Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Biophys J ; 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39033326

RESUMEN

Traction Force Microscopy (TFM) has emerged as a widely used standard methodology to measure cell-generated traction forces and determine their role in regulating cell behavior. While TFM platforms have enabled many discoveries, their implementation remains limited due to complex experimental procedures, specialized substrates, and the ill-posed inverse problem where low magnitude high-frequency noise in the displacement field severely contaminates the resulting traction measurements. Here, we introduce Deep Morphology Traction Microscopy (DeepMorphoTM), a Deep Learning alternative to conventional TFM approaches. DeepMorphoTM first infers cell-induced substrate displacement solely from a sequence of cell shapes and subsequently computes cellular traction forces, thus avoiding the requirement of a specialized fiducial-marked deformable substrate or force-free reference image. Rather, this technique drastically simplifies the overall experimental methodology, imaging, and analysis needed to conduct cell contractility measurements. We demonstrate that DeepMorphoTM quantitatively matches conventional TFM results, while offering stability against the biological variability in cell contractility for a given cell shape. Without high-frequency noise in the inferred displacement, DeepMorphoTM also resolves the ill-posedness of traction computation, increasing the consistency and accuracy of traction analysis. We demonstrate the accurate extrapolation across several cell types and substrate materials, suggesting robustness of the methodology. Accordingly, we present DeepMorphoTM as a capable yet simpler alternative to conventional TFM for characterizing cellular contractility in 2D.

2.
Nat Methods ; 18(12): 1489-1495, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34862503

RESUMEN

For quality, interpretation, reproducibility and sharing value, microscopy images should be accompanied by detailed descriptions of the conditions that were used to produce them. Micro-Meta App is an intuitive, highly interoperable, open-source software tool that was developed in the context of the 4D Nucleome (4DN) consortium and is designed to facilitate the extraction and collection of relevant microscopy metadata as specified by the recent 4DN-BINA-OME tiered-system of Microscopy Metadata specifications. In addition to substantially lowering the burden of quality assurance, the visual nature of Micro-Meta App makes it particularly suited for training purposes.


Asunto(s)
Metadatos , Microscopía Confocal/instrumentación , Microscopía Confocal/métodos , Microscopía Fluorescente/instrumentación , Microscopía Fluorescente/métodos , Aplicaciones Móviles , Lenguajes de Programación , Programas Informáticos , Animales , Línea Celular , Biología Computacional/métodos , Humanos , Procesamiento de Imagen Asistido por Computador , Ratones , Reconocimiento de Normas Patrones Automatizadas , Control de Calidad , Reproducibilidad de los Resultados , Interfaz Usuario-Computador , Flujo de Trabajo
3.
J Microsc ; 294(3): 397-410, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38691400

RESUMEN

In the dynamic landscape of scientific research, imaging core facilities are vital hubs propelling collaboration and innovation at the technology development and dissemination frontier. Here, we present a collaborative effort led by Global BioImaging (GBI), introducing international recommendations geared towards elevating the careers of Imaging Scientists in core facilities. Despite the critical role of Imaging Scientists in modern research ecosystems, challenges persist in recognising their value, aligning performance metrics and providing avenues for career progression and job security. The challenges encompass a mismatch between classic academic career paths and service-oriented roles, resulting in a lack of understanding regarding the value and impact of Imaging Scientists and core facilities and how to evaluate them properly. They further include challenges around sustainability, dedicated training opportunities and the recruitment and retention of talent. Structured across these interrelated sections, the recommendations within this publication aim to propose globally applicable solutions to navigate these challenges. These recommendations apply equally to colleagues working in other core facilities and research institutions through which access to technologies is facilitated and supported. This publication emphasises the pivotal role of Imaging Scientists in advancing research programs and presents a blueprint for fostering their career progression within institutions all around the world.


Asunto(s)
Investigadores , Humanos , Movilidad Laboral , Investigación Biomédica/métodos , Selección de Profesión
4.
Microsc Microanal ; 29(2): 616-634, 2023 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-37749742

RESUMEN

This article outlines a global study conducted by the Association of Biomedical Resource Facilities (ABRF) Light Microscopy Research Group (LMRG). The results present a novel 3D tissue-like biologically relevant standard sample that is affordable and straightforward to prepare. Detailed sample preparation, instrument-specific image acquisition protocols and image analysis methods are presented and made available to the community. The standard consists of sub-resolution and large well characterized relative intensity fluorescence microspheres embedded in a 120 µm thick 3D gel with a refractive index of 1.365. The standard allows the evaluation of several properties as a function of depth. These include the following: 1) microscope resolution with automated analysis of the point-spread function (PSF), 2) automated signal-to-noise ratio analysis, 3) calibration and correction of fluorescence intensity loss, and 4) quantitative relative intensity. Results demonstrate expected refractive index mismatch dependent losses in intensity and resolution with depth, but the relative intensities of different objects at similar depths are maintained. This is a robust standard showing reproducible results across laboratories, microscope manufacturers and objective lens types (e.g., magnification, immersion medium). Thus, these tools will be valuable for the global community to benchmark fluorescence microscopes and will contribute to improved scientific rigor and reproducibility.


Asunto(s)
Procesamiento de Imagen Asistido por Computador , Reproducibilidad de los Resultados , Microscopía Fluorescente/métodos
5.
Genes Dev ; 29(4): 426-39, 2015 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-25691469

RESUMEN

The initiation of chromosome morphogenesis marks the beginning of mitosis in all eukaryotic cells. Although many effectors of chromatin compaction have been reported, the nature and design of the essential trigger for global chromosome assembly remain unknown. Here we reveal the identity of the core mechanism responsible for chromosome morphogenesis in early mitosis. We show that the unique sensitivity of the chromosome condensation machinery for the kinase activity of Cdk1 acts as a major driving force for the compaction of chromatin at mitotic entry. This sensitivity is imparted by multisite phosphorylation of a conserved chromatin-binding sensor, the Smc4 protein. The multisite phosphorylation of this sensor integrates the activation state of Cdk1 with the dynamic binding of the condensation machinery to chromatin. Abrogation of this event leads to chromosome segregation defects and lethality, while moderate reduction reveals the existence of a novel chromatin transition state specific to mitosis, the intertwist configuration. Collectively, our results identify the mechanistic basis governing chromosome morphogenesis in early mitosis and how distinct chromatin compaction states can be established via specific thresholds of Cdk1 kinase activity.


Asunto(s)
División Celular/genética , Cromosomas Fúngicos/genética , Quinasas Ciclina-Dependientes/metabolismo , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/genética , Adenosina Trifosfatasas/química , Adenosina Trifosfatasas/metabolismo , Ensamble y Desensamble de Cromatina/genética , Proteínas Cromosómicas no Histona/metabolismo , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/metabolismo , Genes de Cambio/fisiología , Mitosis , Complejos Multiproteicos/química , Complejos Multiproteicos/metabolismo , Fosforilación , Unión Proteica , Proteínas de Saccharomyces cerevisiae/metabolismo
6.
J Cell Sci ; 133(4)2020 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-31988150

RESUMEN

Fluorescence illumination can cause phototoxicity that negatively affects living samples. This study demonstrates that much of the phototoxicity and photobleaching experienced with live-cell fluorescence imaging occurs as a result of 'illumination overhead' (IO). This occurs when a sample is illuminated but fluorescence emission is not being captured by the microscope camera. Several technological advancements have been developed, including fast-switching LED lamps and transistor-transistor logic (TTL) circuits, to diminish phototoxicity caused by IO. These advancements are not standard features on most microscopes and many biologists are unaware of their necessity for live-cell imaging. IO is particularly problematic when imaging rapid processes that require short exposure times. This study presents a workflow to optimize imaging conditions for measuring both slow and dynamic processes while minimizing phototoxicity on any standard microscope. The workflow includes a guide on how to (1) determine the maximum image exposure time for a dynamic process, (2) optimize excitation light intensity and (3) assess cell health with mitochondrial markers.This article has an associated First Person interview with the first author of the paper.


Asunto(s)
Bioensayo , Luz , Microscopía Fluorescente , Imagen Óptica , Fotoblanqueo
7.
J Biol Chem ; 295(31): 10535-10559, 2020 07 31.
Artículo en Inglés | MEDLINE | ID: mdl-32299913

RESUMEN

SHC adaptor protein (SHCA) and lipoma-preferred partner (LPP) mediate transforming growth factor ß (TGFß)-induced breast cancer cell migration and invasion. Reduced expression of either protein diminishes breast cancer lung metastasis, but the reason for this effect is unclear. Here, using total internal reflection fluorescence (TIRF) microscopy, we found that TGFß enhanced the assembly and disassembly rates of paxillin-containing adhesions in an SHCA-dependent manner through the phosphorylation of the specific SHCA tyrosine residues Tyr-239, Tyr-240, and Tyr-313. Using a BioID proximity labeling approach, we show that SHCA exists in a complex with a variety of actin cytoskeletal proteins, including paxillin and LPP. Consistent with a functional interaction between SHCA and LPP, TGFß-induced LPP localization to cellular adhesions depended on SHCA. Once localized to the adhesions, LPP was required for TGFß-induced increases in cell migration and adhesion dynamics. Mutations that impaired LPP localization to adhesions (mLIM1) or impeded interactions with the actin cytoskeleton via α-actinin (ΔABD) abrogated migratory responses to TGFß. Live-cell TIRF microscopy revealed that SHCA clustering at the cell membrane preceded LPP recruitment. We therefore hypothesize that, in the presence of TGFß, SHCA promotes the formation of small, dynamic adhesions by acting as a nucleator of focal complex formation. Finally, we defined a previously unknown function for SHCA in the formation of invadopodia, a process that also required LPP. Our results reveal that SHCA controls the formation and function of adhesions and invadopodia, two key cellular structures required for breast cancer metastasis.


Asunto(s)
Movimiento Celular , Proteínas del Citoesqueleto/metabolismo , Proteínas con Dominio LIM/metabolismo , Podosomas/metabolismo , Proteína Transformadora 1 que Contiene Dominios de Homología 2 de Src/metabolismo , Animales , Adhesión Celular , Línea Celular Transformada , Proteínas del Citoesqueleto/genética , Femenino , Proteínas con Dominio LIM/genética , Ratones , Paxillin/genética , Paxillin/metabolismo , Podosomas/genética , Proteína Transformadora 1 que Contiene Dominios de Homología 2 de Src/genética , Factor de Crecimiento Transformador beta
8.
J Microsc ; 284(1): 56-73, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34214188

RESUMEN

A modern day light microscope has evolved from a tool devoted to making primarily empirical observations to what is now a sophisticated , quantitative device that is an integral part of both physical and life science research. Nowadays, microscopes are found in nearly every experimental laboratory. However, despite their prevalent use in capturing and quantifying scientific phenomena, neither a thorough understanding of the principles underlying quantitative imaging techniques nor appropriate knowledge of how to calibrate, operate and maintain microscopes can be taken for granted. This is clearly demonstrated by the well-documented and widespread difficulties that are routinely encountered in evaluating acquired data and reproducing scientific experiments. Indeed, studies have shown that more than 70% of researchers have tried and failed to repeat another scientist's experiments, while more than half have even failed to reproduce their own experiments. One factor behind the reproducibility crisis of experiments published in scientific journals is the frequent underreporting of imaging methods caused by a lack of awareness and/or a lack of knowledge of the applied technique. Whereas quality control procedures for some methods used in biomedical research, such as genomics (e.g. DNA sequencing, RNA-seq) or cytometry, have been introduced (e.g. ENCODE), this issue has not been tackled for optical microscopy instrumentation and images. Although many calibration standards and protocols have been published, there is a lack of awareness and agreement on common standards and guidelines for quality assessment and reproducibility. In April 2020, the QUality Assessment and REProducibility for instruments and images in Light Microscopy (QUAREP-LiMi) initiative was formed. This initiative comprises imaging scientists from academia and industry who share a common interest in achieving a better understanding of the performance and limitations of microscopes and improved quality control (QC) in light microscopy. The ultimate goal of the QUAREP-LiMi initiative is to establish a set of common QC standards, guidelines, metadata models and tools, including detailed protocols, with the ultimate aim of improving reproducible advances in scientific research. This White Paper (1) summarizes the major obstacles identified in the field that motivated the launch of the QUAREP-LiMi initiative; (2) identifies the urgent need to address these obstacles in a grassroots manner, through a community of stakeholders including, researchers, imaging scientists, bioimage analysts, bioimage informatics developers, corporate partners, funding agencies, standards organizations, scientific publishers and observers of such; (3) outlines the current actions of the QUAREP-LiMi initiative and (4) proposes future steps that can be taken to improve the dissemination and acceptance of the proposed guidelines to manage QC. To summarize, the principal goal of the QUAREP-LiMi initiative is to improve the overall quality and reproducibility of light microscope image data by introducing broadly accepted standard practices and accurately captured image data metrics.


Asunto(s)
Microscopía , Estándares de Referencia , Reproducibilidad de los Resultados
9.
Breast Cancer Res ; 22(1): 7, 2020 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-31941526

RESUMEN

BACKGROUND: The p66ShcA redox protein is the longest isoform of the Shc1 gene and is variably expressed in breast cancers. In response to a variety of stress stimuli, p66ShcA becomes phosphorylated on serine 36, which allows it to translocate from the cytoplasm to the mitochondria where it stimulates the formation of reactive oxygen species (ROS). Conflicting studies suggest both pro- and anti-tumorigenic functions for p66ShcA, which prompted us to examine the contribution of tumor cell-intrinsic functions of p66ShcA during breast cancer metastasis. METHODS: We tested whether p66ShcA impacts the lung-metastatic ability of breast cancer cells. Breast cancer cells characteristic of the ErbB2+/luminal (NIC) or basal (4T1) subtypes were engineered to overexpress p66ShcA. In addition, lung-metastatic 4T1 variants (4T1-537) were engineered to lack endogenous p66ShcA via Crispr/Cas9 genomic editing. p66ShcA null cells were then reconstituted with wild-type p66ShcA or a mutant (S36A) that cannot translocate to the mitochondria, thereby lacking the ability to stimulate mitochondrial-dependent ROS production. These cells were tested for their ability to form spontaneous metastases from the primary site or seed and colonize the lung in experimental (tail vein) metastasis assays. These cells were further characterized with respect to their migration rates, focal adhesion dynamics, and resistance to anoikis in vitro. Finally, their ability to survive in circulation and seed the lungs of mice was assessed in vivo. RESULTS: We show that p66ShcA increases the lung-metastatic potential of breast cancer cells by augmenting their ability to navigate each stage of the metastatic cascade. A non-phosphorylatable p66ShcA-S36A mutant, which cannot translocate to the mitochondria, still potentiated breast cancer cell migration, lung colonization, and growth of secondary lung metastases. However, breast cancer cell survival in the circulation uniquely required an intact p66ShcA S36 phosphorylation site. CONCLUSION: This study provides the first evidence that both mitochondrial and non-mitochondrial p66ShcA pools collaborate in breast cancer cells to promote their maximal metastatic fitness.


Asunto(s)
Neoplasias de la Mama/patología , Neoplasias Pulmonares/secundario , Mitocondrias/patología , Estrés Oxidativo , Especies Reactivas de Oxígeno/metabolismo , Proteína Transformadora 1 que Contiene Dominios de Homología 2 de Src/metabolismo , Animales , Neoplasias de la Mama/metabolismo , Línea Celular Tumoral , Modelos Animales de Enfermedad , Femenino , Humanos , Neoplasias Pulmonares/metabolismo , Ratones , Ratones Endogámicos BALB C , Mitocondrias/metabolismo , Fosforilación
17.
Histochem Cell Biol ; 151(4): 357-366, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30767050

RESUMEN

The process of fluorescence starts with the efficient generation of light that is required for the excitation of fluorophores. As such, light sources are a crucial component of a fluorescence microscope. Choosing the right illumination tool can not only improve the quality of experimental results, but also the microscope's economic and environmental footprint. While arc lamps have historically proven to be a reliable light source for widefield fluorescence microscopy, solid-state light-emitting diodes (LEDs) have become the light source of choice for new fluorescence microscopy systems. In this paper, we demonstrate that LEDs have superior light stability on all timescales tested and use less electrical power than traditional light sources when used at lower power outputs. They can be readily switched on and off electronically, have a longer lifetime and they do not contain mercury, and thus are better for the environment. We demonstrate that it is important to measure light source power output during warm-up and switching, as a light source's responsiveness (in terms of power) can be quite variable. Several general protocols for testing light source stability are presented. A detailed life cycle analysis shows that an LED light source can have a fourfold lower environmental impact when compared to a metal halide source.


Asunto(s)
Iluminación/instrumentación , Microscopía Fluorescente/instrumentación
18.
PLoS Comput Biol ; 14(7): e1006303, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29975690

RESUMEN

Focal adhesions are protein complexes that anchor cells to the extracellular matrix. During migration, the growth and disassembly of these structures are spatiotemporally regulated, with new adhesions forming at the leading edge of the cell and mature adhesions disassembling at the rear. Signalling proteins and structural cytoskeletal components tightly regulate adhesion dynamics. Paxillin, an adaptor protein within adhesions, is one of these proteins. Its phosphorylation at serine 273 (S273) is crucial for maintaining fast adhesion assembly and disassembly. Paxillin is known to bind to a GIT1-ßPIX-PAK1 complex, which increases the local activation of the small GTPase Rac. To understand quantitatively the behaviour of this system and how it relates to adhesion assembly/disassembly, we developed a mathematical model describing the dynamics of the small GTPases Rac and Rho as determined by paxillin S273 phosphorylation. Our model revealed that the system possesses bistability, where switching between uninduced (active Rho) and induced (active Rac) states can occur through a change in rate of paxillin phosphorylation or PAK1 activation. The bistable switch is characterized by the presence of memory, minimal change in the levels of active Rac and Rho within the induced and uninduced states, respectively, and the limited regime of monostability associated with the uninduced state. These results were validated experimentally by showing the presence of bimodality in adhesion assembly and disassembly rates, and demonstrating that Rac activity increases after treating Chinese Hamster Ovary cells with okadaic acid (a paxillin phosphatase inhibitor), followed by a modest recovery after 20 min washout. Spatial gradients of phosphorylated paxillin in a reaction-diffusion model gave rise to distinct regions of Rac and Rho activities, resembling polarization of a cell into front and rear. Perturbing several parameters of the model also revealed important insights into how signalling components upstream and downstream of paxillin phosphorylation affect dynamics.


Asunto(s)
Adhesiones Focales/metabolismo , Modelos Biológicos , Paxillin/metabolismo , Serina/metabolismo , Proteínas de Unión al GTP rac/metabolismo , Proteínas de Unión al GTP rho/metabolismo , Animales , Células CHO , Movimiento Celular , Polaridad Celular , Cricetulus , Proteínas del Citoesqueleto/metabolismo , Activación Enzimática , Inhibidores Enzimáticos/farmacología , Ácido Ocadaico/farmacología , Paxillin/química , Fosforilación , Transducción de Señal/fisiología , Quinasas p21 Activadas/metabolismo
19.
J Cell Sci ; 126(Pt 9): 1981-91, 2013 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-23447672

RESUMEN

Transforming growth factor ß (TGFß) is a potent modifier of the malignant phenotype in ErbB2-expressing breast cancers. We demonstrate that epithelial-derived breast cancer cells, which undergo a TGFß-induced epithelial-to-mesenchymal transition (EMT), engage signaling molecules that normally facilitate cellular migration and invasion of mesenchymal cells. We identify lipoma preferred partner (LPP) as an indispensable regulator of TGFß-induced migration and invasion of ErbB2-expressing breast cancer cells. We show that LPP re-localizes to focal adhesion complexes upon TGFß stimulation and is a critical determinant in TGFß-mediated focal adhesion turnover. Finally, we have determined that the interaction between LPP and α-actinin, an actin cross-linking protein, is necessary for TGFß-induced migration and invasion of ErbB2-expressing breast cancer cells. Thus, our data reveal that LPP, which is normally operative in cells of mesenchymal origin, can be co-opted by breast cancer cells during an EMT to promote their migration and invasion.


Asunto(s)
Actinina/metabolismo , Neoplasias de la Mama/metabolismo , Movimiento Celular , Proteínas del Citoesqueleto/metabolismo , Regulación Enzimológica de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Proteínas con Dominio LIM/metabolismo , Neoplasias Mamarias Experimentales/metabolismo , Complejos Multiproteicos/metabolismo , Receptor ErbB-2/biosíntesis , Factor de Crecimiento Transformador beta/metabolismo , Actinina/genética , Animales , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Línea Celular Tumoral , Proteínas del Citoesqueleto/genética , Transición Epitelial-Mesenquimal/efectos de los fármacos , Transición Epitelial-Mesenquimal/genética , Femenino , Humanos , Proteínas con Dominio LIM/genética , Neoplasias Mamarias Experimentales/genética , Neoplasias Mamarias Experimentales/patología , Ratones , Ratones Transgénicos , Complejos Multiproteicos/genética , Invasividad Neoplásica , Receptor ErbB-2/genética , Factor de Crecimiento Transformador beta/farmacología
20.
ArXiv ; 2024 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-38351940

RESUMEN

Together with the molecular knowledge of genes and proteins, biological images promise to significantly enhance the scientific understanding of complex cellular systems and to advance predictive and personalized therapeutic products for human health. For this potential to be realized, quality-assured image data must be shared among labs at a global scale to be compared, pooled, and reanalyzed, thus unleashing untold potential beyond the original purpose for which the data was generated. There are two broad sets of requirements to enable image data sharing in the life sciences. One set of requirements is articulated in the companion White Paper entitled "Enabling Global Image Data Sharing in the Life Sciences," which is published in parallel and addresses the need to build the cyberinfrastructure for sharing the digital array data (arXiv:2401.13023 [q-bio.OT], https://doi.org/10.48550/arXiv.2401.13023). In this White Paper, we detail a broad set of requirements, which involves collecting, managing, presenting, and propagating contextual information essential to assess the quality, understand the content, interpret the scientific implications, and reuse image data in the context of the experimental details. We start by providing an overview of the main lessons learned to date through international community activities, which have recently made considerable progress toward generating community standard practices for imaging Quality Control (QC) and metadata. We then provide a clear set of recommendations for amplifying this work. The driving goal is to address remaining challenges, and democratize access to common practices and tools for a spectrum of biomedical researchers, regardless of their expertise, access to resources, and geographical location.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA