Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
EMBO Rep ; 24(12): e57339, 2023 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-37929643

RESUMEN

Breast adipose tissue is an important contributor to the obesity-breast cancer link. Extracellular vesicles (EVs) are nanosized particles containing selective cargo, such as miRNAs, that act locally or circulate to distant sites to modulate target cell functions. Here, we find that long-term education of breast cancer cells with EVs obtained from breast adipose tissue of women who are overweight or obese (O-EVs) results in increased proliferation. RNA-seq analysis of O-EV-educated cells demonstrates increased expression of genes involved in oxidative phosphorylation, such as ATP synthase and NADH: ubiquinone oxidoreductase. O-EVs increase respiratory complex protein expression, mitochondrial density, and mitochondrial respiration in tumor cells. The mitochondrial complex I inhibitor metformin reverses O-EV-induced cell proliferation. Several miRNAs-miR-155-5p, miR-10a-3p, and miR-30a-3p-which promote mitochondrial respiration and proliferation, are enriched in O-EVs relative to EVs from lean women. O-EV-induced proliferation and mitochondrial activity are associated with stimulation of the Akt/mTOR/P70S6K pathway, and are reversed upon silencing of P70S6K. This study reveals a new facet of the obesity-breast cancer link with human breast adipose tissue-derived EVs causing metabolic reprogramming of breast cancer cells.


Asunto(s)
Neoplasias de la Mama , Vesículas Extracelulares , MicroARNs , Humanos , Femenino , Proteínas Quinasas S6 Ribosómicas 70-kDa/metabolismo , Tejido Adiposo/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Obesidad/metabolismo , Neoplasias de la Mama/metabolismo , Proteínas/metabolismo , Vesículas Extracelulares/metabolismo
2.
Cancer Causes Control ; 35(6): 921-933, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38363402

RESUMEN

PURPOSE: Sex-steroid hormones are associated with postmenopausal breast cancer but potential confounding from other biological pathways is rarely considered. We estimated risk ratios for sex-steroid hormone biomarkers in relation to postmenopausal estrogen receptor (ER)-positive breast cancer, while accounting for biomarkers from insulin/insulin-like growth factor-signaling and inflammatory pathways. METHODS: This analysis included 1208 women from a case-cohort study of postmenopausal breast cancer within the Melbourne Collaborative Cohort Study. Weighted Poisson regression with a robust variance estimator was used to estimate risk ratios (RRs) and 95% confidence intervals (CIs) of postmenopausal ER-positive breast cancer, per doubling plasma concentration of progesterone, estrogens, androgens, and sex-hormone binding globulin (SHBG). Analyses included sociodemographic and lifestyle confounders, and other biomarkers identified as potential confounders. RESULTS: Increased risks of postmenopausal ER-positive breast cancer were observed per doubling plasma concentration of progesterone (RR: 1.22, 95% CI 1.03 to 1.44), androstenedione (RR 1.20, 95% CI 0.99 to 1.45), dehydroepiandrosterone (RR: 1.15, 95% CI 1.00 to 1.34), total testosterone (RR: 1.11, 95% CI 0.96 to 1.29), free testosterone (RR: 1.12, 95% CI 0.98 to 1.28), estrone (RR 1.21, 95% CI 0.99 to 1.48), total estradiol (RR 1.19, 95% CI 1.02 to 1.39) and free estradiol (RR 1.22, 95% CI 1.05 to 1.41). A possible decreased risk was observed for SHBG (RR 0.83, 95% CI 0.66 to 1.05). CONCLUSION: Progesterone, estrogens and androgens likely increase postmenopausal ER-positive breast cancer risk, whereas SHBG may decrease risk. These findings strengthen the causal evidence surrounding the sex-hormone-driven nature of postmenopausal breast cancer.


Asunto(s)
Neoplasias de la Mama , Hormonas Esteroides Gonadales , Posmenopausia , Receptores de Estrógenos , Humanos , Femenino , Neoplasias de la Mama/sangre , Neoplasias de la Mama/epidemiología , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/etiología , Posmenopausia/sangre , Persona de Mediana Edad , Hormonas Esteroides Gonadales/sangre , Estudios de Cohortes , Receptores de Estrógenos/metabolismo , Factores de Riesgo , Anciano , Estudios de Casos y Controles , Globulina de Unión a Hormona Sexual/metabolismo , Globulina de Unión a Hormona Sexual/análisis
3.
Ann Plast Surg ; 92(4S Suppl 2): S207-S209, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38556675

RESUMEN

INTRODUCTION: Autologous fat grafting (AFG) is a common technique used to enhance aesthetic outcomes in postmastectomy breast reconstruction patients. Adipokines are hormones secreted by adipose tissue that play a critical role in regulating metabolic processes and the immune system. However, dysregulated adipokine secretion and signaling can contribute to the development and progression of cancer by promoting angiogenesis, altering the immune response, and inducing the epithelial mesenchymal transition. We aimed to assess how breast cancer cells behave in conditioned media derived from fat grafting lipoaspirates and gain a better understanding of the potential interactions that may occur within the tumor microenvironment. METHODS: Patients who were undergoing AFG as a part of breast reconstruction at NY-Presbyterian/Weill Cornell Medical Center between March 2021 and July 2023 were consented and enrolled in the study. This study was approved by the Weill Cornell Medicine Institutional Review Board (#20-10022850-14). Conditioned media is created using 20% of patient lipoaspirate secretome and 80% starving media. The growth of MCF-7, a human ER/PR+ breast cancer cell line, in conditioned media is assessed using CyQUANT. RESULTS: The breast cancer cells incubated in conditioned media displayed similar growth trends as those in complete media, which is enriched for cell growth (P > 0.05). MCF-7 cell behavior in conditioned media differed significantly from their proliferation patterns when serum starved in 100% starving media (P < 0.05). DISCUSSION: Our results suggest that there may be inherent factors within the lipoaspirate that may promote MCF-7 proliferation. One potential implication is that AFG used for breast reconstruction should be delayed until local-regional disease control has been established. In addition, based on the in vitro proliferation patterns of breast cancer cells in conditioned media, the safety profile of AFG may be enhanced if the procedure is performed after attaining negative margins and the completion breast cancer treatment.


Asunto(s)
Neoplasias de la Mama , Humanos , Femenino , Neoplasias de la Mama/cirugía , Células MCF-7 , Medios de Cultivo Condicionados/farmacología , Mastectomía , Proliferación Celular , Tejido Adiposo/trasplante , Microambiente Tumoral
4.
Ann Plast Surg ; 92(4S Suppl 2): S112-S116, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38556658

RESUMEN

INTRODUCTION: Autologous fat grafting is a method of improving aesthetic outcomes after both breast reconstruction and aesthetic surgery through volume enhancement and tissue contouring. Long-lasting effects are linked to greater patient satisfaction and more optimal augmentation results. Harvesting, processing, and injection techniques may all affect the longevity of deformity filling. Our objective is to evaluate the effect of lipoaspirate processing modality on longitudinal volume retention after surgery. METHODS: A prospective, single-institution, randomized control trial placed consented postmastectomy fat grafting patients into 1 of 3 treatment arms (active filtration, low-pressure decantation, and standard decantation) in a 1:1:1 ratio. A preoperative 3-dimensional scan of the upper torso was taken as baseline. At the 3-month postoperative visit, another 3D scan was taken. Audodesk Meshmixer was used to evaluate the volume change. RESULTS: The volume of fat injected during the initial procedure did not differ significantly between the treatment arms (P > 0.05). Both active filtration and low-pressure decantation resulted in higher percentage volume retention than traditional decantation (P < 0.05). Active filtration and low-pressure decantation exhibited comparable degrees of fat maintenance at 3 months (P > 0.05). DISCUSSION: Compared with using traditional decantation as the lipoaspirate purification technique, active filtration and low-pressure decantation may have led to higher levels of cell viability by way of reduced cellular debris and other inflammatory components that may contribute to tissue resorption and necrosis. Further immunohistochemistry studies are needed to examine whether active filtration and low-pressure decantation lead to lipoaspirates with more concentrated viable adipocytes, progenitor cells, and factors for angiogenesis.


Asunto(s)
Neoplasias de la Mama , Lipectomía , Humanos , Femenino , Tejido Adiposo/trasplante , Lipectomía/métodos , Estudios Prospectivos , Recolección de Tejidos y Órganos , Mastectomía , Trasplante Autólogo
5.
Br J Cancer ; 125(4): 495-509, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33911195

RESUMEN

Obesity is a risk factor for at least 13 different types of cancer, many of which are hormonally driven, and is associated with increased cancer incidence and morbidity. Adult obesity rates are steadily increasing and a subsequent increase in cancer burden is anticipated. Obesity-related dysfunction can contribute to cancer pathogenesis and treatment resistance through various mechanisms, including those mediated by insulin, leptin, adipokine, and aromatase signalling pathways, particularly in women. Furthermore, adiposity-related changes can influence tumour vascularity and inflammation in the tumour microenvironment, which can support tumour development and growth. Trials investigating non-pharmacological approaches to target the mechanisms driving obesity-mediated cancer pathogenesis are emerging and are necessary to better appreciate the interplay between malignancy, adiposity, diet and exercise. Diet, exercise and bariatric surgery are potential strategies to reverse the cancer-promoting effects of obesity; trials of these interventions should be conducted in a scientifically rigorous manner with dose escalation and appropriate selection of tumour phenotypes and have cancer-related clinical and mechanistic endpoints. We are only beginning to understand the mechanisms by which obesity effects cell signalling and systemic factors that contribute to oncogenesis. As the rates of obesity and cancer increase, we must promote the development of non-pharmacological lifestyle trials for the treatment and prevention of malignancy.


Asunto(s)
Neoplasias Hormono-Dependientes/prevención & control , Obesidad/terapia , Cirugía Bariátrica , Ensayos Clínicos como Asunto , Dietoterapia , Terapia por Ejercicio , Femenino , Humanos , Masculino , Neoplasias Hormono-Dependientes/etiología , Neoplasias Hormono-Dependientes/inmunología , Obesidad/complicaciones , Obesidad/inmunología
6.
FASEB J ; 32(6): 3361-3370, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29401621

RESUMEN

White adipose tissue inflammation is linked with increased aromatase gene expression and estrogen production, a major risk factor for breast cancer in obese postmenopausal women. TNF-α, a proinflammatory cytokine, is a key driver of aromatase promoter I.4-mediated expression in adipose tissue. In this study, we have shown that IL-10, an anti-inflammatory cytokine, suppressed both TNF-α-stimulated human aromatase reporter-luciferase (hARO-Luc) expression in mouse bone marrow mesenchymal stromal cells and aromatase gene expression in human breast adipose stromal cells (ASCs). IL-10 blocked TNF-α-stimulated ERK1/2 activation in ASCs, suggesting an inhibitory effect through the MAPK signaling pathway. The links among obesity, IL-10, and aromatase were confirmed in ovariectomized (OVX) hARO-Luc mice, where increased adiposity was associated with upregulation of aromatase reporter activity and reduced IL-10 level in the mammary fat pad. OVX mice also exhibited changes in gut microbiota, similar to that in obese women, indicating altered immune function. In summary, our results suggest that increased adiposity, induced by the lack of ovarian hormones, results in enhanced expression of aromatase in mammary adipose tissue, mediated by reduction in local IL-10. These findings may bring new insights into the mechanisms involved in the development of postmenopausal breast cancer, as well as novel approaches for prevention.-Martínez-Chacón, G., Brown, K. A., Docanto, M. M., Kumar, H., Salminen, S., Saarinen, N., Mäkelä, S. IL-10 suppresses TNF-α-induced expression of human aromatase gene in mammary adipose tissue.


Asunto(s)
Tejido Adiposo/enzimología , Aromatasa/biosíntesis , Mama/enzimología , Regulación Enzimológica de la Expresión Génica , Interleucina-10/metabolismo , Sistema de Señalización de MAP Quinasas , Factor de Necrosis Tumoral alfa/metabolismo , Animales , Femenino , Humanos , Glándulas Mamarias Animales/enzimología , Ratones , Ratones Transgénicos , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo
7.
Clin Endocrinol (Oxf) ; 89(5): 605-612, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30107043

RESUMEN

BACKGROUND: We investigated whether metformin prevents tamoxifen-induced endometrial changes and insulin resistance (IR) after a diagnosis of breast cancer. METHODS: This was a single-centre, randomized, double-blind, placebo-controlled, parallel group trial. Postmenopausal women with hormone receptor-positive breast cancer taking tamoxifen were randomly allocated to metformin 850 mg or identical placebo, twice daily, for 52 weeks. Outcome measures included double endometrial thickness (ET) measured by transvaginal ultrasound, fasting insulin, glucose and IR estimated by the homeostasis model of assessment (HOMA-IR). RESULTS: A total of 112 women were screened and 102 randomized. Results are presented as median (range). The 101 women who took at least one dose of medication were aged 56 (43-72) years, with 5(0.5-28) years postmenopause, and had taken tamoxifen for 28.9 (0-367.4) weeks. The baseline ET was 2.9 mm (1.4-21.9) for the placebo group (n = 52) and 2.5 mm (1.3-14.8) for the metformin group (n = 50). At 52 weeks, the median ET was statistically significantly lower for the metformin (n = 36) than for the placebo group (n = 45) (2.3 mm (1.4-7.8) vs 3.0 (1.2-11.3); P = 0.05). 13.3% allocated to placebo had an ET greater than 4 mm vs 5.7% for metformin (P = 0.26). There was no endometrial atypia or cancer. Compared with placebo, metformin resulted in significantly greater baseline-adjusted reductions in weight (P < 0.001), waist circumference (0.03) and HOMA-IR (P < 0.001). CONCLUSIONS: Metformin appears to inhibit tamoxifen-induced endometrial changes and has favourable metabolic effects. Further research into the adjuvant use of metformin after breast cancer and to prevent EH and cancer is warranted.


Asunto(s)
Endometrio/efectos de los fármacos , Hipoglucemiantes/farmacología , Metformina/farmacología , Tamoxifeno/farmacología , Adulto , Anciano , Glucemia/efectos de los fármacos , Índice de Masa Corporal , Método Doble Ciego , Endometrio/metabolismo , Ayuno/sangre , Femenino , Humanos , Resistencia a la Insulina , Persona de Mediana Edad , Posmenopausia , Circunferencia de la Cintura
8.
Ann Plast Surg ; 80(4 Suppl 4): S223-S228, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29481479

RESUMEN

INTRODUCTION: Obesity is a known risk factor for the development and prognosis of breast cancer. Adipocytes have been identified as a source of exogenous lipids in other cancer types and may similarly provide energy to fuel malignant survival and growth in breast cancer. This relationship is of particular relevance to plastic surgery, because many reconstructions after oncologic mastectomy achieve optimal aesthetics and durability using adjunctive autologous fat transfer (AFT). Despite the increasing ubiquity and promise of AFT, many unanswered questions remain, including safety in the setting of breast cancer. Clinical studies to examine this question are underway, but an in vitro system is critical to elucidate the complex interplay between the cells that normally reside at the surgical recipient site. To study these interactions and characterize possible lipid transfer between adipocytes to breast cancer cells, we designed a 3-dimensional in vitro model using primary patient-derived tissues. METHODS: Breast adipose tissue was acquired from patients undergoing breast reduction surgery. The tissue was enzymatically digested and sorted to retrieve adipocytes and adipose stromal cells. Polydimethylsiloxane wells were filled with type I collagen-encapsulated adipocytes labeled with the fluorescent lipid dye boron dipyrromethene, as well as unlabeled adipose stromal cells. A monolayer of red fluorescently labeled MDA-MB-231 and MDA-MB-468 breast cancer cells was seeded on the surface of the construct. Lipid transfer at the interface between adipocytes and breast cancer cells was analyzed. RESULTS: Confocal microscopy revealed a dense culture of native adipocytes containing fluorescent lipid droplets in the 3-dimensional collagen culture platform. RFP-positive breast cancer cells were found in close proximity to lipid-laden adipocytes. Lipid transfer from adipocytes to breast cancer cells was observed by the presence of boron dipyrromethene-positive lipid droplets within RFP-labeled breast cancer cells. CONCLUSION: We have established a 3-dimensional model to study complex breast cancer-adipose tissue interactions. Direct transfer of fluorescently labeled lipids from adipocytes to breast cancer cells may indicate aberrant metabolism to fuel malignant growth and adaptive survival. Our novel platform can untangle the complex interplay within the breast cancer tumor microenvironment for high-throughput analysis and better elucidate the safety of AFT in postoncologic mastectomy.


Asunto(s)
Adipocitos/metabolismo , Materiales Biomiméticos , Neoplasias de la Mama/metabolismo , Metabolismo de los Lípidos , Mamoplastia/métodos , Grasa Subcutánea/trasplante , Microambiente Tumoral , Animales , Neoplasias de la Mama/cirugía , Femenino , Humanos , Técnicas In Vitro , Mamoplastia/efectos adversos , Mastectomía , Microscopía Confocal , Modelos Anatómicos , Ratas
9.
J Biol Chem ; 291(31): 16011-23, 2016 07 29.
Artículo en Inglés | MEDLINE | ID: mdl-27467582

RESUMEN

Li-Fraumeni syndrome (LFS) patients harbor germ line mutations in the TP53 gene and are at increased risk of hormone receptor-positive breast cancers. Recently, elevated levels of aromatase, the rate-limiting enzyme for estrogen biosynthesis, were found in the breast tissue of LFS patients. Although p53 down-regulates aromatase expression, the underlying mechanisms are incompletely understood. In the present study, we found that LFS stromal cells expressed higher levels of Hsp90 ATPase activity and aromatase compared with wild-type stromal cells. Inhibition of Hsp90 ATPase suppressed aromatase expression. Silencing Aha1 (activator of Hsp90 ATPase 1), a co-chaperone of Hsp90 required for its ATPase activity, led to both inhibition of Hsp90 ATPase activity and reduced aromatase expression. In comparison with wild-type stromal cells, increased levels of the Hsp90 client proteins, HIF-1α, and PKM2 were found in LFS stromal cells. A complex comprised of HIF-1α and PKM2 was recruited to the aromatase promoter II in LFS stromal cells. Silencing either HIF-1α or PKM2 suppressed aromatase expression in LFS stromal cells. CP-31398, a p53 rescue compound, suppressed levels of Aha1, Hsp90 ATPase activity, levels of PKM2 and HIF-1α, and aromatase expression in LFS stromal cells. Consistent with these in vitro findings, levels of Hsp90 ATPase activity, Aha1, HIF-1α, PKM2, and aromatase were increased in the mammary glands of p53 null versus wild-type mice. PKM2 and HIF-1α were shown to co-localize in the nucleus of stromal cells of LFS breast tissue. Taken together, our results show that the Aha1-Hsp90-PKM2/HIF-1α axis mediates the induction of aromatase in LFS.


Asunto(s)
Tejido Adiposo/metabolismo , Aromatasa/biosíntesis , Mama/metabolismo , Proteínas Portadoras/metabolismo , Regulación Enzimológica de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Proteínas HSP90 de Choque Térmico/metabolismo , Síndrome de Li-Fraumeni/metabolismo , Glándulas Mamarias Animales/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas de Neoplasias/metabolismo , Hormonas Tiroideas/metabolismo , Tejido Adiposo/patología , Animales , Aromatasa/genética , Mama/patología , Proteínas Portadoras/genética , Línea Celular , Femenino , Proteínas HSP90 de Choque Térmico/genética , Humanos , Síndrome de Li-Fraumeni/genética , Síndrome de Li-Fraumeni/patología , Glándulas Mamarias Animales/patología , Proteínas de la Membrana/genética , Ratones , Ratones Noqueados , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Proteínas de Neoplasias/genética , Células del Estroma/metabolismo , Células del Estroma/patología , Hormonas Tiroideas/genética , Proteínas de Unión a Hormona Tiroide
10.
Breast Cancer Res Treat ; 161(2): 213-227, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27848152

RESUMEN

PURPOSE: While triple-negative breast cancer (TNBC) is negative for estrogen receptor alpha, a substantial proportion of carcinomas express estrogen receptor beta (ERß); consequently, estrogen actions and metabolism may be relevant in this cancer subtype. METHODS: A cohort of 81 TNBC patients from Tohoku University Hospital, Japan were characterised with regard to the expression of estrogen receptor beta and enzymes known to modulate levels of estrogens in breast and other tissues (Aromatase, 17-beta- Hydroxysteroid dehydrogenases 1, 2 and 6). This was done at the protein level by means of immunohistochemistry. As this cohort has been previously characterised for androgens, this also allows for comparison between the expressions of estrogen-related proteins and of androgen-related proteins. Preliminary mechanistic studies in cell culture were also undertaken. RESULTS: 17ßHSD2 was detected in the highest number of cases followed by 17ßHSD1, 17ßHSD6 and aromatase. When comparing the expression of ERß with that of the enzymes, it was positively correlated with the expression of 17ßHSD6 (p < 0.05) and trended towards correlation with dual expression of 17ßHSD1 and 2 (p < 0.07). 17ßHSD1 was associated with significantly reduced tumour volume (p = 0.0025), while ERß was associated with a trend towards reduced lymphovascular invasion, (p < 0.061). Interestingly, in survival analysis, 17ßHSD6 expression was the only one of these five factors that influenced survival, with positive samples being associated with longer disease-free survival compared to those that were negative for 17ßHSD6 (p < 0.05). In assessing associations with expression of proteins in the androgenic pathway, expression of aromatase appeared to be associated with androgenic pathways in TNBC patients (p < 0.05). Due to this association and the potential relevance to androgen-directed therapies in TNBC, we evaluated this interaction in vitro. We observed androgen-dependent upregulation of aromatase and ERß in a subset of AR expressing TNBC cell lines (MDA-MB-453, SUM-185-PE and MFM-223). CONCLUSION: Overall this study suggests the presence of, and a potential protective effect of estrogens in TNBC.


Asunto(s)
Estrógenos/metabolismo , Neoplasias de la Mama Triple Negativas/metabolismo , Andrógenos/metabolismo , Biomarcadores , Carcinoma Ductal de Mama/metabolismo , Carcinoma Ductal de Mama/patología , Línea Celular Tumoral , Receptor beta de Estrógeno/metabolismo , Femenino , Humanos , Inmunohistoquímica , Redes y Vías Metabólicas , Persona de Mediana Edad , Clasificación del Tumor , Metástasis de la Neoplasia , Estadificación de Neoplasias , Pronóstico , Transducción de Señal , Esteroides/metabolismo , Neoplasias de la Mama Triple Negativas/mortalidad , Neoplasias de la Mama Triple Negativas/patología
12.
Reprod Fertil Dev ; 2016 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-26946412

RESUMEN

Although oestrogens are essential for spermatogenesis and their biosynthesis is dependent on aromatase expression, the molecular mechanism of aromatase regulation is poorly understood. Our laboratory has demonstrated that liver kinase B1 (LKB1) is a negative regulator of aromatase in the breast by phosphorylating AMP-activated protein kinase (AMPK) and inhibiting the nuclear translocation of the cAMP response element-binding protein-regulated transcription co-activator (CRTC) 2. The aim of this study was to determine the location of testis-associated proteins in the LKB1-CRTC pathway. Aromatase, LKB1, phosphorylated AMPK (pAMPK) and CRTC1-3 were examined by selected immunofluorescent antibodies in testis samples from a prepubertal boy and three fertile men. Aromatase, pAMPK and LKB1 proteins were present in the seminiferous epithelium and interstitium of the testis and were expressed in a differential and developmental manner in particular cell types. The expression pattern of LKB1 was similar to that of pAMPK and inversely related to aromatase expression. CRTC1 and CRTC3 were localised in the seminiferous epithelium, whereas CRTC2 was barely detectable in testis. These results lead to the conclusion that LKB1 is involved in the molecular pathway that underpins aromatase regulation in the testis via CRTC1 and CRTC3 and may be important for the oestrogen-mediated development of germ cells.

13.
Breast Cancer Res ; 17: 79, 2015 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-26040322

RESUMEN

INTRODUCTION: Mammographic density (MD), after adjustment for a women's age and body mass index, is a strong and independent risk factor for breast cancer (BC). Although the BC risk attributable to increased MD is significant in healthy women, the biological basis of high mammographic density (HMD) causation and how it raises BC risk remain elusive. We assessed the histological and immunohistochemical differences between matched HMD and low mammographic density (LMD) breast tissues from healthy women to define which cell features may mediate the increased MD and MD-associated BC risk. METHODS: Tissues were obtained between 2008 and 2013 from 41 women undergoing prophylactic mastectomy because of their high BC risk profile. Tissue slices resected from the mastectomy specimens were X-rayed, then HMD and LMD regions were dissected based on radiological appearance. The histological composition, aromatase immunoreactivity, hormone receptor status and proliferation status were assessed, as were collagen amount and orientation, epithelial subsets and immune cell status. RESULTS: HMD tissue had a significantly greater proportion of stroma, collagen and epithelium, as well as less fat, than LMD tissue did. Second harmonic generation imaging demonstrated more organised stromal collagen in HMD tissues than in LMD tissues. There was significantly more aromatase immunoreactivity in both the stromal and glandular regions of HMD tissues than in those regions of LMD tissues, although no significant differences in levels of oestrogen receptor, progesterone receptor or Ki-67 expression were detected. The number of macrophages within the epithelium or stroma did not change; however, HMD stroma exhibited less CD206(+) alternatively activated macrophages. Epithelial cell maturation was not altered in HMD samples, and no evidence of epithelial-mesenchymal transition was seen; however, there was a significant increase in vimentin(+)/CD45(+) immune cells within the epithelial layer in HMD tissues. CONCLUSIONS: We confirmed increased proportions of stroma and epithelium, increased aromatase activity and no changes in hormone receptor or Ki-67 marker status in HMD tissue. The HMD region showed increased collagen deposition and organisation as well as decreased alternatively activated macrophages in the stroma. The HMD epithelium may be a site for local inflammation, as we observed a significant increase in CD45(+)/vimentin(+) immune cells in this area.


Asunto(s)
Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Mama/metabolismo , Colágeno/metabolismo , Epitelio/metabolismo , Glándulas Mamarias Humanas/anomalías , Células del Estroma/metabolismo , Adulto , Biomarcadores de Tumor/metabolismo , Mama/patología , Densidad de la Mama , Neoplasias de la Mama/inmunología , Transición Epitelial-Mesenquimal , Epitelio/patología , Femenino , Humanos , Inmunohistoquímica , Inmunofenotipificación , Macrófagos/inmunología , Macrófagos/metabolismo , Macrófagos/patología , Mamografía , Persona de Mediana Edad , Fenotipo , Factores de Riesgo
14.
J Mammary Gland Biol Neoplasia ; 19(2): 183-9, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24935438

RESUMEN

Obesity rates have risen dramatically over the past century, having nearly doubled since 1980. Changes in diet and lifestyle have contributed to this occurrence in younger women, and changing hormone levels during the menopausal transition has no doubt exacerbated the issue in older women. The relationship between adiposity and breast cancer is clear in postmenopausal women, and is intimately linked to the increased expression of aromatase and the production of estrogens within the breast adipose. This, in turn, is highly dependent on the localized chronic inflammation observed in obese adipose. This review will therefore explore the relationship between obesity, inflammation and estrogens, with a particular focus on the molecular regulation of aromatase in the postmenopausal breast in the context of obesity and breast cancer.


Asunto(s)
Estrógenos/metabolismo , Inflamación/patología , Glándulas Mamarias Animales/patología , Glándulas Mamarias Humanas/patología , Obesidad/patología , Animales , Aromatasa/metabolismo , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Femenino , Humanos , Inflamación/metabolismo , Glándulas Mamarias Animales/metabolismo , Glándulas Mamarias Humanas/metabolismo , Neoplasias Mamarias Animales/metabolismo , Neoplasias Mamarias Animales/patología , Obesidad/metabolismo , Posmenopausia/metabolismo
15.
Breast Cancer Res Treat ; 147(1): 193-201, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25056185

RESUMEN

Aromatase converts androgens into estrogens and its expression within adipose stromal cells (ASCs) is believed to be the major driver of estrogen-dependent cancers in older women. Ghrelin is a gut-hormone that is involved in the regulation of appetite and known to bind to and activate the cognate ghrelin receptor, GHSR1a. The unacylated form of ghrelin, des-acyl ghrelin, binds weakly to GHSR1a but has been shown to play an important role in regulating a number of physiological processes. The aim of this study was to determine the effect of ghrelin and des-acyl ghrelin on aromatase in primary human ASCs. Primary human ASCs were isolated from adipose tissue of women undergoing cosmetic surgery. Real-time PCR and tritiated water-release assays were performed to examine the effect of treatment on aromatase transcript expression and aromatase activity, respectively. Treatments included ghrelin, des-acyl ghrelin, obestatin, and capromorelin (GHSR1a agonist). GHSR1a protein expression was assessed by Western blot and effects of treatment on Ca(2+) and cAMP second messenger systems were examined using the Flexstation assay and the Lance Ultra cAMP kit, respectively. Results demonstrate that pM concentrations of ghrelin and des-acyl ghrelin inhibit aromatase transcript expression and activity in ASCs under basal conditions and in PGE2-stimulated cells. Moreover, the effects of ghrelin and des-acyl ghrelin are mediated via effects on aromatase promoter PII-specific transcripts. Neither the GHSR1a-specific agonist capromorelin nor obestatin had any effect on aromatase transcript expression or activity. Moreover, GHSR1a protein was undetectable by Western blot and neither ghrelin nor capromorelin elicited a calcium response in ASCs. Finally, ghrelin caused a significant decrease in basal and forskolin-stimulated cAMP in ASC. These findings suggest that ghrelin acts at alternate receptors in ASCs by decreasing intracellular cAMP levels. Ghrelin mimetics may be useful in the treatment of estrogen-dependent breast cancer.


Asunto(s)
Tejido Adiposo/enzimología , Aromatasa/química , Mama/enzimología , AMP Cíclico/metabolismo , Ghrelina/farmacología , Células del Estroma/enzimología , Tejido Adiposo/citología , Tejido Adiposo/efectos de los fármacos , Aromatasa/genética , Aromatasa/metabolismo , Western Blotting , Mama/citología , Mama/efectos de los fármacos , Calcio/metabolismo , Células Cultivadas , Femenino , Humanos , Piperidinas/farmacología , Pirazoles/farmacología , ARN Mensajero/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Receptores de Ghrelina/agonistas , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Células del Estroma/citología , Células del Estroma/efectos de los fármacos
16.
Breast Cancer Res Treat ; 145(2): 281-93, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24715382

RESUMEN

One of the active intracellular pathways/networks in triple-negative breast carcinoma (TNBC) is that of the androgen receptor (AR). In this study, we examined AR and androgen-metabolising enzyme immunoreactivity in subcategories of TNBC to further elucidate the roles of androgenic pathways in TNBC. We utilised formalin-fixed paraffin-embedded breast cancer samples from ductal carcinoma in situ (DCIS) and invasive ductal carcinoma patient cohorts. We then used immunohistochemistry to classify these samples into basal-like and non-basal samples and to assess interactions between AR, androgen-metabolising enzymes and proliferation. To further substantiate our hypothesis and provide mechanistic insights, we also looked at the expression and regulation of these factors in publically available microarray data and in a panel of TNBC AR-positive cell lines. DCIS was associated with higher levels of AR and enzymes (p < 0.02), although a similar difference was not noticed in basal and non-basal samples. AR and enzymes were correlated in all states. In TNBC cell lines (MDA-MD-453, MFM-223 and SUM185-PE), we found that DHT treatment up-regulated 5αR1 and 17ßHSD5 suggesting a mechanistic explanation for the correlations observed in the histological samples. Publicly available microarray data in TNBC cases suggested similar patterns to those observed in histological samples. In the majority of settings, including publically available microarray data, an inverse association between AR and proliferation was detected. These findings suggest that decreases in AR and androgen-metabolising enzymes may be involved in the increased biological aggressiveness in TNBC development.


Asunto(s)
Andrógenos/metabolismo , Neoplasias de la Mama Triple Negativas/metabolismo , Neoplasias de la Mama Triple Negativas/patología , 3-Hidroxiesteroide Deshidrogenasas/genética , 3-Hidroxiesteroide Deshidrogenasas/metabolismo , Miembro C3 de la Familia 1 de las Aldo-Ceto Reductasas , Carcinoma Ductal de Mama/tratamiento farmacológico , Carcinoma Ductal de Mama/metabolismo , Carcinoma Ductal de Mama/patología , Carcinoma Intraductal no Infiltrante/tratamiento farmacológico , Carcinoma Intraductal no Infiltrante/metabolismo , Carcinoma Intraductal no Infiltrante/patología , Línea Celular Tumoral , Proliferación Celular , Colestenona 5 alfa-Reductasa/genética , Colestenona 5 alfa-Reductasa/metabolismo , Dihidrotestosterona/farmacología , Receptores ErbB/metabolismo , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Hidroxiprostaglandina Deshidrogenasas/genética , Hidroxiprostaglandina Deshidrogenasas/metabolismo , Queratina-5/metabolismo , Queratina-6/metabolismo , Receptores Androgénicos/metabolismo , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico
17.
Biochem Biophys Rep ; 38: 101742, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38873224

RESUMEN

The estrogen-synthesizing enzyme aromatase is expressed in adipose tissue where it controls the local concentration of estrogen. It has been suggested that the organic solvents ethanol and ethylene glycol can induce estrogen synthesis by inhibiting PPARγ activity. Since elevated estrogen synthesis in adipose tissue is a risk factor for breast cancer development, it is of interest to further characterize the mechanisms regulating aromatase expression. Here, we explored the mechanisms by which ethanol and ethylene glycol modulate aromatase mRNA expression and the ultimate conversion of androgens into estrogens. NMR spectroscopy revealed that ethanol and ethylene glycol influence the active state of PPARγ. An inhibitory effect on PPARγ was confirmed by adipogenesis assays and PPARγ target gene expression analysis in adipocytes. However, only ethanol increased aromatase mRNA in differentiated human adipocytes. In contrast, ethylene glycol downregulated aromatase in a PPARγ-independent manner. An animal study using female Wistar rats was conducted to assess the acute effects of ethanol and ethylene glycol on aromatase expression in adipose tissue within a physiological context. No changes in aromatase or PPARγ target gene (Adipoq and Fabp4) levels were observed in adipose tissue or ovary in response to the chemical exposures, suggesting an absence of acute PPARγ-mediated effects in these organs. The results suggest that ethanol and ethylene glycol are weak PPARγ antagonists in mouse and human adipocytes as well as in cell-free NMR spectroscopy. Both compounds seem to affect adipocyte aromatase expression in vitro, where ethanol increased aromatase expression PPARγ-dependently and ethylene glycol decreased aromatase expression independently of PPARγ. No acute effects on aromatase expression or PPARγ activity were observed in adipose tissue or ovary in rats in this study design.

18.
Biochem Pharmacol ; 222: 116095, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38423186

RESUMEN

Aromatase is the rate-limiting enzyme in the biosynthesis of estrogens and a key risk factor for hormone receptor-positive breast cancer. In postmenopausal women, estrogens synthesized in adipose tissue promotes the growth of estrogen receptor positive breast cancers. Activation of peroxisome proliferator-activated receptor gamma (PPARγ) in adipose stromal cells (ASCs) leads to decreased expression of aromatase and differentiation of ASCs into adipocytes. Environmental chemicals can act as antagonists of PPARγ and disrupt its function. This study aimed to test the hypothesis that PPARγ antagonists can promote breast cancer by stimulating aromatase expression in human adipose tissue. Primary cells and explants from human adipose tissue as well as A41hWAT, C3H10T1/2, and H295R cell lines were used to investigate PPARγ antagonist-stimulated effects on adipogenesis, aromatase expression, and estrogen biosynthesis. Selected antagonists inhibited adipocyte differentiation, preventing the adipogenesis-associated downregulation of aromatase. NMR spectroscopy confirmed direct interaction between the potent antagonist DEHPA and PPARγ, inhibiting agonist binding. Short-term exposure of ASCs to PPARγ antagonists upregulated aromatase only in differentiated cells, and a similar effect could be observed in human breast adipose tissue explants. Overexpression of PPARG with or without agonist treatment reduced aromatase expression in ASCs. The data suggest that environmental PPARγ antagonists regulate aromatase expression in adipose tissue through two mechanisms. The first is indirect and involves inhibition of adipogenesis, while the second occurs more acutely.


Asunto(s)
Neoplasias de la Mama , PPAR gamma , Femenino , Humanos , PPAR gamma/genética , PPAR gamma/metabolismo , Aromatasa/genética , Aromatasa/metabolismo , Tejido Adiposo/metabolismo , Estrógenos/metabolismo , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/metabolismo , Adipogénesis
19.
Breast Cancer Res ; 15(2): R30, 2013 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-23566437

RESUMEN

INTRODUCTION: The majority of postmenopausal breast cancers are estrogen-dependent. Tumor-derived factors, such as prostaglandin E2 (PGE2), stimulate CREB1 binding to cAMP response elements (CREs) on aromatase promoter II (PII), leading to the increased expression of aromatase and biosynthesis of estrogens within human breast adipose stromal cells (ASCs). Hypoxia inducible factor-1α (HIF-1α), a key mediator of cellular adaptation to low oxygen levels, is emerging as a novel prognostic marker in breast cancer. We have identified the presence of a consensus HIF-1α binding motif overlapping with the proximal CRE of aromatase PII. However, the regulation of aromatase expression by HIF-1α in breast cancer has not been characterized. This study aimed to characterize the role of HIF-1α in the activation of aromatase PII. METHODS: HIF-1α expression and localization were examined in human breast ASCs using quantitative PCR (QPCR), Western blotting, immunofluorescence and high content screening. QPCR and tritiated water-release assays were performed to assess the effect of HIF-1α on aromatase expression and activity. Reporter assays and chromatin immunoprecipitation (ChIP) were performed to assess the effect of HIF-1α on PII activity and binding. Treatments included PGE2 or DMOG ((dimethyloxalglycine), HIF-1α stabilizer). Double immunohistochemistry for HIF-1α and aromatase was performed on tissues obtained from breast cancer and cancer-free patients. RESULTS: Results indicate that PGE2 increases HIF-1α transcript and protein expression, nuclear localization and binding to aromatase PII in human breast ASCs. Results also demonstrate that HIF-1α significantly increases PII activity, and aromatase transcript expression and activity, in the presence of DMOG and/or PGE2, and that HIF-1α and CREB1 act co-operatively on PII. There is a significant increase in HIF-1α positive ASCs in breast cancer patients compared to cancer-free women, and a positive association between HIF-1α and aromatase expression. CONCLUSIONS: This study is the first to identify HIF-1α as a modulator of PII-driven aromatase expression in human breast tumor-associated stroma and provides a novel mechanism for estrogen regulation in obesity-related, post-menopausal breast cancer. Together with our on-going studies on the role of AMP-activated protein kinase (AMPK) in the regulation of breast aromatase, this work provides another link between disregulated metabolism and breast cancer.


Asunto(s)
Tejido Adiposo/metabolismo , Aromatasa/genética , Neoplasias de la Mama/metabolismo , Dinoprostona/farmacología , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Células del Estroma/metabolismo , Tejido Adiposo/efectos de los fármacos , Tejido Adiposo/patología , Aromatasa/metabolismo , Western Blotting , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/patología , Carcinoma Ductal de Mama/tratamiento farmacológico , Carcinoma Ductal de Mama/metabolismo , Carcinoma Ductal de Mama/patología , Núcleo Celular/efectos de los fármacos , Núcleo Celular/metabolismo , Inmunoprecipitación de Cromatina , Femenino , Técnica del Anticuerpo Fluorescente , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Técnicas para Inmunoenzimas , Oxitócicos/farmacología , ARN Mensajero/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Células del Estroma/efectos de los fármacos , Células del Estroma/patología , Células Tumorales Cultivadas
20.
Endocr Rev ; 44(6): 961-974, 2023 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-37260403

RESUMEN

Adipose tissue is the largest endocrine organ and an accepted contributor to overall energy homeostasis. There is strong evidence linking increased adiposity to the development of 13 types of cancer. With increased adiposity comes metabolic dysfunction and insulin resistance, and increased systemic insulin and glucose support the growth of many cancers, including those of the colon and endometrium. There is also an important direct crosstalk between adipose tissue and various organs. For instance, the healthy development and function of the mammary gland, as well as the development, growth, and progression of breast cancer, are heavily impacted by the breast adipose tissue in which breast epithelial cells are embedded. Cells of the adipose tissue are responsive to external stimuli, including overfeeding, leading to remodeling and important changes in the secretion of factors known to drive the development and growth of cancers. Loss of factors like adiponectin and increased production of leptin, endotrophin, steroid hormones, and inflammatory mediators have been determined to be important mediators of the obesity-cancer link. Obesity is also associated with a structural remodeling of the adipose tissue, including increased localized fibrosis and disrupted angiogenesis that contribute to the development and progression of cancers. Furthermore, tumor cells feed off the adipose tissue, where increased lipolysis within adipocytes leads to the release of fatty acids and stromal cell aerobic glycolysis leading to the increased production of lactate. Both have been hypothesized to support the higher energetic demands of cancer cells. Here, we aim to provide an update on the state of the literature revolving around the role of the adipose tissue in cancer initiation and progression.


Asunto(s)
Resistencia a la Insulina , Neoplasias , Femenino , Humanos , Tejido Adiposo/metabolismo , Adipocitos/metabolismo , Adipocitos/patología , Obesidad/metabolismo , Adiposidad , Neoplasias/etiología , Neoplasias/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA