly abrogated mammary stem cell activity, particularly in postmenopausal patients. It did not affect the frequency of luminal progenitors but decreased their self-renewal capacity. While sirolimus had no effect on basal cell population, it decreased luminal cell population, particularly in postmenopausal patients. It also significantly diminished prognostic biomarkers associated with breast cancer progression from ductal carcinoma in situ to invasive breast cancer including p16INK4A, COX-2, and Ki67, as well as markers of the senescence-associated secretary phenotype, thereby possibly functioning in preventing early breast cancer progression. CONCLUSION: Overall, these findings indicate a link from mTOR signaling to mammary stem and progenitor cell activity and cancer progression. Trial registration This study involves a clinical trial registered under the ClinicalTrials.gov identifier NCT02642094 registered December 30, 2015.


Asunto(s)
Neoplasias de la Mama , Animales , Humanos , Femenino , Neoplasias de la Mama/genética , Glándulas Mamarias Animales/metabolismo , Células Madre/metabolismo , Biomarcadores/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Sirolimus/farmacología , Sirolimus/metabolismo , Células Epiteliales/metabolismo
2.
Int J Cancer ; 151(6): 930-943, 2022 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-35657344

RESUMEN

Integrin α6 (ITGA6) forms integrin receptors with either integrin ß1 (ITGB1) or integrin ß4 (ITGB4). How it functions to regulate hepatocellular carcinoma (HCC) progression is not well-elucidated. We found that ITGA6 RNA and protein expression levels are significantly elevated in human HCC tissues in comparison with paired adjacent nontumor tissues by RNA sequencing, RT-qPCR, Western blotting and immunofluorescence staining. Stable knockdown of ITGA6 with different ITGA6 shRNA expression lentivectors significantly inhibited proliferation, migration and anchorage-independent growth of HCC cell lines in vitro, and xenograft tumor growth in vivo. The inhibition of anchorage-dependent and -independent growth of HCC cell lines was also confirmed with anti-ITGA6 antibody. ITGA6 knockdown was shown to induce cell-cycle arrest at G0/G1 phase. Immunoprecipitation assay revealed apparent interaction of ITGA6 with ITGB4, but not ITGB1. Expression studies showed that ITGA6 positively regulates the expression of ITGB4 with no or negative regulation of ITGB1 expression. Finally, while high levels of ITGA6 and ITGB4 together were associated with significantly worse survival of HCC patients in TCGA data set, the association was not significant for high levels of ITGA6 and ITGB1. In conclusion, ITGA6 is upregulated in HCC tumors and has a malignant promoting role in HCC cells through integrin α6ß4 complex. Thus, integrin α6ß4 may be a therapeutic target for treating patients with HCC.


Asunto(s)
Carcinoma Hepatocelular , Integrina alfa6 , Integrina alfa6beta4 , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patología , Línea Celular Tumoral , Proliferación Celular , Regulación Neoplásica de la Expresión Génica , Humanos , Integrina alfa6/genética , Integrina alfa6/metabolismo , Integrina alfa6beta4/genética , Integrina alfa6beta4/metabolismo , Integrina beta4/genética , Integrina beta4/metabolismo , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patología
3.
Clin Cancer Res ; 26(6): 1486-1496, 2020 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-31871301

RESUMEN

PURPOSE: We evaluated the role of everolimus in the prevention of ductal carcinoma in situ (DCIS) to invasive ductal carcinoma (IDC) progression. EXPERIMENTAL DESIGN: The effects of everolimus on breast cancer cell invasion, DCIS formation, and DCIS progression to IDC were investigated in a 3D cell culturing model, intraductal DCIS xenograft model, and spontaneous MMTV-Her2/neu mouse model. The effect of everolimus on matrix metalloproteinase 9 (MMP9) expression was determined with Western blotting and IHC in these models and in patients with DCIS before and after a window trial with rapamycin. Whether MMP9 mediates the inhibition of DCIS progression to IDC by everolimus was investigated with knockdown or overexpression of MMP9 in breast cancer cells. RESULTS: Everolimus significantly inhibited the invasion of human breast cancer cells in vitro. Daily intragastric treatment with everolimus for 7 days significantly reduced the number of invasive lesions from intraductal DCIS foci and inhibited DCIS progression to IDC in the MMTV-Her2/neu mouse mammary tumor model. Mechanistically, everolimus treatment decreased the expression of MMP9 in the in vitro and in vivo models, and in breast tissues from patients with DCIS treated with rapamycin for 1 week. Moreover, overexpression of MMP9 stimulated the invasion, whereas knockdown of MMP9 inhibited the invasion of breast cancer cell-formed spheroids in vitro and DCIS in vivo. Knockdown of MMP9 also nullified the invasion inhibition by everolimus in vitro and in vivo. CONCLUSIONS: Targeting mTORC1 can inhibit DCIS progression to IDC via MMP9 and may be a potential strategy for DCIS or early-stage IDC therapy.


Asunto(s)
Antineoplásicos/farmacología , Neoplasias de la Mama/tratamiento farmacológico , Carcinoma Intraductal no Infiltrante/tratamiento farmacológico , Everolimus/farmacología , Metaloproteinasa 9 de la Matriz/metabolismo , Animales , Biomarcadores de Tumor/metabolismo , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Carcinoma Intraductal no Infiltrante/metabolismo , Carcinoma Intraductal no Infiltrante/patología , Línea Celular Tumoral , Movimiento Celular , Progresión de la Enfermedad , Regulación hacia Abajo , Femenino , Humanos , Metaloproteinasa 9 de la Matriz/química , Ratones , Ratones Desnudos , Ratones Transgénicos , Receptor ErbB-2/genética , Receptor ErbB-2/metabolismo , Esferoides Celulares/efectos de los fármacos , Esferoides Celulares/metabolismo , Esferoides Celulares/patología , Ensayos Antitumor por Modelo de Xenoinjerto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA