Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 173
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Autoimmun ; 142: 103136, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37935063

RESUMEN

K2P2.1 (TREK1), a two-pore domain potassium channel, has emerged as regulator of leukocyte transmigration into the central nervous system. In the context of skeletal muscle, immune cell infiltration constitutes the pathogenic hallmark of idiopathic inflammatory myopathies (IIMs). However, the underlying mechanisms remain to be elucidated. In this study, we investigated the role of K2P2.1 in the autoimmune response of IIMs. We detected K2P2.1 expression in primary skeletal muscle and endothelial cells of murine and human origin. We observed an increased pro-inflammatory cell response, adhesion and transmigration by pharmacological blockade or genetic deletion of K2P2.1 in vitro and in in vivo myositis mouse models. Of note, our findings were not restricted to endothelial cells as skeletal muscle cells with impaired K2P2.1 function also demonstrated a strong pro-inflammatory response. Conversely, these features were abrogated by activation of K2P2.1 and improved the disease course of a myositis mouse model. In humans, K2P2.1 expression was diminished in IIM patients compared to non-diseased controls arguing for the translatability of our findings. In summary, K2P2.1 may regulate the inflammatory response of skeletal muscle. Further research is required to understand whether K2P2.1 could serve as novel therapeutic target.


Asunto(s)
Células Endoteliales , Miositis , Humanos , Animales , Ratones , Células Endoteliales/patología , Miositis/genética , Músculo Esquelético/patología , Leucocitos/patología
2.
Biol Chem ; 404(4): 303-310, 2023 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-36453998

RESUMEN

It is known that the thalamus plays an important role in pathological brain conditions involved in demyelinating, inflammatory and neurodegenerative diseases such as Multiple Sclerosis (MS). Beside immune cells and cytokines, ion channels were found to be key players in neuroinflammation. MS is a prototypical example of an autoimmune disease of the central nervous system that is classified as a channelopathy where abnormal ion channel function leads to symptoms and clinical signs. Here we review the influence of the cytokine-ion channel interaction in the thalamocortical system in demyelination and inflammation.


Asunto(s)
Esclerosis Múltiple , Humanos , Esclerosis Múltiple/patología , Encéfalo/patología , Inflamación , Canales Iónicos , Citocinas
3.
Biol Chem ; 404(4): 291-302, 2023 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-36852869

RESUMEN

Tonic current through hyperpolarization-activated cyclic nucleotide-gated cation (HCN) channels is influencing neuronal firing properties and channel function is strongly influenced by the brain-specific auxiliary subunit tetratricopeptide repeat-containing Rab8b-interacting protein (TRIP8b). Since Kv1.2 channels and TRIP8b were also suggested to interact, we assessed brain Kv1.2 mRNA and protein expression as well as the reduction of K+ outward currents by Kv1.2-blocking compounds (Psora-4; tityustoxin-Kα, TsTX-Kα) in different brain areas of TRIP8b-deficient (TRIP8b -/- ) compared to wildtype (WT) mice. We found that transcription levels of Kv1.2 channels were not different between genotypes. Furthermore, Kv1.2 current amplitude was not affected upon co-expression with TRIP8b in oocytes. However, Kv1.2 immunofluorescence was stronger in dendritic areas of cortical and hippocampal neurons. Furthermore, the peak net outward current was increased and the inactivation of the Psora-4-sensitive current component was less pronounced in cortical neurons in TRIP8b -/- mice. In current clamp recordings, application of TsTX increased the excitability of thalamocortical (TC) neurons with increased number of elicited action potentials upon step depolarization. We conclude that TRIP8b may not preferentially influence the amplitude of current through Kv1.2 channels but seems to affect current inactivation and channel localization. In TRIP8b -/- a compensatory upregulation of other Kv channels was observed.


Asunto(s)
Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización , Neuronas , Ratones , Animales , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/metabolismo , Neuronas/metabolismo , Hipocampo/metabolismo , Encéfalo/metabolismo , Oocitos
4.
Biol Chem ; 404(4): 267-277, 2023 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-36630596

RESUMEN

N-Methyl-D-aspartate receptors (NMDARs) are central for learning and information processing in the brain. Dysfunction of NMDARs can play a key role in the pathogenesis of neurodegeneration and drug addiction. The development of selective NMDAR modulators represents a promising strategy to target these diseases. Among such modulating compounds are ifenprodil and its 3-benzazepine derivatives. Classically, the effects of these NMDAR modulators have been tested by techniques like two-electrode voltage clamp (TEVC), patch clamp, or fluorescence-based assays. However, testing their functional effects in complex human systems requires more advanced approaches. Here, we established a human induced pluripotent stem cell-derived (hiPSC-derived) neural cell system and proved its eligibility as a test system for investigating NMDAR modulators and pharmaceutical effects on human neurons.


Asunto(s)
Células Madre Pluripotentes Inducidas , Receptores de N-Metil-D-Aspartato , Humanos , Neuronas
5.
Biol Chem ; 404(4): 241-254, 2023 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-36809224

RESUMEN

The Phosphatidylinositol 3-phosphate 5-kinase Type III PIKfyve is the main source for selectively generated phosphatidylinositol 3,5-bisphosphate (PI(3,5)P2), a known regulator of membrane protein trafficking. PI(3,5)P2 facilitates the cardiac KCNQ1/KCNE1 channel plasma membrane abundance and therewith increases the macroscopic current amplitude. Functional-physical interaction of PI(3,5)P2 with membrane proteins and its structural impact is not sufficiently understood. This study aimed to identify molecular interaction sites and stimulatory mechanisms of the KCNQ1/KCNE1 channel via the PIKfyve-PI(3,5)P2 axis. Mutational scanning at the intracellular membrane leaflet and nuclear magnetic resonance (NMR) spectroscopy identified two PI(3,5)P2 binding sites, the known PIP2 site PS1 and the newly identified N-terminal α-helix S0 as relevant for functional PIKfyve effects. Cd2+ coordination to engineered cysteines and molecular modeling suggest that repositioning of S0 stabilizes the channel s open state, an effect strictly dependent on parallel binding of PI(3,5)P2 to both sites.


Asunto(s)
Canal de Potasio KCNQ1 , Fosfatidilinositol 4,5-Difosfato , Fosfatidilinositol 4,5-Difosfato/química , Fosfatidilinositol 4,5-Difosfato/metabolismo , Canal de Potasio KCNQ1/química , Canal de Potasio KCNQ1/genética , Canal de Potasio KCNQ1/metabolismo , Sitios de Unión , Mutación , Membrana Celular/metabolismo
6.
Biol Chem ; 404(4): 355-375, 2023 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-36774650

RESUMEN

Modulation of two-pore domain potassium (K2P) channels has emerged as a novel field of therapeutic strategies as they may regulate immune cell activation and metabolism, inflammatory signals, or barrier integrity. One of these ion channels is the TWIK-related potassium channel 1 (TREK1). In the current study, we report the identification and validation of new TREK1 activators. Firstly, we used a modified potassium ion channel assay to perform high-throughput-screening of new TREK1 activators. Dose-response studies helped to identify compounds with a high separation between effectiveness and toxicity. Inside-out patch-clamp measurements of Xenopus laevis oocytes expressing TREK1 were used for further validation of these activators regarding specificity and activity. These approaches yielded three substances, E1, B3 and A2 that robustly activate TREK1. Functionally, we demonstrated that these compounds reduce levels of adhesion molecules on primary human brain and muscle endothelial cells without affecting cell viability. Finally, we studied compound A2 via voltage-clamp recordings as this activator displayed the strongest effect on adhesion molecules. Interestingly, A2 lacked TREK1 activation in the tested neuronal cell type. Taken together, this study provides data on novel TREK1 activators that might be employed to pharmacologically modulate TREK1 activity.


Asunto(s)
Canales de Potasio de Dominio Poro en Tándem , Humanos , Canales de Potasio de Dominio Poro en Tándem/metabolismo , Células Endoteliales/metabolismo , Enfermedades Neuroinflamatorias , Encéfalo/metabolismo , Moléculas de Adhesión Celular/metabolismo
7.
Cereb Cortex ; 32(20): 4397-4421, 2022 10 08.
Artículo en Inglés | MEDLINE | ID: mdl-35076711

RESUMEN

A consensus is yet to be reached regarding the exact prevalence of epileptic seizures or epilepsy in multiple sclerosis (MS). In addition, the underlying pathophysiological basis of the reciprocal interaction among neuroinflammation, demyelination, and epilepsy remains unclear. Therefore, a better understanding of cellular and network mechanisms linking these pathologies is needed. Cuprizone-induced general demyelination in rodents is a valuable model for studying MS pathologies. Here, we studied the relationship among epileptic activity, loss of myelin, and pro-inflammatory cytokines by inducing acute, generalized demyelination in a genetic mouse model of human absence epilepsy, C3H/HeJ mice. Both cellular and network mechanisms were studied using in vivo and in vitro electrophysiological techniques. We found that acute, generalized demyelination in C3H/HeJ mice resulted in a lower number of spike-wave discharges, increased cortical theta oscillations, and reduction of slow rhythmic intrathalamic burst activity. In addition, generalized demyelination resulted in a significant reduction in the amplitude of the hyperpolarization-activated inward current (Ih) in thalamic relay cells, which was accompanied by lower surface expression of hyperpolarization-activated, cyclic nucleotide-gated channels, and the phosphorylated form of TRIP8b (pS237-TRIP8b). We suggest that demyelination-related changes in thalamic Ih may be one of the factors defining the prevalence of seizures in MS.


Asunto(s)
Enfermedades Desmielinizantes , Epilepsia Tipo Ausencia , Animales , Corteza Cerebral/fisiología , Cuprizona/metabolismo , Cuprizona/toxicidad , Citocinas/metabolismo , Enfermedades Desmielinizantes/inducido químicamente , Humanos , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/metabolismo , Ratones , Ratones Endogámicos C3H , Neuronas/fisiología , Nucleótidos Cíclicos/metabolismo , Convulsiones , Tálamo/fisiología
8.
Cell Mol Life Sci ; 79(8): 440, 2022 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-35864219

RESUMEN

The enterovirus Coxsackievirus B3 (CVB3) is known to be a major source for the development of cardiac dysfunctions like viral myocarditis (VMC) and dilatative cardiomyopathy (DCM), but also results in bradycardia and fatal cardiac arrest. Besides clinical reports on bradycardia and sudden cardiac death, very little is known about the influence of CVB3 on the activity of human cardiac pacemaker cells. Here, we address this issue using the first human induced pluripotent stem cell (hiPSC)-derived pacemaker-like cells, in which the expression of a transgenic non-infectious variant of CVB3 can be controlled dose- and time-dependently. We found that CVB3 drastically changed hyperpolarization-activated cyclic nucleotide-gated channel 4 (HCN4) distribution and function in hiPSC-derived pacemaker-like tissue. In addition, using HCN4 cell expression systems, we found that HCN4 currents were decreased with altered voltage dependency of activation when CVB3 was expressed. Increased autophagosome formation and autophagosomal HCN4 insertion was observed in hiPSC-derived pacemaker-like cells under CVB3 expression as well. Individual effects of single, non-structural CVB3 proteins were analyzed and demonstrated that CVB3 proteins 2C and 3A had the most robust effect on HCN4 activity. Treatment of cells with the Rab7 inhibitor CID 106770 or the CVB3-3A inhibitor GW5074 led to the recovery of the cytoplasmatic HCN4 accumulation into a healthy appearing phenotype, indicating that malfunctioning Rab7-directed autophagosome transport is involved in the disturbed, cytoplasmatic HCN4 accumulation in CVB3-expressing human pacemaker-like cells. Summarizing, the enterovirus CVB3 inhibits human cardiac pacemaker function by reducing the pacemaker channel plasma membrane density, an effect that can be corrected by pharmacological intervention of endocytic vesicle trafficking.


Asunto(s)
Bradicardia , Células Madre Pluripotentes Inducidas , Bradicardia/genética , Canales Catiónicos Regulados por Nucleótidos Cíclicos , Humanos , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/genética , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Proteínas Musculares/genética , Canales de Potasio , Nodo Sinoatrial/metabolismo
9.
Cell Mol Life Sci ; 79(9): 479, 2022 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-35951110

RESUMEN

Blood-brain barrier (BBB) integrity is necessary to maintain homeostasis of the central nervous system (CNS). NMDA receptor (NMDAR) function and expression have been implicated in BBB integrity. However, as evidenced in neuroinflammatory conditions, BBB disruption contributes to immune cell infiltration and propagation of inflammatory pathways. Currently, our understanding of the pathophysiological role of NMDAR signaling on endothelial cells remains incomplete. Thus, we investigated NMDAR function on primary mouse brain microvascular endothelial cells (MBMECs). We detected glycine-responsive NMDAR channels, composed of functional GluN1, GluN2A and GluN3A subunits. Importantly, application of glycine alone, but not glutamate, was sufficient to induce NMDAR-mediated currents and an increase in intracellular Ca2+ concentrations. Functionally, glycine-mediated NMDAR activation leads to loss of BBB integrity and changes in actin distribution. Treatment of oocytes that express NMDARs composed of different subunits, with GluN1 and GluN3A binding site inhibitors, resulted in abrogation of NMDAR signaling as measured by two-electrode voltage clamp (TEVC). This effect was only detected in the presence of the GluN2A subunits, suggesting the latter as prerequisite for pharmacological modulation of NMDARs on brain endothelial cells. Taken together, our findings argue for a novel role of glycine as NMDAR ligand on endothelial cells shaping BBB integrity.


Asunto(s)
Glicina , Receptores de N-Metil-D-Aspartato , Animales , Barrera Hematoencefálica/metabolismo , Células Endoteliales/metabolismo , Glicina/metabolismo , Glicina/farmacología , Ratones , N-Metilaspartato/farmacología , Receptores de Glicina , Receptores de N-Metil-D-Aspartato/metabolismo
10.
Arch Pharm (Weinheim) ; 356(6): e2200665, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36949271

RESUMEN

HCN4 channels are considered to be a promising target for cardiac pathologies, epilepsy, and multiple sclerosis. However, there are no subtype-selective HCN channel blockers available, and only a few compounds are reported to display subtype preferences, one of which is EC18 (cis-1). Herein, we report the optimized synthetic route for the preparation of EC18 and its evaluation in three different pharmacological models, allowing us to assess its activity on cardiac function, thalamocortical neurons, and immune cells.


Asunto(s)
Canales Catiónicos Regulados por Nucleótidos Cíclicos , Canales de Potasio , Canales Catiónicos Regulados por Nucleótidos Cíclicos/metabolismo , Relación Estructura-Actividad , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización , Neuronas/metabolismo
11.
Eur J Immunol ; 51(2): 342-353, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33169379

RESUMEN

The immunological synapse is a transient junction that occurs when the plasma membrane of a T cell comes in close contact with an APC after recognizing a peptide from the antigen-MHC. The interaction starts when CRAC channels embedded in the T cell membrane open, flowing calcium ions into the cell. To counterbalance the ion influx and subsequent depolarization, Kv 1.3 and KCa3.1 channels are recruited to the immunological synapse, increasing the extracellular K+ concentration. These processes are crucial as they initiate gene expression that drives T cell activation and proliferation. The T cell-specific function of the K2P channel family member TASK2 channels and their role in autoimmune processes remains unclear. Using mass spectrometry analysis together with epifluorescence and super-resolution single-molecule localization microscopy, we identified TASK2 channels as novel players recruited to the immunological synapse upon stimulation. TASK2 localizes at the immunological synapse, upon stimulation with CD3 antibodies, likely interacting with these molecules. Our findings suggest that, together with Kv 1.3 and KCa3.1 channels, TASK2 channels contribute to the proper functioning of the immunological synapse, and represent an interesting treatment target for T cell-mediated autoimmune disorders.


Asunto(s)
Sinapsis Inmunológicas/inmunología , Canales de Potasio de Dominio Poro en Tándem/inmunología , Animales , Enfermedades Autoinmunes/inmunología , Complejo CD3/inmunología , Calcio/inmunología , Línea Celular Tumoral , Membrana Celular/inmunología , Células Cultivadas , Femenino , Expresión Génica/inmunología , Humanos , Canales de Potasio de Conductancia Intermedia Activados por el Calcio/inmunología , Células Jurkat , Canal de Potasio Kv1.3/inmunología , Masculino , Ratones , Ratones Endogámicos C57BL , Linfocitos T/inmunología
12.
J Neuroinflammation ; 19(1): 270, 2022 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-36348455

RESUMEN

BACKGROUND: Cladribine is a synthetic purine analogue that interferes with DNA synthesis and repair next to disrupting cellular proliferation in actively dividing lymphocytes. The compound is approved for the treatment of multiple sclerosis (MS). Cladribine can cross the blood-brain barrier, suggesting a potential effect on central nervous system (CNS) resident cells. Here, we explored compartment-specific immunosuppressive as well as potential direct neuroprotective effects of oral cladribine treatment in experimental autoimmune encephalomyelitis (EAE) mice. METHODS: In the current study, we compare immune cell frequencies and phenotypes in the periphery and CNS of EAE mice with distinct grey and white matter lesions (combined active and focal EAE) either orally treated with cladribine or vehicle, using flow cytometry. To evaluate potential direct neuroprotective effects, we assessed the integrity of the primary auditory cortex neuronal network by studying neuronal activity and spontaneous synaptic activity with electrophysiological techniques ex vivo. RESULTS: Oral cladribine treatment significantly attenuated clinical deficits in EAE mice. Ex vivo flow cytometry showed that cladribine administration led to peripheral immune cell depletion in a compartment-specific manner and reduced immune cell infiltration into the CNS. Histological evaluations revealed no significant differences for inflammatory lesion load following cladribine treatment compared to vehicle control. Single cell electrophysiology in acute brain slices was performed and showed an impact of cladribine treatment on intrinsic cellular firing patterns and spontaneous synaptic transmission in neurons of the primary auditory cortex. Here, cladribine administration in vivo partially restored cortical neuronal network function, reducing action potential firing. Both, the effect on immune cells and neuronal activity were transient. CONCLUSIONS: Our results indicate that cladribine exerts a neuroprotective effect after crossing the blood-brain barrier independently of its peripheral immunosuppressant action.


Asunto(s)
Encefalomielitis Autoinmune Experimental , Encefalomielitis , Fármacos Neuroprotectores , Ratones , Animales , Encefalomielitis Autoinmune Experimental/patología , Cladribina/uso terapéutico , Fármacos Neuroprotectores/farmacología , Ratones Endogámicos C57BL , Modelos Animales de Enfermedad , Inmunosupresores/uso terapéutico
13.
Arch Pharm (Weinheim) ; 355(12): e2200388, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36161669

RESUMEN

The calcium-activated potassium channel 3.1 (KCa 3.1) is overexpressed in many tumor entities and has predictive power concerning disease progression and outcome. Imaging of the KCa 3.1 channel in vivo using a radiotracer for positron emission tomography (PET) could therefore establish a potentially powerful diagnostic tool. Senicapoc shows high affinity and excellent selectivity toward the KCa 3.1 channel. We have successfully pursued the synthesis of the 18 F-labeled derivative [18 F]3 of senicapoc using the prosthetic group approach with 1-azido-2-[18 F]fluoroethane ([18 F]6) in a "click" reaction. The biological activity of the new PET tracer was evaluated in vitro and in vivo. Inhibition of the KCa 3.1 channel by 3 was demonstrated by patch clamp experiments and the binding pose was analyzed by docking studies. In mouse and human serum, [18 F]3 was stable for at least one half-life of [18 F]fluorine. Biodistribution experiments in wild-type mice were promising, showing rapid and predominantly renal excretion. An in vivo study using A549-based tumor-bearing mice was performed. The tumor signal could be delineated and image analysis showed a tumor-to-muscle ratio of 1.47 ± 0.24. The approach using 1-azido-2-[18 F]fluoroethane seems to be a good general strategy to achieve triarylacetamide-based fluorinated PET tracers for imaging of the KCa 3.1 channel in vivo.


Asunto(s)
Neoplasias , Canales de Potasio Calcio-Activados , Animales , Humanos , Ratones , Radioisótopos de Flúor/metabolismo , Radiofármacos/farmacología , Radiofármacos/metabolismo , Distribución Tisular , Canales de Potasio Calcio-Activados/metabolismo , Relación Estructura-Actividad , Tomografía de Emisión de Positrones/métodos , Neoplasias/metabolismo
14.
Int J Mol Sci ; 23(11)2022 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-35682964

RESUMEN

Multiple sclerosis (MS) is a demyelinating disease of the central nervous system that is characterized by the progressive loss of oligodendrocytes and myelin and is associated with thalamic dysfunction. Cuprizone (CPZ)-induced general demyelination in rodents is a valuable model for studying different aspects of MS pathology. CPZ feeding is associated with the altered distribution and expression of different ion channels along neuronal somata and axons. However, it is largely unknown whether the copper chelator CPZ directly influences ion channels. Therefore, we assessed the effects of different divalent cations (copper; zinc) and trace metal chelators (EDTA; Tricine; the water-soluble derivative of CPZ, BiMPi) on hyperpolarization-activated cyclic nucleotide-gated (HCN) channels that are major mediators of thalamic function and pathology. In addition, alterations of HCN channels induced by CPZ treatment and MS-related proinflammatory cytokines (IL-1ß; IL-6; INF-α; INF-ß) were characterized in C57Bl/6J mice. Thus, the hyperpolarization-activated inward current (Ih) was recorded in thalamocortical (TC) neurons and heterologous expression systems (mHCN2 expressing HEK cells; hHCN4 expressing oocytes). A number of electrophysiological characteristics of Ih (potential of half-maximal activation (V0.5); current density; activation kinetics) were unchanged following the extracellular application of trace metals and divalent cation chelators to native neurons, cell cultures or oocytes. Mice were fed a diet containing 0.2% CPZ for 35 days, resulting in general demyelination in the brain. Withdrawal of CPZ from the diet resulted in rapid remyelination, the effects of which were assessed at three time points after stopping CPZ feeding (Day1, Day7, Day25). In TC neurons, Ih was decreased on Day1 and Day25 and revealed a transient increased availability on Day7. In addition, we challenged naive TC neurons with INF-α and IL-1ß. It was found that Ih parameters were differentially altered by the application of the two cytokines to thalamic cells, while IL-1ß increased the availability of HCN channels (depolarized V0.5; increased current density) and the excitability of TC neurons (depolarized resting membrane potential (RMP); increased the number of action potentials (APs); produced a larger voltage sag; promoted higher input resistance; increased the number of burst spikes; hyperpolarized the AP threshold), INF-α mediated contrary effects. The effect of cytokine modulation on thalamic bursting was further assessed in horizontal slices and a computational model of slow thalamic oscillations. Here, IL-1ß and INF-α increased and reduced oscillatory bursting, respectively. We conclude that HCN channels are not directly modulated by trace metals and divalent cation chelators but are subject to modulation by different MS-related cytokines.


Asunto(s)
Enfermedades Desmielinizantes , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización , Animales , Cationes Bivalentes , Quelantes/farmacología , Cobre , Citocinas , Enfermedades Desmielinizantes/inducido químicamente , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/genética , Ratones , Ratones Endogámicos C57BL
15.
J Cell Mol Med ; 25(5): 2493-2504, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33560578

RESUMEN

We have previously shown that immunization of C57BL/6 mice, prone to spontaneous development of experimental autoimmune encephalomyelitis (EAE), with three antigens (MOG35-55 , DNA-histone complex or DNA-methylated BSA complex), alters the differentiation profiles of bone marrow haematopoietic stem cells (HSCs). These are associated with the production of autoantibodies (auto-Abs) against these antigens and the formation of abzymes hydrolysing DNA, MOG, myelin basic protein (MBP) and histones. Immunization of mice with antigens accelerates the development of EAE. This work is the first to analyse the ratio of auto-Abs without and with catalytic activities at different stages of EAE development (onset, acute and remission phases) after immunization of mice with the three specific antigens. Prior to immunization and during spontaneous in-time development of EAE, the concentration of auto-Abs against MBP, MOG, histones and DNA and activities of IgG antibodies in the hydrolysis of substrates increased in parallel; correlation coefficients = +0.69-0.94. After immunization with MOG, DNA-histone complex or DNA-met-BSA complex, both positive (from +0.13 to +0.98) and negative correlations (from -0.09 to -0.69) were found between these values. Our study is the first showing that depending on the antigen, the relative amount of harmful auto-Abs without and abzymes with low or high catalytic activities may be produced only at onset and in acute or remission phases of EAE. The antigen governs the EAE development rate, whereby the ratio of auto-Abs without catalytic activity and with enzymatic activities of harmful abzymes hydrolysing MBP, MOG, histones and DNA varies strongly between different disease phases.


Asunto(s)
Anticuerpos Catalíticos/inmunología , Antígenos/inmunología , Autoanticuerpos/inmunología , Susceptibilidad a Enfermedades/inmunología , Encefalomielitis Autoinmune Experimental/etiología , Animales , Autoantígenos/inmunología , Diferenciación Celular , Proliferación Celular , ADN/inmunología , Células Madre Hematopoyéticas/metabolismo , Histonas/inmunología , Histonas/metabolismo , Hidrólisis , Inmunización , Inmunoglobulina G/inmunología , Ratones
16.
Cell Physiol Biochem ; 55(S3): 65-86, 2021 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-33667332

RESUMEN

The family of two-pore domain potassium (K2P) channels is critically involved in central cellular functions such as ion homeostasis, cell development, and excitability. K2P channels are widely expressed in different human cell types and organs. It is therefore not surprising that aberrant expression and function of K2P channels are related to a spectrum of human diseases, including cancer, autoimmune, CNS, cardiovascular, and urinary tract disorders. Despite homologies in structure, expression, and stimulus, the functional diversity of K2P channels leads to heterogeneous influences on human diseases. The role of individual K2P channels in different disorders depends on expression patterns and modulation in cellular functions. However, an imbalance of potassium homeostasis and action potentials contributes to most disease pathologies. In this review, we provide an overview of current knowledge on the role of K2P channels in human diseases. We look at altered channel expression and function, the potential underlying molecular mechanisms, and prospective research directions in the field of K2P channels.


Asunto(s)
Enfermedades Autoinmunes/metabolismo , Enfermedades Cardiovasculares/metabolismo , Enfermedades Gastrointestinales/metabolismo , Enfermedades Hematológicas/metabolismo , Neoplasias/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Canales de Potasio de Dominio Poro en Tándem/metabolismo , Enfermedades Urológicas/metabolismo , Potenciales de Acción/fisiología , Enfermedades Autoinmunes/genética , Enfermedades Autoinmunes/patología , Enfermedades Cardiovasculares/genética , Enfermedades Cardiovasculares/patología , Enfermedades Gastrointestinales/genética , Enfermedades Gastrointestinales/patología , Expresión Génica , Enfermedades Hematológicas/genética , Enfermedades Hematológicas/patología , Homeostasis/genética , Humanos , Transporte Iónico , Neoplasias/genética , Neoplasias/patología , Enfermedades Neurodegenerativas/genética , Enfermedades Neurodegenerativas/patología , Especificidad de Órganos , Potasio/metabolismo , Canales de Potasio de Dominio Poro en Tándem/clasificación , Canales de Potasio de Dominio Poro en Tándem/genética , Isoformas de Proteínas/clasificación , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Enfermedades Urológicas/genética , Enfermedades Urológicas/patología
17.
Mol Biol Rep ; 48(2): 1055-1068, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33595783

RESUMEN

Exact mechanisms of autoimmune disease development are still yet unknown. However, it is known that the development of autoimmune diseases is associated with defects in the immune system, namely, the violation of the bone marrow hematopoietic stem cells (HSCs) differentiation profiles. Different characteristics of autoimmune reaction development in experimental autoimmune encephalomyelitis (EAE) prone Th mice characterizing T-lymphocytes response were analyzed using standard approaches. Profiles of several HSCs differentiation of bone marrow (BFU-E, CFU-E, CFU-GM, CFU-GEMM, T- and B-lymphocytes) of Th male and female mice during spontaneous development of EAE were noticeably different. Patterns of total lymphocytes, B- and T-cells proliferation in several different organs (bone marrow, blood, spleen, thymus, and lymph nodes) were also remarkably different. In addition, there were in time noticeable differences in their changes for some organs of male and female mice. Characters of changes in the profiles of CD4 and CD8 cells proliferation in some organs not always coincide with those for total T lymphocytes. The changes in the differentiation profiles of HSCs and the level of lymphocytes proliferation in the bone marrow and other organs were associated with the increase in the concentration of antibodies against DNA, myelin basic protein, and myelin oligodendrocyte glycoprotein, and catalytic antibodies hydrolyzing these substrates. Despite some differences in changes in the analyzed parameters, in general, the spontaneous development of EAE in male and female mice occurs to some extent in a comparable way.


Asunto(s)
Anticuerpos Catalíticos/inmunología , Diferenciación Celular/genética , Encefalomielitis Autoinmune Experimental/inmunología , Activación de Linfocitos/inmunología , Linfocitos/inmunología , Animales , Anticuerpos Catalíticos/genética , Células de la Médula Ósea/inmunología , Linfocitos T CD8-positivos/inmunología , Proliferación Celular/genética , Encefalomielitis Autoinmune Experimental/genética , Encefalomielitis Autoinmune Experimental/patología , Células Madre Hematopoyéticas/inmunología , Células Madre Hematopoyéticas/metabolismo , Humanos , Activación de Linfocitos/genética , Recuento de Linfocitos , Ratones , Glicoproteína Mielina-Oligodendrócito/genética , Glicoproteína Mielina-Oligodendrócito/inmunología , Bazo/inmunología
18.
Cell Physiol Biochem ; 54(2): 321-332, 2020 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-32259418

RESUMEN

BACKGROUND/AIMS: The cardiac current IKs is carried by the KCNQ1/KCNE1-channel complex. Genetic aberrations that affect the activity of KCNQ1/KCNE1 can lead to the Long QT Syndrome 1 and 5 and, thereby, to a predisposition to sudden cardiac death. This might be prevented by pharmacological modulation of KCNQ1/KCNE1. The prototypic KCNQ1/KCNE1 activator 4,4'-Diisothiocyanatostilbene-2,2'-disulfonic acid (DIDS) represents a candidate drug. Here, we study the mechanism of DIDS action on KCNQ1/KCNE1. METHODS: Channels were expressed in Xenopus oocytes and iPSC cardiomyocytes. The role of the central S6 region was investigated by alanin-screening of KCNQ1 residues 333-338. DIDS effects were measured by TEVC and MEA. RESULTS: DIDS-action is influenced by the presence of KCNE1 but not by KCNQ1/KCNE1 stochiometry. V334A produces a significant higher increase in current amplitude, whereas deactivation (slowdown) DIDS-sensitivity is affected by residues 334-338. CONCLUSION: We show that the central S6 region serves as a hub for allosteric channel activation by the drug and that DIDS shortens the pseudo QT interval in iPSC cardiomyocytes. The elucidation of the structural and mechanistic underpinnings of the DIDS action on KCNQ1/KCNE1 might allow for a targeted design of DIDS derivatives with improved potency and selectivity.


Asunto(s)
Ácido 4,4'-Diisotiocianostilbeno-2,2'-Disulfónico/farmacología , Potenciales de Acción/efectos de los fármacos , Canal de Potasio KCNQ1/metabolismo , Miocitos Cardíacos/metabolismo , Canales de Potasio con Entrada de Voltaje/metabolismo , Ácido 4,4'-Diisotiocianostilbeno-2,2'-Disulfónico/química , Regulación Alostérica , Animales , Humanos , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/metabolismo , Activación del Canal Iónico/efectos de los fármacos , Canal de Potasio KCNQ1/química , Canal de Potasio KCNQ1/genética , Modelos Moleculares , Mutación , Oocitos/metabolismo , Canales de Potasio con Entrada de Voltaje/química , Canales de Potasio con Entrada de Voltaje/genética , Dominios Proteicos , Xenopus laevis
19.
J Neuroinflammation ; 17(1): 186, 2020 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-32532336

RESUMEN

BACKGROUND: Multiple sclerosis (MS) is an autoimmune disease of the central nervous system (CNS), characterized by inflammatory and neurodegenerative processes. Despite demyelination being a hallmark of the disease, how it relates to neurodegeneration has still not been completely unraveled, and research is still ongoing into how these processes can be tracked non-invasively. Magnetic resonance imaging (MRI) derived brain network characteristics, which closely mirror disease processes and relate to functional impairment, recently became important variables for characterizing immune-mediated neurodegeneration; however, their histopathological basis remains unclear. METHODS: In order to determine the MRI-derived correlates of myelin dynamics and to test if brain network characteristics derived from diffusion tensor imaging reflect microstructural tissue reorganization, we took advantage of the cuprizone model of general demyelination in mice and performed longitudinal histological and imaging analyses with behavioral tests. By introducing cuprizone into the diet, we induced targeted and consistent demyelination of oligodendrocytes, over a period of 5 weeks. Subsequent myelin synthesis was enabled by reintroduction of normal food. RESULTS: Using specific immune-histological markers, we demonstrated that 2 weeks of cuprizone diet induced a 52% reduction of myelin content in the corpus callosum (CC) and a 35% reduction in the neocortex. An extended cuprizone diet increased myelin loss in the CC, while remyelination commenced in the neocortex. These histologically determined dynamics were reflected by MRI measurements from diffusion tensor imaging. Demyelination was associated with decreased fractional anisotropy (FA) values and increased modularity and clustering at the network level. MRI-derived modularization of the brain network and FA reduction in key anatomical regions, including the hippocampus, thalamus, and analyzed cortical areas, were closely related to impaired memory function and anxiety-like behavior. CONCLUSION: Network-specific remyelination, shown by histology and MRI metrics, determined amelioration of functional performance and neuropsychiatric symptoms. Taken together, we illustrate the histological basis for the MRI-driven network responses to demyelination, where increased modularity leads to evolving damage and abnormal behavior in MS. Quantitative information about in vivo myelination processes is mirrored by diffusion-based imaging of microstructural integrity and network characteristics.


Asunto(s)
Encéfalo/patología , Enfermedades Desmielinizantes/patología , Red Nerviosa/patología , Remielinización/fisiología , Animales , Encéfalo/efectos de los fármacos , Quelantes/toxicidad , Cuprizona/toxicidad , Enfermedades Desmielinizantes/inducido químicamente , Imagen de Difusión Tensora , Femenino , Ratones , Ratones Endogámicos C57BL , Vaina de Mielina/efectos de los fármacos , Vaina de Mielina/patología
20.
Epilepsy Behav ; 111: 107251, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32593873

RESUMEN

OBJECTIVE: Ziconotide (ω-conotoxin MVIIA peptide) is a novel analgesic agent acting on voltage-gated calcium channels and is administered intrathecally for neuropathic pain. While antiepileptic activities of other types of calcium channel blockers (T- or L-type) are well established, there is no information regarding the effect of ziconotide as an N-type calcium channel antagonist in pentylenetetrazol-induced seizures or its anxiolytic and sedative activities. The present study is the first to report on these effects. METHODS: To evaluate the anticonvulsant activity of ziconotide in the pentylenetetrazol (60 mg/kg) seizure model, ziconotide was administered intracerebroventricular (i.c.v.) as a single dose (1 µg/rat) or repeatedly (chronic administration: 0.1, 0.3, or 1 µg/rat once a day for seven days). The anxiolytic and sedative actions of ziconotide were evaluated with the elevated plus maze, light/dark (LD) box, and pentobarbital-induced sleep tests. Immediately after behavioral testing, the amygdala was completely removed bilaterally to determine corticosterone levels by immunoassay. RESULTS: In all dosing regimens, ziconotide significantly decreased the seizure frequency and also delayed the latency period compared with control. Chronic administration affected the percentage of mortality protection, while a single dose of ziconotide did not. In behavioral tests, ziconotide significantly increased both the number of entries and the percentage of time spent in the open arms of the elevated plus maze. Furthermore, ziconotide significantly increased the latency period and the number of entries into the light compartment during the LD box examination. Chronic administration of ziconotide significantly reduced the latency to sleep and increased sleeping time, whereas these parameters were not affected by a single dose. Additionally, amygdala corticosterone levels were significantly decreased in rats treated with ziconotide compared with control. CONCLUSION: Ziconotide displays beneficial neurobehavioral effects in a model of epilepsy with anxiety as its comorbid event. It seems that at least one of the mechanisms involved in these effects is associated with a decrease in brain corticosterone levels. The main advantage of ziconotide over benzodiazepines (routine anxiolytic and sedative drugs) is that it does not cause tolerance, dependency, and addiction. Therefore, more than ever, it is necessary to improve the convenience of drug delivery protocols and attenuate the adverse effects associated with ziconotide-based therapies.


Asunto(s)
Ansiolíticos/administración & dosificación , Anticonvulsivantes/administración & dosificación , Bloqueadores de los Canales de Calcio/administración & dosificación , Hipnóticos y Sedantes/administración & dosificación , Convulsiones/tratamiento farmacológico , omega-Conotoxinas/administración & dosificación , Animales , Canales de Calcio Tipo N/fisiología , Relación Dosis-Respuesta a Droga , Evaluación Preclínica de Medicamentos , Masculino , Pentilenotetrazol/toxicidad , Proyectos Piloto , Ratas , Ratas Wistar , Convulsiones/inducido químicamente , Convulsiones/fisiopatología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA