Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Eukaryot Cell ; 9(5): 762-73, 2010 May.
Artículo en Inglés | MEDLINE | ID: mdl-20304999

RESUMEN

5S rRNAs are ubiquitous components of prokaryotic, chloroplast, and eukaryotic cytosolic ribosomes but are apparently absent from mitochondrial ribosomes (mitoribosomes) of many eukaryotic groups including animals and fungi. Nevertheless, a clearly identifiable, mitochondrion-encoded 5S rRNA is present in Acanthamoeba castellanii, a member of Amoebozoa. During a search for additional mitochondrial 5S rRNAs, we detected small abundant RNAs in other members of Amoebozoa, namely, in the lobose amoeba Hartmannella vermiformis and in the myxomycete slime mold Physarum polycephalum. These RNAs are encoded by mitochondrial DNA (mtDNA), cosediment with mitoribosomes in glycerol gradients, and can be folded into a secondary structure similar to that of bona fide 5S rRNAs. Further, in the mtDNA of another slime mold, Didymium nigripes, we identified a region that in sequence, potential secondary structure, and genomic location is similar to the corresponding region encoding the Physarum small RNA. A mtDNA-encoded small RNA previously identified in Dictyostelium discoideum is here shown to share several characteristics with known 5S rRNAs. Again, we detected genes encoding potential homologs of this RNA in the mtDNA of three other species of the genus Dictyostelium as well as in a related genus, Polysphondylium. Taken together, our results indicate a widespread occurrence of small, abundant, mtDNA-encoded RNAs with 5S rRNA-like structures that are associated with the mitoribosome in various amoebozoan taxa. Our working hypothesis is that these novel small abundant RNAs represent radically divergent mitochondrial 5S rRNA homologs. We posit that currently unrecognized 5S-like RNAs may exist in other mitochondrial systems in which a conventional 5S rRNA cannot be identified.


Asunto(s)
Amebozoos/genética , Genoma Mitocondrial/genética , ARN Ribosómico 5S/genética , Amebozoos/citología , Animales , Secuencia de Bases , Fraccionamiento Celular , Biología Computacional , Secuencia Conservada , ADN Mitocondrial/genética , Dictyostelium/genética , Hartmannella/genética , Mitocondrias/genética , Datos de Secuencia Molecular , Conformación de Ácido Nucleico , Filogenia , Physarum polycephalum/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN Ribosómico 5S/química , Subunidades Ribosómicas Grandes de Eucariotas/genética , Homología de Secuencia de Aminoácido
2.
Sci Rep ; 11(1): 1537, 2021 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-33452395

RESUMEN

PAX5 and EBF1 work synergistically to regulate genes that are involved in B lymphocyte differentiation. We used the KIS-1 diffuse large B cell lymphoma cell line, which is reported to have elevated levels of PAX5 expression, to investigate the mechanism of EBF1- and PAX5-regulated gene expression. We demonstrate the lack of expression of hallmark B cell genes, including CD19, CD79b, and EBF1, in the KIS-1 cell line. Upon restoration of EBF1 expression we observed activation of CD19, CD79b and other genes with critical roles in B cell differentiation. Mass spectrometry analyses of proteins co-immunoprecipitated with PAX5 in KIS-1 identified components of the MLL H3K4 methylation complex, which drives histone modifications associated with transcription activation. Immunoblotting showed a stronger association of this complex with PAX5 in the presence of EBF1. Silencing of KMT2A, the catalytic component of MLL, repressed the ability of exogenous EBF1 to activate transcription of both CD19 and CD79b in KIS-1 cells. We also find association of PAX5 with the MLL complex and decreased CD19 expression following silencing of KMT2A in other human B cell lines. These data support an important role for the MLL complex in PAX5-mediated transcription regulation.


Asunto(s)
Linfoma de Células B/genética , Factor de Transcripción PAX5/metabolismo , Transactivadores/metabolismo , Antígenos CD19/metabolismo , Linfocitos B/metabolismo , Diferenciación Celular/genética , Línea Celular Tumoral , Linaje de la Célula/genética , Expresión Génica/genética , Regulación de la Expresión Génica/genética , Humanos , Activación de Linfocitos , Linfoma de Células B/metabolismo , Metiltransferasas/metabolismo , Factor de Transcripción PAX5/genética , Transactivadores/genética
3.
Curr Opin Microbiol ; 8(4): 362-9, 2005 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-15993645

RESUMEN

Mitochondria, the energy-producing organelles of the eukaryotic cell, are derived from an ancient endosymbiotic alpha-Proteobacterium. These organelles contain their own genetic system, a remnant of the endosymbiont's genome, which encodes only a fraction of the mitochondrial proteome. The majority of mitochondrial proteins are translated from nuclear genes and are imported into mitochondria. Recent studies of phylogenetically diverse representatives of Fungi reveal that their mitochondrial DNAs are among the most highly derived, encoding only a limited set of genes. Much of the reduction in the coding content of the mitochondrial genome probably occurred early in fungal evolution. Nevertheless, genome reduction is an ongoing process. Fungi in the chytridiomycete order Neocallimastigales and in the pathogenic Microsporidia have taken mitochondrial reduction to the extreme and have permanently lost a mitochondrial genome. These organisms have organelles derived from mitochondria that retain traces of their mitochondrial ancestry.


Asunto(s)
Evolución Molecular , Hongos/genética , Mitocondrias/genética , ADN Mitocondrial/genética , Proteínas Mitocondriales/genética , Filogenia
4.
Curr Opin Microbiol ; 7(5): 528-34, 2004 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-15451509

RESUMEN

The past decade has seen the determination of complete mitochondrial genome sequences from a taxonomically diverse set of organisms. These data have allowed an unprecedented understanding of the evolution of the mitochondrial genome in terms of gene content and order, as well as genome size and structure. In addition, phylogenetic reconstructions based on mitochondrial DNA (mtDNA)-encoded protein sequences have firmly established the identities of protistan relatives of the animal, fungal and plant lineages. Analysis of the mtDNAs of these protists has provided insight into the structure of the mitochondrial genome at the origin of these three, mainly multicellular, eukaryotic groups. Further research into mtDNAs of taxa ancestral and intermediate to currently characterized organisms will help to refine pathways and modes of mtDNA evolution, as well as provide valuable phylogenetic characters to assist in unraveling the deep branching order of all eukaryotes.


Asunto(s)
ADN Mitocondrial/genética , Eucariontes/genética , Evolución Molecular , Hongos/genética , Genoma , Mitocondrias/genética , Plantas/genética , Animales , Chlorophyta/genética , ADN Mitocondrial/química , Eucariontes/clasificación , Hongos/clasificación , Orden Génico , Genes , Filogenia , Plantas/clasificación
5.
J Biol Chem ; 280(4): 2463-70, 2005 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-15546859

RESUMEN

In the chytridiomycete fungus, Spizellomyces punctatus, all eight of the mitochondrially encoded tRNAs are predicted to have one or more base pair mismatches at the first three positions of their aminoacyl acceptor stems. These tRNAs are edited post-transcriptionally by replacement of the 5'-nucleotide in each mismatched pair with a nucleotide that can form a standard Watson-Crick base pair with its counterpart in the 3'-half of the stem. The type of mitochondrial tRNA editing found in S. punctatus also occurs in Acanthamoeba castellanii, a distantly related amoeboid protist. Using an S. punctatus mitochondrial extract, we have developed an in vitro assay of tRNA editing in which nucleotides are incorporated into various tRNA substrates. Experiments employing synthetic transcripts revealed that the S. punctatus tRNA editing activity incorporates nucleotides on the 5'-side of substrate tRNAs, uses the 3'-sequence as a template for incorporation, and adds nucleotides in a 3'-to-5' direction. This activity can add nucleotides to a triphosphorylated 5'-end in the absence of ATP but requires ATP to add nucleotides to a monophosphorylated 5'-end; moreover, it functions independently of the state of tRNA 3' processing. These data parallel results obtained in a previous in vitro study of A. castellanii tRNA editing, suggesting that remarkably similar activities function in the mitochondria of these two organisms. The evolutionary origins of these activities are discussed.


Asunto(s)
Quitridiomicetos/metabolismo , Genes Fúngicos , Mitocondrias/metabolismo , Edición de ARN , ARN de Hongos/química , ARN de Transferencia/química , ARN/química , Adenosina Trifosfato/química , Adenosina Trifosfato/metabolismo , Emparejamiento Base , Secuencia de Bases , Cromatografía en Capa Delgada , Citoplasma/metabolismo , Evolución Molecular , Técnicas In Vitro , Datos de Secuencia Molecular , Conformación de Ácido Nucleico , Oligonucleótidos/química , Ácido Peryódico/farmacología , ARN/metabolismo , Procesamiento Postranscripcional del ARN , ARN Mensajero/metabolismo , ARN Mitocondrial , ARN de Transferencia/metabolismo
6.
RNA ; 9(3): 287-92, 2003 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-12592002

RESUMEN

Although 5S rRNA is a highly conserved and universal component of eubacterial, archaeal, chloroplast, and eukaryotic cytoplasmic ribosomes, a mitochondrial DNA-encoded 5S rRNA has so far been identified only in land plants and certain protists. This raises the question of whether 5S rRNA is actually required for and used in mitochondrial translation. In the protist Acanthamoeba castellanii, BLAST searches fail to reveal a 5S rRNA gene in the complete mitochondrial genome sequence, nor is a 5S-sized RNA species detectable in ethidium bromide-stained gels of highly purified mitochondrial RNA preparations. Here we show that an alternative visualization technique, UV shadowing, readily detects a novel, mitochondrion-specific small RNA in A. castellanii mitochondrial RNA preparations, and that this RNA species is, in fact, a 5S rRNA encoded by the A. castellanii mitochondrial genome. These results emphasize the need for caution when interpreting negative results that suggest the absence of 5S rRNA and/or a mitochondrial DNA-encoded 5S rRNA sequence in other (particularly protist) mitochondrial systems.


Asunto(s)
Acanthamoeba/genética , Mitocondrias/genética , ARN Ribosómico 5S , Animales , Secuencia de Bases , Electroforesis en Gel de Poliacrilamida , ARN Ribosómico 5S/aislamiento & purificación , Alineación de Secuencia , Rayos Ultravioleta
7.
RNA ; 10(8): 1191-9, 2004 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-15247432

RESUMEN

5' tRNA editing has been demonstrated to occur in the mitochondria of the distantly related rhizopod amoeba Acanthamoeba castellanii and the chytridiomycete fungus Spizellomyces punctatus. In these organisms, canonical tRNA structures are restored by removing mismatched nucleotides at the first three 5' positions and replacing them with nucleotides capable of forming Watson-Crick base pairs with their 3' counterparts. This form of editing seems likely to occur in members of Amoebozoa other than A. castellanii, as well as in members of Heterolobosea. Evidence for 5' tRNA editing has not been found to date, however, in any other fungus including the deeply branching chytridiomycete Allomyces macrogynus. We predicted that a similar form of tRNA editing would occur in members of the chytridiomycete order Monoblepharidales based on the analysis of complete mitochondrial tRNA complements. This prediction was confirmed by analysis of tRNA sequences using a tRNA circularization/RT-PCR-based approach. The presence of partially and completely unedited tRNAs in members of the Monoblepharidales suggests the involvement of a 5'-to-3' exonuclease rather than an endonuclease in removing the three 5' nucleotides from a tRNA substrate. Surprisingly, analysis of the mtDNA of the chytridiomycete Rhizophydium brooksianum, which branches as a sister group to S. punctatus in molecular phylogenies, did not suggest the presence of editing. This prediction was also confirmed experimentally. The absence of tRNA editing in R. brooksianum raises the possibility that 5' tRNA editing may have evolved twice independently within Chytridiomycota, once in the lineage leading to S. punctatus and once in the lineage leading to the Monoblepharidales.


Asunto(s)
Quitridiomicetos/genética , Evolución Molecular , Edición de ARN/fisiología , ARN de Transferencia/metabolismo , Quitridiomicetos/fisiología , Conformación de Ácido Nucleico , Filogenia , Edición de ARN/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA