Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Microbiology (Reading) ; 167(3)2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-32762803

RESUMEN

We identified a small colony variant (SCV) of an amoxicillin/clavulanic acid-resistant derivative of a clinical isolate of Escherichia coli from Malawi, which was selected for in vitro in a subinhibitory concentration of gentamicin. The SCV was auxotrophic for hemin and had impaired biofilm formation compared to the ancestral isolates. A single novel nucleotide polymorphism (SNP) in hemA, which encodes a glutamyl-tRNA reductase that catalyses the initial step of porphyrin biosynthesis leading to the production of haem, was responsible for the SCV phenotype. We showed the SNP in hemA resulted in a significant fitness cost to the isolate, which persisted even in the presence of hemin. However, the phenotype quickly reverted during sequential sub-culturing in liquid growth media. As hemA is not found in mammalian cells, and disruption of the gene results in a significant fitness cost, it represents a potential target for novel drug development specifically for the treatment of catheter-associated urinary tract infections caused by E. coli.


Asunto(s)
Aldehído Oxidorreductasas/genética , Escherichia coli/crecimiento & desarrollo , Escherichia coli/genética , Aldehído Oxidorreductasas/metabolismo , Antibacterianos/farmacología , Farmacorresistencia Bacteriana , Escherichia coli/efectos de los fármacos , Escherichia coli/metabolismo , Infecciones por Escherichia coli/microbiología , Gentamicinas/farmacología , Humanos , Pruebas de Sensibilidad Microbiana , Mutación , Polimorfismo de Nucleótido Simple
2.
Microbiol Spectr ; 10(1): e0214021, 2022 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-35044219

RESUMEN

Mobile genetic elements (MGEs) are often associated with antimicrobial resistance genes (ARGs). They are responsible for intracellular transposition between different replicons and intercellular conjugation and are therefore important agents of ARG dissemination. Detection and characterization of functional MGEs, especially in clinical isolates, would increase our understanding of the underlying pathways of transposition and recombination and allow us to determine interventional strategies to interrupt this process. Entrapment vectors can be used to capture active MGEs, as they contain a positive selection genetic system conferring a selectable phenotype upon the insertion of an MGE within certain regions of that system. Previously, we developed the pBACpAK entrapment vector that results in a tetracycline-resistant phenotype when MGEs translocate and disrupt the cI repressor gene. We have previously used pBACpAK to capture MGEs in clinical Escherichia coli isolates following transformation with pBACpAK. In this study, we aimed to extend the utilization of pBACpAK to other bacterial taxa. We utilized an MGE-free recipient E. coli strain containing pBACpAK to capture MGEs on conjugative, ARG-containing plasmids following conjugation from clinical Enterobacteriaceae donors. Following the conjugative transfer of multiple conjugative plasmids and screening for tetracycline resistance in these transconjugants, we captured several insertion sequence (IS) elements and novel transposons (Tn7350 and Tn7351) and detected the de novo formation of novel putative composite transposons where the pBACpAK-located tet(A) is flanked by ISKpn25 from the transferred conjugative plasmid, as well as the ISKpn14-mediated integration of an entire 119-kb, blaNDM-1-containing conjugative plasmid from Klebsiella pneumoniae. IMPORTANCE By analyzing transposition activity within our MGE-free recipient, we can gain insights into the interaction and evolution of multidrug resistance-conferring MGEs following conjugation, including the movement of multiple ISs, the formation of composite transposons, and cointegration and/or recombination between different replicons in the same cell. This combination of recipient and entrapment vector will allow fine-scale experimental studies of factors affecting intracellular transposition and MGE formation in and from ARG-encoding MGEs from multiple species of clinically relevant Enterobacteriaceae.


Asunto(s)
Conjugación Genética , Elementos Transponibles de ADN , Farmacorresistencia Bacteriana Múltiple , Infecciones por Enterobacteriaceae/microbiología , Enterobacteriaceae/genética , Plásmidos/genética , Antibacterianos/farmacología , Enterobacteriaceae/efectos de los fármacos , Enterobacteriaceae/metabolismo , Escherichia coli/efectos de los fármacos , Escherichia coli/genética , Escherichia coli/metabolismo , Transferencia de Gen Horizontal , Humanos , Klebsiella pneumoniae/efectos de los fármacos , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/metabolismo , Plásmidos/metabolismo
3.
Microb Genom ; 8(4)2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35404783

RESUMEN

Resistance to piperacillin/tazobactam (TZP) in Escherichia coli has predominantly been associated with mechanisms that confer resistance to third-generation cephalosporins. Recent reports have identified E. coli strains with phenotypic resistance to piperacillin/tazobactam but susceptibility to third-generation cephalosporins (TZP-R/3GC-S). In this study we sought to determine the genetic diversity of this phenotype in E. coli (n=58) isolated between 2014-2017 at a single tertiary hospital in Liverpool, UK, as well as the associated resistance mechanisms. We compare our findings to a UK-wide collection of invasive E. coli isolates (n=1509) with publicly available phenotypic and genotypic data. These data sets included the TZP-R/3GC-S phenotype (n=68), and piperacillin/tazobactam and third-generation cephalosporin-susceptible (TZP-S/3GC-S, n=1271) phenotypes. The TZP-R/3GC-S phenotype was displayed in a broad range of sequence types, which was mirrored in the same phenotype from the UK-wide collection, and the overall diversity of invasive E. coli isolates. The TZP-R/3GC-S isolates contained a diverse range of plasmids, indicating multiple acquisition events of TZP resistance mechanisms rather than clonal expansion of a particular plasmid or sequence type. The putative resistance mechanisms were equally diverse, including hyperproduction of TEM-1, either via strong promoters or gene amplification, carriage of inhibitor-resistant ß-lactamases, and an S133G blaCTX-M-15 mutation detected for the first time in clinical isolates. Several of these mechanisms were present at a lower abundance in the TZP-S/3GC-S isolates from the UK-wide collection, but without the associated phenotypic resistance to TZP. Eleven (19%) of the isolates had no putative mechanism identified from the genomic data. Our findings highlight the complexity of this cryptic phenotype and the need for continued phenotypic monitoring, as well as further investigation to improve detection and prediction of the TZP-R/3GC-S phenotype from genomic data.


Asunto(s)
Infecciones por Escherichia coli , Sepsis , Antibacterianos/farmacología , Cefalosporinas/farmacología , Escherichia coli/genética , Infecciones por Escherichia coli/epidemiología , Humanos , Combinación Piperacilina y Tazobactam
4.
Nat Commun ; 11(1): 4915, 2020 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-33004811

RESUMEN

A phenotype of Escherichia coli and Klebsiella pneumoniae, resistant to piperacillin/tazobactam (TZP) but susceptible to carbapenems and 3rd generation cephalosporins, has emerged. The resistance mechanism associated with this phenotype has been identified as hyperproduction of the ß-lactamase TEM. However, the mechanism of hyperproduction due to gene amplification is not well understood. Here, we report a mechanism of gene amplification due to a translocatable unit (TU) excising from an IS26-flanked pseudo-compound transposon, PTn6762, which harbours blaTEM-1B. The TU re-inserts into the chromosome adjacent to IS26 and forms a tandem array of TUs, which increases the copy number of blaTEM-1B, leading to TEM-1B hyperproduction and TZP resistance. Despite a significant increase in blaTEM-1B copy number, the TZP-resistant isolate does not incur a fitness cost compared to the TZP-susceptible ancestor. This mechanism of amplification of blaTEM-1B is an important consideration when using genomic data to predict susceptibility to TZP.


Asunto(s)
Antibacterianos/farmacología , Farmacorresistencia Bacteriana Múltiple/genética , Infecciones por Escherichia coli/tratamiento farmacológico , Proteínas de Escherichia coli/genética , Escherichia coli/genética , beta-Lactamasas/genética , Antibacterianos/uso terapéutico , Cromosomas Bacterianos/genética , Elementos Transponibles de ADN/genética , ADN Bacteriano/genética , Quimioterapia Combinada/métodos , Escherichia coli/efectos de los fármacos , Escherichia coli/aislamiento & purificación , Infecciones por Escherichia coli/microbiología , Amplificación de Genes , Regulación Bacteriana de la Expresión Génica , Genoma Bacteriano/genética , Humanos , Pruebas de Sensibilidad Microbiana , Piperacilina/farmacología , Piperacilina/uso terapéutico , Polimorfismo de Longitud del Fragmento de Restricción , ARN Ribosómico 16S/genética , Tazobactam/farmacología , Tazobactam/uso terapéutico , Secuenciación Completa del Genoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA