Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Opt Express ; 31(8): 13366-13373, 2023 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-37157475

RESUMEN

To address a challenging problem of super-resolution terahertz (THz) endoscopy, in this paper, an antiresonant hollow-core waveguide was coupled with a sapphire solid immersion lens (SIL), aimed at subwavelength confinement of guided mode. The waveguide is formed by a polytetrafluoroethylene (PTFE)-coated sapphire tube, the geometry of which was optimized to ensure high optical performance. SIL was judiciously designed, fabricated of bulk sapphire crystal, and then mounted at the output waveguide end. Study of the field intensity distributions at the shadow side of the waveguide-SIL system revealed the focal spot diameter of ≃0.2λ at the wavelength of λ = 500 µm. It agrees with numerical predictions, overcomes the Abbe diffraction limit, and justifies super-resolution capabilities of our endoscope.

2.
Opt Express ; 30(3): 4215-4230, 2022 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-35209663

RESUMEN

In this paper, hollow-core antiresonance sapphire waveguides were applied to guide the THz radiation emitted by the two-color laser air plasma, as well as to manage the THz source angular distribution. For this aim, three distinct waveguides were developed. Each of them is based on a cylindrical sapphire tube, either suspended in free space or coated by a polymer. The waveguides were first studied numerically, using the finite-difference eigenmode method, and experimentally, using the in-house THz pulsed spectrometer. The observed data uncovered the antiresonance regime of their operation, as well as their ability to guide broadband THz pulses over tens of centimeters with a high optical performance. The waveguides were then used to couple and guide (over the considerable distance) of THz radiation from the in-house two-color laser air plasma emitter, that exploits the mJ-energy-level femtosecond pulses of a Ti-sapphire laser. Small dispersion of a THz pulse and low-to-moderate propagation loss in the developed waveguide were observed, along with a considerable narrowing of the THz radiation angular distribution after passing the waveguide. Our findings revealed that such technologically-reliable hollow-core sapphire waveguides can boost the performance of laser air plasma-based THz emitters and make them more suitable for applications in the vigorously-explored THz sensing and exposure technologies.

3.
Opt Express ; 26(14): 18202-18213, 2018 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-30114100

RESUMEN

We study angular and frequency-angular distributions of the terahertz (THz) emission of the low-frequency region (0.3-3 THz) from a two-color femtosecond plasma spark experimentally and in three-dimensional numerical simulations. We investigate the dependence of the angular shapes of the THz radiation on focusing conditions and pulse durations by using two laser facilities (pulse durations 35 and 150 fs) for different focusing geometries. Our experiments and simulations show that decrease in the numerical aperture from NA ≈0.2 to NA ≈0.02 results simultaneously in (I) squeezing of the THz angular distribution and (II) formation of the bright conical emission in the THz range. The moderate focusing NA ≈0.05, which forms the relatively narrow unimodal THz angular distribution, is identified as optimal in terms of angular divergence. Numerical simulations with carrier wave resolved show that bright THz ring structures appear at the frequencies ≥2 THz for longer focuses (NA ≈0.02), while for optimal focusing conditions NA ≈0.05 the conical emission develops at THz frequencies higher than 10 THz.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA