Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 106
Filtrar
1.
Nature ; 614(7946): 81-87, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36725999

RESUMEN

Micro-LEDs (µLEDs) have been explored for augmented and virtual reality display applications that require extremely high pixels per inch and luminance1,2. However, conventional manufacturing processes based on the lateral assembly of red, green and blue (RGB) µLEDs have limitations in enhancing pixel density3-6. Recent demonstrations of vertical µLED displays have attempted to address this issue by stacking freestanding RGB LED membranes and fabricating top-down7-14, but minimization of the lateral dimensions of stacked µLEDs has been difficult. Here we report full-colour, vertically stacked µLEDs that achieve, to our knowledge, the highest array density (5,100 pixels per inch) and the smallest size (4 µm) reported to date. This is enabled by a two-dimensional materials-based layer transfer technique15-18 that allows the growth of RGB LEDs of near-submicron thickness on two-dimensional material-coated substrates via remote or van der Waals epitaxy, mechanical release and stacking of LEDs, followed by top-down fabrication. The smallest-ever stack height of around 9 µm is the key enabler for record high µLED array density. We also demonstrate vertical integration of blue µLEDs with silicon membrane transistors for active matrix operation. These results establish routes to creating full-colour µLED displays for augmented and virtual reality, while also offering a generalizable platform for broader classes of three-dimensional integrated devices.

2.
Nature ; 590(7847): 587-593, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33627807

RESUMEN

Metal halide perovskite solar cells (PSCs) are an emerging photovoltaic technology with the potential to disrupt the mature silicon solar cell market. Great improvements in device performance over the past few years, thanks to the development of fabrication protocols1-3, chemical compositions4,5 and phase stabilization methods6-10, have made PSCs one of the most efficient and low-cost solution-processable photovoltaic technologies. However, the light-harvesting performance of these devices is still limited by excessive charge carrier recombination. Despite much effort, the performance of the best-performing PSCs is capped by relatively low fill factors and high open-circuit voltage deficits (the radiative open-circuit voltage limit minus the high open-circuit voltage)11. Improvements in charge carrier management, which is closely tied to the fill factor and the open-circuit voltage, thus provide a path towards increasing the device performance of PSCs, and reaching their theoretical efficiency limit12. Here we report a holistic approach to improving the performance of PSCs through enhanced charge carrier management. First, we develop an electron transport layer with an ideal film coverage, thickness and composition by tuning the chemical bath deposition of tin dioxide (SnO2). Second, we decouple the passivation strategy between the bulk and the interface, leading to improved properties, while minimizing the bandgap penalty. In forward bias, our devices exhibit an electroluminescence external quantum efficiency of up to 17.2 per cent and an electroluminescence energy conversion efficiency of up to 21.6 per cent. As solar cells, they achieve a certified power conversion efficiency of 25.2 per cent, corresponding to 80.5 per cent of the thermodynamic limit of its bandgap.

3.
Nano Lett ; 22(20): 8258-8265, 2022 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-36252238

RESUMEN

The absence of a versatile, scalable, and defect-free bottom-up assembly of nanoparticles with high precision has been a longstanding roadblock facing the large-scale integration of diverse nanoparticle-based devices. To circumvent this roadblock, we present a self-limiting dielectrophoretic approach to precisely align nanoparticles onto an array of electrodes over a large area, assisted by lithographically defined capacitors in series with the electrodes. We have experimentally verified that the on-chip capacitor can reduce the probability of trapping multiple particles at a given site, as the electric field is greatly weakened after the first nanoparticle bridges the electrodes. A 70% yield of single-nanowire assembly has been achieved, and key factors limiting the current yield are discussed. The yield is expected to further increase by improving the nanoparticle-electrode contact and reducing the capillary force during the drying process. We also demonstrate the versatility of this approach for scalable and site-selective alignment of various nanoparticles.


Asunto(s)
Nanopartículas , Nanocables , Electrodos
4.
Nano Lett ; 22(4): 1718-1725, 2022 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-35142222

RESUMEN

The continuous and concerted development of colloidal quantum dot light-emitting diodes over the past two decades has established them as a bedrock technology for the next generation of displays. However, a fundamental issue that limits the performance of these devices is the quenching of photoluminescence due to excess charges from conductive charge transport layers. Although device designs have leveraged various workarounds, doing so often comes at the cost of limiting efficient charge injection. Here we demonstrate that high-field terahertz (THz) pulses can dramatically brighten quenched QDs on metallic surfaces, an effect that persists for minutes after THz irradiation. This phenomenon is attributed to the ability of the THz field to remove excess charges, thereby reducing trion and nonradiative Auger recombination. Our findings show that THz technologies can be used to suppress and control such undesired nonradiative decay, potentially in a variety of luminescent materials for future device applications.

5.
Nano Lett ; 21(2): 1011-1016, 2021 01 27.
Artículo en Inglés | MEDLINE | ID: mdl-33445875

RESUMEN

Infrared-to-visible photon upconversion could benefit applications such as photovoltaics, infrared sensing, and bioimaging. Solid-state upconversion based on triplet exciton annihilation sensitized by nanocrystals is one of the most promising approaches, albeit limited by relatively weak optical absorption. Here, we integrate the upconverting layers into a Fabry-Pérot microcavity with quality factor Q = 75. At the resonant wavelength λ = 980 nm, absorption increases 74-fold and we observe a 227-fold increase in the intensity of upconverted emission. The threshold excitation intensity is reduced by 2 orders of magnitude to a subsolar flux of 13 mW/cm2. We measure an external quantum efficiency of 0.06 ± 0.01% and a 2.2-fold increase in the generation yield of upconverted photons. Our work highlights the potential of triplet-triplet annihilation-based upconversion in low-intensity sensing applications and demonstrates the importance of photonic designs in addition to materials engineering to improve the efficiency of solid-state upconversion.

6.
Nano Lett ; 21(4): 1606-1612, 2021 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-33534584

RESUMEN

Molecules can serve as ultimate building blocks for extreme nanoscale devices. This requires their precise integration into functional heterojunctions, most commonly in the form of metal-molecule-metal architectures. Structural damage and nonuniformities caused by current fabrication techniques, however, limit their effective incorporation. Here, we present a hybrid fabrication approach enabling uniform and active molecular junctions. A template-stripping technique is developed to form electrodes with sub-nanometer smooth surfaces. Combined with dielectrophoretic trapping of colloidal nanorods, uniform sub-5 nm junctions are achieved. Uniquely, in our design, the top contact is mechanically free to move under an applied stimulus. Using this, we investigate the electromechanical tuning of the junction and its tunneling conduction. Here, the molecules help control sub-nanometer mechanical modulation, which is conventionally challenging due to instabilities caused by surface adhesive forces. Our versatile approach provides a platform to develop and study active molecular junctions for emerging applications in electronics, plasmonics, and electromechanical devices.

7.
Nano Lett ; 21(24): 10244-10251, 2021 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-34874728

RESUMEN

The use of molecules as active components to build nanometer-scale devices inspires emerging device concepts that employ the intrinsic functionality of molecules to address longstanding challenges facing nanoelectronics. Using molecules as controllable-length nanosprings, here we report the design and operation of a nanoelectromechanical (NEM) switch which overcomes the typical challenges of high actuation voltages and slow switching speeds for previous NEM technologies. Our NEM switches are hierarchically assembled using a molecular spacer layer sandwiched between atomically smooth electrodes, which defines a nanometer-scale electrode gap and can be electrostatically compressed to repeatedly modulate the tunneling current. The molecular layer and the top electrode structure serve as two degrees of design freedom with which to independently tailor static and dynamic device characteristics, enabling simultaneous low turn-on voltages (sub-3 V) and short switching delays (2 ns). This molecular platform with inherent nanoscale modularity provides a versatile strategy for engineering diverse high-performance and energy-efficient electromechanical devices.


Asunto(s)
Electrodos
8.
Chem Rev ; 119(20): 11007-11019, 2019 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-31496228

RESUMEN

The success of halide perovskites in a host of optoelectronic applications is often attributed to their long photoexcited carrier lifetimes, which has led to charge-carrier recombination processes being described as unique compared to other semiconductors. Here, we integrate recent literature findings to provide a critical assessment of the factors we believe are most likely controlling recombination in the most widely studied halide perovskite systems. We focus on four mechanisms that have been proposed to affect measured charge carrier recombination lifetimes, namely: (1) recombination via trap states, (2) polaron formation, (3) the indirect nature of the bandgap (e.g., Rashba effect), and (4) photon recycling. We scrutinize the evidence for each case and the implications of each process on carrier recombination dynamics. Although they have attracted considerable speculation, we conclude that multiple trapping or hopping in shallow trap states, and the possible indirect nature of the bandgap (e.g., Rashba effect), seem to be less likely given the combined evidence, at least in high-quality samples most relevant to solar cells and light-emitting diodes. On the other hand, photon recycling appears to play a clear role in increasing apparent lifetime for samples with high photoluminescence quantum yields. We conclude that polaron dynamics are intriguing and deserving of further study. We highlight potential interdependencies of these processes and suggest future experiments to better decouple their relative contributions. A more complete understanding of the recombination processes could allow us to rationally tailor the properties of these fascinating semiconductors and will aid the discovery of other materials exhibiting similarly exceptional optoelectronic properties.

9.
Nano Lett ; 19(11): 8125-8131, 2019 11 13.
Artículo en Inglés | MEDLINE | ID: mdl-31635457

RESUMEN

The effects of large external fields on semiconductor nanostructures could reveal much about field-induced shifting of electronic states and their dynamical responses and could enable electro-optic device applications that require large and rapid changes in optical properties. Studies of quasi-dc electric field modulation of quantum dot (QD) properties have been limited by electrostatic breakdown processes observed under high externally applied field levels. To circumvent this, here we apply ultrafast terahertz (THz) electric fields with switching times on the order of 1 ps. We show that a pulsed THz electric field, enhanced by a microslit field enhancement structure (FES), can strongly manipulate the optical absorption properties of a thin film of CdSe and CdSe-CdS core-shell QDs on the subpicosecond time scale with spectral shifts that span the visible to near-IR range. Numerical simulations using a semiempirical tight binding model show that the band gap of the QD film can be shifted by as much a 79 meV during these time scales. The results allow a basic understanding of the field-induced shifting of electronic levels and suggest electro-optic device applications.

10.
Small ; 15(28): e1901233, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31131998

RESUMEN

Fluorescence imaging is a powerful tool for studying biologically relevant macromolecules, but its applicability is often limited by the fluorescent probe, which must demonstrate both high site-specificity and emission efficiency. In this regard, M13 virus, a versatile biological scaffold, has previously been used to both assemble fluorophores on its viral capsid with molecular precision and to also target a variety of cells. Although M13-fluorophore systems are highly selective, these complexes typically suffer from poor molecular detection limits due to low absorption cross-sections and moderate quantum yields. To overcome these challenges, a coassembly of the M13 virus, cyanine 3 dye, and silver nanoparticles is developed to create a fluorescent tag capable of binding with molecular precision with high emissivity. Enhanced emission of cyanine 3 of up to 24-fold is achieved by varying nanoparticle size and particle-fluorophore separation. In addition, it is found that the fluorescence enhancement increases with increasing dye surface density on the viral capsid. Finally, this highly fluorescent probe is applied for in vitro staining of E. coli. These results demonstrate an inexpensive framework for achieving tuned fluorescence enhancements. The methodology developed in this work is potentially amendable to fluorescent detection of a wide range of M13/cell combinations.


Asunto(s)
Bacteriófago M13/metabolismo , Carbocianinas/química , Fluorescencia , Nanopartículas del Metal/ultraestructura , Tamaño de la Partícula , Polietilenglicoles/química , Plata/química
11.
Nat Mater ; 16(1): 115-120, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27698354

RESUMEN

Metal halide perovskites such as methylammonium lead iodide (CH3NH3PbI3) are generating great excitement due to their outstanding optoelectronic properties, which lend them to application in high-efficiency solar cells and light-emission devices. However, there is currently debate over what drives the second-order electron-hole recombination in these materials. Here, we propose that the bandgap in CH3NH3PbI3 has a direct-indirect character. Time-resolved photo-conductance measurements show that generation of free mobile charges is maximized for excitation energies just above the indirect bandgap. Furthermore, we find that second-order electron-hole recombination of photo-excited charges is retarded at lower temperature. These observations are consistent with a slow phonon-assisted recombination pathway via the indirect bandgap. Interestingly, in the low-temperature orthorhombic phase, fast quenching of mobile charges occurs independent of the temperature and photon excitation energy. Our work provides a new framework to understand the optoelectronic properties of metal halide perovskites and analyse spectroscopic data.

12.
Nano Lett ; 17(9): 5375-5380, 2017 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-28786683

RESUMEN

Optical properties of colloidal semiconductor quantum dots (QDs), arising from quantum mechanical confinement of charge, present a versatile testbed for the study of how high electric fields affect the electronic structure of nanostructured solids. Studies of quasi-DC electric field modulation of QD properties have been limited by electrostatic breakdown processes under high externally applied electric fields, which have restricted the range of modulation of QD properties. In contrast, here we drive CdSe-CdS core-shell QD films with high-field THz-frequency electromagnetic pulses whose duration is only a few picoseconds. Surprisingly, in response to the THz excitation, we observe QD luminescence even in the absence of an external charge source. Our experiments show that QD luminescence is associated with a remarkably high and rapid modulation of the QD bandgap, which changes by more than 0.5 eV (corresponding to 25% of the unperturbed bandgap energy). We show that these colossal energy shifts can be explained by the quantum confined Stark effect even though we are far outside the regime of small field-induced shifts in electronic energy levels. Our results demonstrate a route to extreme modulation of material properties and to a compact, high-bandwidth THz detector that operates at room temperature.

13.
Chemistry ; 22(8): 2605-10, 2016 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-26866821

RESUMEN

Methylammonium lead halide (MAPbX3 ) perovskites exhibit exceptional carrier transport properties. But their commercial deployment as solar absorbers is currently limited by their intrinsic instability in the presence of humidity and their lead content. Guided by our theoretical predictions, we explored the potential of methylammonium bismuth iodide (MBI) as a solar absorber through detailed materials characterization. We synthesized phase-pure MBI by solution and vapor processing. In contrast to MAPbX3, MBI is air stable, forming a surface layer that does not increase the recombination rate. We found that MBI luminesces at room temperature, with the vapor-processed films exhibiting superior photoluminescence (PL) decay times that are promising for photovoltaic applications. The thermodynamic, electronic, and structural features of MBI that are amenable to these properties are also present in other hybrid ternary bismuth halide compounds. Through MBI, we demonstrate a lead-free and stable alternative to MAPbX3 that has a similar electronic structure and nanosecond lifetimes.

14.
Nano Lett ; 15(1): 21-6, 2015 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-25531164

RESUMEN

We study the dielectric constant of lead sulfide quantum dot (QD) films as a function of the volume fraction of QDs by varying the QD size and keeping the ligand constant. We create a reliable QD sizing curve using small-angle X-ray scattering (SAXS), thin-film SAXS to extract a pair-distribution function for QD spacing, and a stacked-capacitor geometry to measure the capacitance of the thin film. Our data support a reduced dielectric constant in nanoparticles.

15.
Nano Lett ; 15(5): 3286-94, 2015 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-25927871

RESUMEN

Quantum dot photovoltaics (QDPV) offer the potential for low-cost solar cells. To develop strategies for continued improvement in QDPVs, a better understanding of the factors that limit their performance is essential. Here, we study carrier recombination processes that limit the power conversion efficiency of PbS QDPVs. We demonstrate the presence of radiative sub-bandgap states and sub-bandgap state filling in operating devices by using photoluminescence (PL) and electroluminescence (EL) spectroscopy. These sub-bandgap states are most likely the origin of the high open-circuit-voltage (VOC) deficit and relatively limited carrier collection that have thus far been observed in QDPVs. Combining these results with our perspectives on recent progress in QDPV, we conclude that eliminating sub-bandgap states in PbS QD films has the potential to show a greater gain than may be attainable by optimization of interfaces between QDs and other materials. We suggest possible future directions that could guide the design of high-performance QDPVs.


Asunto(s)
Plomo/química , Puntos Cuánticos , Energía Solar , Sulfuros/química , Suministros de Energía Eléctrica , Oro/química , Espectrometría de Fluorescencia
16.
Nat Mater ; 13(8): 796-801, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24859641

RESUMEN

Solution processing is a promising route for the realization of low-cost, large-area, flexible and lightweight photovoltaic devices with short energy payback time and high specific power. However, solar cells based on solution-processed organic, inorganic and hybrid materials reported thus far generally suffer from poor air stability, require an inert-atmosphere processing environment or necessitate high-temperature processing, all of which increase manufacturing complexities and costs. Simultaneously fulfilling the goals of high efficiency, low-temperature fabrication conditions and good atmospheric stability remains a major technical challenge, which may be addressed, as we demonstrate here, with the development of room-temperature solution-processed ZnO/PbS quantum dot solar cells. By engineering the band alignment of the quantum dot layers through the use of different ligand treatments, a certified efficiency of 8.55% has been reached. Furthermore, the performance of unencapsulated devices remains unchanged for over 150 days of storage in air. This material system introduces a new approach towards the goal of high-performance air-stable solar cells compatible with simple solution processes and deposition on flexible substrates.

17.
Nat Mater ; 13(11): 1039-43, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25282507

RESUMEN

Triplet excitons are ubiquitous in organic optoelectronics, but they are often an undesirable energy sink because they are spin-forbidden from emitting light and their high binding energy hinders the generation of free electron-hole pairs. Harvesting their energy is consequently an important technological challenge. Here, we demonstrate direct excitonic energy transfer from 'dark' triplets in the organic semiconductor tetracene to colloidal PbS nanocrystals, thereby successfully harnessing molecular triplet excitons in the near infrared. Steady-state excitation spectra, supported by transient photoluminescence studies, demonstrate that the transfer efficiency is at least (90 ± 13)%. The mechanism is a Dexter hopping process consisting of the simultaneous exchange of two electrons. Triplet exciton transfer to nanocrystals is expected to be broadly applicable in solar and near-infrared light-emitting applications, where effective molecular phosphors are lacking at present. In particular, this route to 'brighten' low-energy molecular triplet excitons may permit singlet exciton fission sensitization of conventional silicon solar cells.

18.
Nano Lett ; 14(6): 3556-62, 2014 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-24807586

RESUMEN

Colloidal quantum dots (QDs) are promising materials for use in solar cells, light-emitting diodes, lasers, and photodetectors, but the mechanism and length of exciton transport in QD materials is not well understood. We use time-resolved optical microscopy to spatially visualize exciton transport in CdSe/ZnCdS core/shell QD assemblies. We find that the exciton diffusion length, which exceeds 30 nm in some cases, can be tuned by adjusting the inorganic shell thickness and organic ligand length, offering a powerful strategy for controlling exciton movement. Moreover, we show experimentally and through kinetic Monte Carlo simulations that exciton diffusion in QD solids does not occur by a random-walk process; instead, energetic disorder within the inhomogeneously broadened ensemble causes the exciton diffusivity to decrease over time. These findings reveal new insights into exciton dynamics in disordered systems and demonstrate the flexibility of QD materials for photonic and optoelectronic applications.

19.
Nano Lett ; 13(3): 994-9, 2013 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-23406331

RESUMEN

PbS colloidal quantum dot heterojunction solar cells have shown significant improvements in performance, mostly based on devices that use high-temperature annealed transition metal oxides to create rectifying junctions with quantum dot thin films. Here, we demonstrate a solar cell based on the heterojunction formed between PbS colloidal quantum dot layers and CdS thin films that are deposited via a solution process at 80 °C. The resultant device, employing a 1,2-ethanedithiol ligand exchange scheme, exhibits an average power conversion efficiency of 3.5%. Through a combination of thickness-dependent current density-voltage characteristics, optical modeling, and capacitance measurements, the combined diffusion length and depletion width in the PbS quantum dot layer is found to be approximately 170 nm.

20.
Nano Lett ; 13(1): 233-9, 2013 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-23205637

RESUMEN

Growth of semiconducting nanostructures on graphene would open up opportunities for the development of flexible optoelectronic devices, but challenges remain in preserving the structural and electrical properties of graphene during this process. We demonstrate growth of highly uniform and well-aligned ZnO nanowire arrays on graphene by modifying the graphene surface with conductive polymer interlayers. On the basis of this structure, we then demonstrate graphene cathode-based hybrid solar cells using two different photoactive materials, PbS quantum dots and the conjugated polymer P3HT, with AM 1.5G power conversion efficiencies of 4.2% and 0.5%, respectively, approaching the performance of ITO-based devices with similar architectures. Our method preserves beneficial properties of graphene and demonstrates that it can serve as a viable replacement for ITO in various photovoltaic device configurations.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA