Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Nucleic Acids Res ; 49(10): 5779-5797, 2021 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-34048572

RESUMEN

Faithful genome integrity maintenance plays an essential role in cell survival. Here, we identify the RNA demethylase ALKBH5 as a key regulator that protects cells from DNA damage and apoptosis during reactive oxygen species (ROS)-induced stress. We find that ROS significantly induces global mRNA N6-methyladenosine (m6A) levels by modulating ALKBH5 post-translational modifications (PTMs), leading to the rapid and efficient induction of thousands of genes involved in a variety of biological processes including DNA damage repair. Mechanistically, ROS promotes ALKBH5 SUMOylation through activating ERK/JNK signaling, leading to inhibition of ALKBH5 m6A demethylase activity by blocking substrate accessibility. Moreover, ERK/JNK/ALKBH5-PTMs/m6A axis is activated by ROS in hematopoietic stem/progenitor cells (HSPCs) in vivo in mice, suggesting a physiological role of this molecular pathway in the maintenance of genome stability in HSPCs. Together, our study uncovers a molecular mechanism involving ALKBH5 PTMs and increased mRNA m6A levels that protect genomic integrity of cells in response to ROS.


Asunto(s)
Desmetilasa de ARN, Homólogo 5 de AlkB/metabolismo , Daño del ADN , Reparación del ADN , Especies Reactivas de Oxígeno/metabolismo , Desmetilasa de ARN, Homólogo 5 de AlkB/genética , Animales , Apoptosis/efectos de los fármacos , Apoptosis/genética , Células de la Médula Ósea/efectos de los fármacos , Células de la Médula Ósea/metabolismo , Línea Celular Tumoral , Daño del ADN/efectos de los fármacos , Reparación del ADN/efectos de los fármacos , Reparación del ADN/genética , Desmetilación/efectos de los fármacos , Proteínas del Grupo de Complementación de la Anemia de Fanconi/genética , Proteínas del Grupo de Complementación de la Anemia de Fanconi/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/genética , Células Madre Hematopoyéticas/efectos de los fármacos , Células Madre Hematopoyéticas/metabolismo , Humanos , Peróxido de Hidrógeno/farmacología , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Metilación/efectos de los fármacos , Ratones , Fosforilación , Procesamiento Proteico-Postraduccional , ARN Interferente Pequeño , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , RNA-Seq , Sumoilación/efectos de los fármacos , Espectrometría de Masas en Tándem , Proteína Nuclear Ligada al Cromosoma X/genética , Proteína Nuclear Ligada al Cromosoma X/metabolismo
2.
Nucleic Acids Res ; 49(3): 1383-1396, 2021 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-33476375

RESUMEN

Super-enhancers (SEs) mediate high transcription levels of target genes. Previous studies have shown that SEs recruit transcription complexes and generate enhancer RNAs (eRNAs). We characterized transcription at the human and murine ß-globin locus control region (LCR) SE. We found that the human LCR is capable of recruiting transcription complexes independently from linked globin genes in transgenic mice. Furthermore, LCR hypersensitive site 2 (HS2) initiates the formation of bidirectional transcripts in transgenic mice and in the endogenous ß-globin gene locus in murine erythroleukemia (MEL) cells. HS2 3'eRNA is relatively unstable and remains in close proximity to the globin gene locus. Reducing the abundance of HS2 3'eRNA leads to a reduction in ß-globin gene transcription and compromises RNA polymerase II (Pol II) recruitment at the promoter. The Integrator complex has been shown to terminate eRNA transcription. We demonstrate that Integrator interacts downstream of LCR HS2. Inducible ablation of Integrator function in MEL or differentiating primary human CD34+ cells causes a decrease in expression of the adult ß-globin gene and accumulation of Pol II and eRNA at the LCR. The data suggest that transcription complexes are assembled at the LCR and transferred to the globin genes by mechanisms that involve Integrator mediated release of Pol II and eRNA from the LCR.


Asunto(s)
Elementos de Facilitación Genéticos , Regulación de la Expresión Génica , ARN/metabolismo , Transcripción Genética , Globinas beta/genética , Adulto , Animales , Línea Celular Tumoral , Endorribonucleasas/genética , Feto , Humanos , Hígado/embriología , Hígado/metabolismo , Región de Control de Posición , Ratones Transgénicos , ARN/fisiología , ARN Polimerasa II/metabolismo , Globinas beta/biosíntesis
3.
Int J Mol Sci ; 23(16)2022 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-36012554

RESUMEN

Enhancers in higher eukaryotes and upstream activating sequences (UASs) in yeast have been shown to recruit components of the RNA polymerase II (Pol II) transcription machinery. At least a fraction of Pol II recruited to enhancers in higher eukaryotes initiates transcription and generates enhancer RNA (eRNA). In contrast, UASs in yeast do not recruit transcription factor TFIIH, which is required for transcription initiation. For both yeast and mammalian systems, it was shown that Pol II is transferred from enhancers/UASs to promoters. We propose that there are two modes of Pol II recruitment to enhancers in higher eukaryotes. Pol II complexes that generate eRNAs are recruited via TFIID, similar to mechanisms operating at promoters. This may involve the binding of TFIID to acetylated nucleosomes flanking the enhancer. The resulting eRNA, together with enhancer-bound transcription factors and co-regulators, contributes to the second mode of Pol II recruitment through the formation of a transcription initiation domain. Transient contacts with target genes, governed by proteins and RNA, lead to the transfer of Pol II from enhancers to TFIID-bound promoters.


Asunto(s)
Elementos de Facilitación Genéticos , Saccharomyces cerevisiae , Animales , Mamíferos/metabolismo , ARN , ARN Polimerasa II/metabolismo , Saccharomyces cerevisiae/metabolismo , Factor de Transcripción TFIID/genética , Factor de Transcripción TFIID/metabolismo , Transcripción Genética
4.
Blood ; 143(22): 2224-2225, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38814656
5.
Bioessays ; 41(1): e1800164, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30500078

RESUMEN

It is proposed that the multiple enhancer elements associated with locus control regions and super-enhancers recruit RNA polymerase II and efficiently assemble elongation competent transcription complexes that are transferred to target genes by transcription termination and transient looping mechanisms. It is well established that transcription complexes are recruited not only to promoters but also to enhancers, where they generate enhancer RNAs. Transcription at enhancers is unstable and frequently aborted. Furthermore, the Integrator and WD-domain containing protein 82 mediate transcription termination at enhancers. Abortion and termination of transcription at the multiple enhancers of locus control regions and super-enhancers provide a large pool of elongation competent transcription complexes. These are efficiently captured by strong basal promoter elements at target genes during transient looping interactions.


Asunto(s)
Elementos de Facilitación Genéticos , Regulación de la Expresión Génica , Región de Control de Posición , ARN Polimerasa II/metabolismo , Transcripción Genética , Humanos , Globinas beta/genética
6.
J Cell Biochem ; 119(1): 712-722, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-28657656

RESUMEN

Transcription factor TFII-I is a multifunctional protein implicated in the regulation of cell cycle and stress-response genes. Previous studies have shown that a subset of TFII-I associated genomic sites contained DNA-binding motifs for E2F family transcription factors. We analyzed the co-association of TFII-I and E2Fs in more detail using bioinformatics, chromatin immunoprecipitation, and co-immunoprecipitation experiments. The data show that TFII-I interacts with E2F transcription factors. Furthermore, TFII-I, E2F4, and E2F6 interact with DNA-regulatory elements of several genes implicated in the regulation of the cell cycle, including DNMT1, HDAC1, CDKN1C, and CDC27. Inhibition of TFII-I expression led to a decrease in gene expression and in the association of E2F4 and E2F6 with these gene loci in human erythroleukemia K562 cells. Finally, TFII-I deficiency reduced the proliferation of K562 cells and increased the sensitivity toward doxorubicin toxicity. The results uncover novel interactions between TFII-I and E2Fs and suggest that TFII-I mediates E2F function at specific cell cycle genes.


Asunto(s)
Proteínas de Ciclo Celular/genética , Factores de Transcripción E2F/metabolismo , Factores de Transcripción TFII/metabolismo , Ciclo Celular , Proliferación Celular , Inmunoprecipitación de Cromatina , Biología Computacional/métodos , Factores de Transcripción E2F/genética , Humanos , Células K562 , Regiones Promotoras Genéticas , Unión Proteica , Factores de Transcripción TFII/genética
7.
Blood ; 138(18): 1648-1649, 2021 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-34735000
8.
Nucleic Acids Res ; 44(15): 7173-88, 2016 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-27141965

RESUMEN

The modulation of chromatin structure is a key step in transcription regulation in mammalian cells and eventually determines lineage commitment and differentiation. USF1/2, Setd1a and NURF complexes interact to regulate chromatin architecture in erythropoiesis, but the mechanistic basis for this regulation is hitherto unknown. Here we showed that Setd1a and NURF complexes bind to promoters to control chromatin structural alterations and gene activation in a cell context dependent manner. In human primary erythroid cells USF1/2, H3K4me3 and the NURF complex were significantly co-enriched at transcription start sites of erythroid genes, and their binding was associated with promoter/enhancer accessibility that resulted from nucleosome repositioning. Mice deficient for Setd1a, an H3K4 trimethylase, in the erythroid compartment exhibited reduced Ter119/CD71 positive erythroblasts, peripheral blood RBCs and hemoglobin levels. Loss of Setd1a led to a reduction of promoter-associated H3K4 methylation, inhibition of gene transcription and blockade of erythroid differentiation. This was associated with alterations in NURF complex occupancy at erythroid gene promoters and reduced chromatin accessibility. Setd1a deficiency caused decreased associations between enhancer and promoter looped interactions as well as reduced expression of erythroid genes such as the adult ß-globin gene. These data indicate that Setd1a and NURF complexes are specifically targeted to and coordinately regulate erythroid promoter chromatin dynamics during erythroid lineage differentiation.


Asunto(s)
Linaje de la Célula , Ensamble y Desensamble de Cromatina , Eritrocitos/citología , Eritropoyesis , Regulación de la Expresión Génica/genética , N-Metiltransferasa de Histona-Lisina/metabolismo , Complejos Multiproteicos/metabolismo , Animales , Antígenos Nucleares/metabolismo , Linaje de la Célula/genética , Células Cultivadas , Cromatina/genética , Cromatina/metabolismo , Inmunoprecipitación de Cromatina , Eritroblastos/citología , Eritroblastos/metabolismo , Recuento de Eritrocitos , Eritrocitos/metabolismo , Eritropoyesis/genética , Femenino , Hemoglobinas/metabolismo , N-Metiltransferasa de Histona-Lisina/deficiencia , N-Metiltransferasa de Histona-Lisina/genética , Histonas/metabolismo , Humanos , Lisina/metabolismo , Masculino , Metilación , Ratones , Ratones Noqueados , Nucleasa Microcócica/metabolismo , Complejos Multiproteicos/química , Proteínas del Tejido Nervioso/metabolismo , Regiones Promotoras Genéticas/genética , Bazo/citología , Factores de Transcripción/metabolismo , Factores Estimuladores hacia 5'/metabolismo
9.
Biochim Biophys Acta ; 1859(12): 1515-1526, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27693117

RESUMEN

DNMT1 is the maintenance DNA methyltransferase shown to be essential for embryonic development and cellular growth and differentiation in many somatic tissues in mammals. Increasing evidence has also suggested a role for DNMT1 in repressing gene expression through interactions with specific transcription factors. Previously, we identified DNMT1 as an interacting partner of the TR2/TR4 nuclear receptor heterodimer in erythroid cells, implicated in the developmental silencing of fetal ß-type globin genes in the adult stage of human erythropoiesis. Here, we extended this work by using a biotinylation tagging approach to characterize DNMT1 protein complexes in mouse erythroleukemic cells. We identified novel DNMT1 interactions with several hematopoietic transcription factors with essential roles in erythroid differentiation, including GATA1, GFI-1b and FOG-1. We provide evidence for DNMT1 forming distinct protein subcomplexes with specific transcription factors and propose the existence of a "core" DNMT1 complex with the transcription factors ZBP-89 and ZNF143, which is also present in non-hematopoietic cells. Furthermore, we identified the short (17a.a.) PCNA Binding Domain (PBD) located near the N-terminus of DNMT1 as being necessary for mediating interactions with the transcription factors described herein. Lastly, we provide evidence for DNMT1 serving as a co-repressor of ZBP-89 and GATA1 acting through upstream regulatory elements of the PU.1 and GATA1 gene loci.


Asunto(s)
Diferenciación Celular/genética , ADN (Citosina-5-)-Metiltransferasas/genética , Complejos Multiproteicos/metabolismo , Factores de Transcripción/genética , Animales , ADN (Citosina-5-)-Metiltransferasa 1 , ADN (Citosina-5-)-Metiltransferasas/metabolismo , Metilación de ADN/genética , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Células Eritroides/química , Células Eritroides/metabolismo , Factor de Transcripción GATA1/genética , Factor de Transcripción GATA1/metabolismo , Regulación de la Expresión Génica/genética , Humanos , Ratones , Complejos Multiproteicos/genética , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Unión Proteica , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Transactivadores/genética , Transactivadores/metabolismo , Factores de Transcripción/metabolismo
10.
Mol Ther ; 29(6): 1933-1934, 2021 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-33961803
11.
Nucleic Acids Res ; 42(7): 4363-74, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24497190

RESUMEN

Developmental stage-specific expression of the ß-type globin genes is regulated by many cis- and trans-acting components. The adult ß-globin gene contains an E-box located 60 bp downstream of the transcription start site that has been shown to bind transcription factor upstream stimulatory factor (USF) and to contribute to efficient in vitro transcription. We expressed an artificial zinc finger DNA-binding domain (ZF-DBD) targeting this site (+60 ZF-DBD) in murine erythroleukemia cells. Expression of the +60 ZF-DBD reduced the recruitment and elongation of RNA polymerase II (Pol II) at the adult ß-globin gene and at the same time increased the binding of Pol II at locus control region (LCR) element HS2, suggesting that Pol II is transferred from the LCR to the globin gene promoters. Expression of the +60 ZF-DBD also reduced the frequency of interactions between the LCR and the adult ß-globin promoter. ChIP-exonuclease-sequencing revealed that the +60ZF-DBD was targeted to the adult ß-globin downstream promoter and that the binding of the ZF-DBD caused alterations in the association of USF2 containing protein complexes. The data demonstrate that targeting a ZF-DBD to the adult ß-globin downstream promoter region interferes with the LCR-mediated recruitment and activity of Pol II.


Asunto(s)
Regiones Promotoras Genéticas , Dedos de Zinc , Globinas beta/genética , Animales , Línea Celular Tumoral , Proteínas de Unión al ADN/química , Región de Control de Posición , Factor de Transcripción NF-E2/metabolismo , Estructura Terciaria de Proteína , ARN Polimerasa II/metabolismo
12.
Nucleic Acids Res ; 42(12): 7625-41, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24875474

RESUMEN

The ubiquitously expressed transcription factor TFII-I exerts both positive and negative effects on transcription. Using biotinylation tagging technology and high-throughput sequencing, we determined sites of chromatin interactions for TFII-I in the human erythroleukemia cell line K562. This analysis revealed that TFII-I binds upstream of the transcription start site of expressed genes, both upstream and downstream of the transcription start site of repressed genes, and downstream of RNA polymerase II peaks at the ATF3 and other stress responsive genes. At the ATF3 gene, TFII-I binds immediately downstream of a Pol II peak located 5 kb upstream of exon 1. Induction of ATF3 expression increases transcription throughout the ATF3 gene locus which requires TFII-I and correlates with increased association of Pol II and Elongin A. Pull-down assays demonstrated that TFII-I interacts with Elongin A. Partial depletion of TFII-I expression caused a reduction in the association of Elongin A with and transcription of the DNMT1 and EFR3A genes without a decrease in Pol II recruitment. The data reveal different interaction patterns of TFII-I at active, repressed, or inducible genes, identify novel TFII-I interacting proteins, implicate TFII-I in the regulation of transcription elongation and provide insight into the role of TFII-I during the response to cellular stress.


Asunto(s)
Estrés Fisiológico/genética , Factores de Transcripción TFII/metabolismo , Factor de Transcripción Activador 3/genética , Sitios de Unión , Biotinilación , Ligasas de Carbono-Nitrógeno/metabolismo , ADN-Topoisomerasas de Tipo II/metabolismo , Elonguina , Proteínas de Escherichia coli/metabolismo , Genómica , Humanos , Células K562 , Proteínas Nucleares/metabolismo , Proteómica , ARN Polimerasa II/metabolismo , Proteínas Represoras/metabolismo , Factores Asociados con la Proteína de Unión a TATA/metabolismo , Factores de Transcripción/metabolismo , Sitio de Iniciación de la Transcripción
13.
PLoS Genet ; 9(6): e1003524, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23754954

RESUMEN

The interplay between polycomb and trithorax complexes has been implicated in embryonic stem cell (ESC) self-renewal and differentiation. It has been shown recently that WRD5 and Dpy-30, specific components of the SET1/MLL protein complexes, play important roles during ESC self-renewal and differentiation of neural lineages. However, not much is known about how and where specific trithorax complexes are targeted to genes involved in self-renewal or lineage-specification. Here, we report that the recruitment of the hSET1A histone H3K4 methyltransferase (HMT) complex by transcription factor USF1 is required for mesoderm specification and lineage differentiation. In undifferentiated ESCs, USF1 maintains hematopoietic stem/progenitor cell (HS/PC) associated bivalent chromatin domains and differentiation potential. Furthermore, USF1 directed recruitment of the hSET1A complex to the HoxB4 promoter governs the transcriptional activation of HoxB4 gene and regulates the formation of early hematopoietic cell populations. Disruption of USF or hSET1A function by overexpression of a dominant-negative AUSF1 mutant or by RNA-interference-mediated knockdown, respectively, led to reduced expression of mesoderm markers and inhibition of lineage differentiation. We show that USF1 and hSET1A together regulate H3K4me3 modifications and transcription preinitiation complex assembly at the hematopoietic-associated HoxB4 gene during differentiation. Finally, ectopic expression of USF1 in ESCs promotes mesoderm differentiation and enforces the endothelial-to-hematopoietic transition by inducing hematopoietic-associated transcription factors, HoxB4 and TAL1. Taken together, our findings reveal that the guided-recruitment of the hSET1A histone methyltransferase complex and its H3K4 methyltransferase activity by transcription regulator USF1 safeguards hematopoietic transcription programs and enhances mesoderm/hematopoietic differentiation.


Asunto(s)
Diferenciación Celular/genética , Células Madre Embrionarias/citología , Epigénesis Genética , N-Metiltransferasa de Histona-Lisina/genética , Factores Estimuladores hacia 5'/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Linaje de la Célula , Células Madre Embrionarias/metabolismo , Regulación de la Expresión Génica , N-Metiltransferasa de Histona-Lisina/metabolismo , Proteínas de Homeodominio/metabolismo , Humanos , Células K562 , Mesodermo/citología , Mesodermo/metabolismo , Metiltransferasas/metabolismo , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas/metabolismo , Proteína 1 de la Leucemia Linfocítica T Aguda , Factores de Transcripción/metabolismo , Activación Transcripcional , Factores Estimuladores hacia 5'/metabolismo
14.
J Cell Biochem ; 116(11): 2435-44, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25989233

RESUMEN

Genome editing and alteration of gene expression by synthetic DNA binding activities gained a lot of momentum over the last decade. This is due to the development of new DNA binding molecules with enhanced binding specificity. The most commonly used DNA binding modules are zinc fingers (ZFs), TALE-domains, and the RNA component of the CRISPR/Cas9 system. These binding modules are fused or linked to either nucleases that cut the DNA and induce DNA repair processes, or to protein domains that activate or repress transcription of genes close to the targeted site in the genome. This review focuses on the structure, design, and applications of ZF DNA binding domains (ZFDBDs). ZFDBDs are relatively small and have been shown to penetrate the cell membrane without additional tags suggesting that they could be delivered to cells without a DNA or RNA intermediate. Advanced algorithms that are based on extensive knowledge of the mode of ZF/DNA interactions are used to design the amino acid composition of ZFDBDs so that they bind to unique sites in the genome. Off-target binding has been a concern for all synthetic DNA binding molecules. Thus, increasing the specificity and affinity of ZFDBDs will have a significant impact on their use in analytical or therapeutic settings.


Asunto(s)
Proteínas de Unión al ADN/química , ADN/metabolismo , Dedos de Zinc , Algoritmos , Sitios de Unión , Proteínas de Unión al ADN/metabolismo , Regulación de la Expresión Génica , Modelos Moleculares , Unión Proteica , Ingeniería de Proteínas/métodos
15.
Nucleic Acids Res ; 41(9): 4938-48, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23519611

RESUMEN

We report the genomic occupancy profiles of the key hematopoietic transcription factor GATA-1 in pro-erythroblasts and mature erythroid cells fractionated from day E12.5 mouse fetal liver cells. Integration of GATA-1 occupancy profiles with available genome-wide transcription factor and epigenetic profiles assayed in fetal liver cells enabled as to evaluate GATA-1 involvement in modulating local chromatin structure of target genes during erythroid differentiation. Our results suggest that GATA-1 associates preferentially with changes of specific epigenetic modifications, such as H4K16, H3K27 acetylation and H3K4 di-methylation. Furthermore, we used random forest (RF) non-linear regression to predict changes in the expression levels of GATA-1 target genes based on the genomic features available for pro-erythroblasts and mature fetal liver-derived erythroid cells. Remarkably, our prediction model explained a high proportion of 62% of variation in gene expression. Hierarchical clustering of the proximity values calculated by the RF model produced a clear separation of upregulated versus downregulated genes and a further separation of downregulated genes in two distinct groups. Thus, our study of GATA-1 genome-wide occupancy profiles in mouse primary erythroid cells and their integration with global epigenetic marks reveals three clusters of GATA-1 gene targets that are associated with specific epigenetic signatures and functional characteristics.


Asunto(s)
Epigénesis Genética , Eritropoyesis/genética , Factor de Transcripción GATA1/metabolismo , Hígado/metabolismo , Animales , Células Cultivadas , Células Eritroides/metabolismo , Feto , Genoma , Histonas/metabolismo , Hígado/citología , Hígado/embriología , Ratones
16.
Proc Natl Acad Sci U S A ; 109(44): 17948-53, 2012 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-23074246

RESUMEN

Gene expression is primarily regulated by cis-regulatory DNA elements and trans-interacting proteins. Transcription factors bind in a DNA sequence-specific manner and recruit activities that modulate the association and activity of transcription complexes at specific genes. Often, transcription factors belong to families of related proteins that interact with similar DNA sequences. Furthermore, genes are regulated by multiple, sometimes redundant, cis-regulatory elements. Thus, the analysis of the role of a specific DNA regulatory sequence and the interacting proteins in the context of intact cells is challenging. In this study, we designed and functionally characterized an artificial DNA-binding domain that neutralizes the function of a cis-regulatory DNA element associated with adult ß-globin gene expression. The zinc finger DNA-binding domain (ZF-DBD), comprising six ZFs, interacted specifically with a CACCC site located 90 bp upstream of the transcription start site (-90 ß-ZF-DBD), which is normally occupied by KLF1, a major regulator of adult ß-globin gene expression. Stable expression of the -90 ß-ZF-DBD in mouse erythroleukemia cells reduced the binding of KLF1 with the ß-globin gene, but not with locus control region element HS2, and led to reduced transcription. Transient transgenic embryos expressing the -90 ß-ZF-DBD developed normally but revealed reduced expression of the adult ß-globin gene. These results demonstrate that artificial DNA-binding proteins lacking effector domains are useful tools for studying and modulating the function of cis-regulatory DNA elements.


Asunto(s)
ADN/metabolismo , Dedos de Zinc , Globinas beta/fisiología , Animales , Sitios de Unión , Línea Celular , Inmunoprecipitación de Cromatina , Ensayo de Cambio de Movilidad Electroforética , Ratones , Ratones Transgénicos , Microscopía Fluorescente , Reacción en Cadena de la Polimerasa
17.
J Biol Chem ; 287(48): 40279-91, 2012 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-23014989

RESUMEN

BACKGROUND: HDAC1-containing NuRD complex is required for GATA-1-mediated repression and activation. RESULTS: GATA-1 associated with acetylated HDAC1-containing NuRD complex, which has no deacetylase activity, for gene activation. CONCLUSION: Acetylated HDAC1 converts NuRD complex from a repressor to an activator during GATA-1-directed erythroid differentiation program. SIGNIFICANCE: HDAC1 acetylation may function as a master regulator for the activity of HDAC1 containing complexes. Histone deacetylases (HDACs) play important roles in regulating cell proliferation and differentiation. The HDAC1-containing NuRD complex is generally considered as a corepressor complex and is required for GATA-1-mediated repression. However, recent studies also show that the NuRD complex is involved in GATA-1-mediated gene activation. We tested whether the GATA-1-associated NuRD complex loses its deacetylase activity and commits the GATA-1 complex to become an activator during erythropoiesis. We found that GATA-1-associated deacetylase activity gradually decreased upon induction of erythroid differentiation. GATA-1-associated HDAC1 is increasingly acetylated after differentiation. It has been demonstrated earlier that acetylated HDAC1 has no deacetylase activity. Indeed, overexpression of an HDAC1 mutant, which mimics acetylated HDAC1, promotes GATA-1-mediated transcription and erythroid differentiation. Furthermore, during erythroid differentiation, acetylated HDAC1 recruitment is increased at GATA-1-activated genes, whereas it is significantly decreased at GATA-1-repressed genes. Interestingly, deacetylase activity is not required for Mi2 remodeling activity, suggesting that remodeling activity may be required for both activation and repression. Thus, our data suggest that NuRD can function as a coactivator or repressor and that acetylated HDAC1 converts the NuRD complex from a repressor to an activator during GATA-1-directed erythroid differentiation.


Asunto(s)
Proteínas Co-Represoras/metabolismo , Histona Desacetilasa 1/metabolismo , Complejo Desacetilasa y Remodelación del Nucleosoma Mi-2/metabolismo , Acetilación , Animales , Diferenciación Celular , Línea Celular , Proteínas Co-Represoras/genética , Células Eritroides/citología , Células Eritroides/enzimología , Células Eritroides/metabolismo , Factor de Transcripción GATA1/genética , Factor de Transcripción GATA1/metabolismo , Histona Desacetilasa 1/genética , Humanos , Complejo Desacetilasa y Remodelación del Nucleosoma Mi-2/genética , Ratones , Regiones Promotoras Genéticas , Unión Proteica , Activación Transcripcional
18.
J Cell Biochem ; 114(9): 1997-2006, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23519692

RESUMEN

The human ß-globin genes are regulated by a locus control region (LCR) and are expressed at extremely high levels in erythroid cells. How transcriptional fidelity of highly expressed genes is regulated and maintained during the cell cycle is not completely understood. Here, we analyzed the association of transcription factor USF, the co-activator CBP, topoisomerase I (Topo I), basal transcription factor TFIIB, and RNA polymerase II (Pol II) with the ß-globin gene locus at specific cell-cycle stages. The data demonstrate that while association of Pol II with globin locus associated chromatin decreased in mitotically arrested cells, it remained bound at lower levels at the γ-globin gene promoter. During early S-phase, association of CBP, USF, and Pol II with the globin gene locus decreased. The re-association of CBP and USF2 with the LCR preceded re-association of Pol II, suggesting that these proteins together mediate recruitment of Pol II to the ß-globin gene locus during S-phase. Finally, we analyzed the association of Topo I with the globin gene locus during late S-phase. In general, Topo I association correlated with the binding of Pol II. Inhibition of Topo I activity reduced Pol II binding at the LCR and intergenic regions but not at the γ-globin gene promoter. The data demonstrate dynamic associations of transcription factors with the globin gene locus during the cell cycle and support previous results showing that specific components of transcription complexes remain associated with highly transcribed genes during mitosis.


Asunto(s)
ARN Polimerasa II/metabolismo , Factores de Transcripción/metabolismo , Globinas beta/metabolismo , Ciclo Celular/genética , Ciclo Celular/fisiología , Línea Celular Tumoral , Inmunoprecipitación de Cromatina , Humanos , Mitosis/genética , Mitosis/fisiología , ARN Polimerasa II/genética , Factores de Transcripción/genética , Globinas beta/genética
19.
Blood ; 118(5): 1386-94, 2011 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-21653943

RESUMEN

Chromatin insulators protect erythroid genes from being silenced during erythropoiesis, and the disruption of barrier insulator function in erythroid membrane gene loci results in mild or severe anemia. We showed previously that the USF1/2-bound 5'HS4 insulator mediates chromatin barrier activity in the erythroid-specific chicken ß-globin locus. It is currently not known how insulators establish such a barrier. To understand the function of USF1, we purified USF1-associated protein complexes and found that USF1 forms a multiprotein complex with hSET1 and NURF, thus exhibiting histone H3K4 methyltransferase- and ATP-dependent nucleosome remodeling activities, respectively. Both SET1 and NURF are recruited to the 5'HS4 insulator by USF1 to retain the active chromatin structure in erythrocytes. Knock-down of NURF resulted in a rapid loss of barrier activity accompanied by an alteration of nucleosome positioning, increased occupancy of the nucleosome-free linker region at the insulator site, and increased repressive H3K27me3 levels in the vicinity of the HS4 insulator. Furthermore, suppression of SET1 reduced barrier activity, decreased H3K4me2 and acH3K9/K14, and diminished the recruitment of BPTF at several erythroid-specific barrier insulator sites. Therefore, our data reveal a synergistic role of hSET1 and NURF in regulating the USF-bound barrier insulator to prevent erythroid genes from encroachment of heterochromatin.


Asunto(s)
Ensamble y Desensamble de Cromatina/genética , Cromatina/metabolismo , Proteínas Cromosómicas no Histona/fisiología , N-Metiltransferasa de Histona-Lisina/fisiología , Animales , Pollos , Proteínas Cromosómicas no Histona/genética , Proteínas Cromosómicas no Histona/metabolismo , Células HeLa , N-Metiltransferasa de Histona-Lisina/genética , N-Metiltransferasa de Histona-Lisina/metabolismo , Humanos , Elementos Aisladores/fisiología , Células K562 , Modelos Biológicos , Complejos Multiproteicos/genética , Complejos Multiproteicos/metabolismo , Complejos Multiproteicos/fisiología , Unión Proteica/genética , Unión Proteica/fisiología , Células Tumorales Cultivadas , Factores Estimuladores hacia 5'/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA