Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
J Cell Sci ; 134(23)2021 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-34870705

RESUMEN

The Golgi functions principally in the biogenesis and trafficking of glycoproteins and lipids. It is compartmentalized into multiple flattened adherent membrane sacs termed cisternae, which each contain a distinct repertoire of resident proteins, principally enzymes that modify newly synthesized proteins and lipids sequentially as they traffic through the stack of Golgi cisternae. Upon reaching the final compartments of the Golgi, the trans cisterna and trans-Golgi network (TGN), processed glycoproteins and lipids are packaged into coated and non-coated transport carriers derived from the trans Golgi and TGN. The cargoes of clathrin-coated vesicles are chiefly residents of endo-lysosomal organelles, while uncoated carriers ferry cargo to the cell surface. There are outstanding questions regarding the mechanisms of protein and lipid sorting within the Golgi for export to different organelles. Nonetheless, conceptual advances have begun to define the key molecular features of cargo clients and the mechanisms underlying their sorting into distinct export pathways, which we have collated in this Cell Science at a Glance article and the accompanying poster.


Asunto(s)
Aparato de Golgi , Red trans-Golgi , Membrana Celular/metabolismo , Vesículas Cubiertas por Clatrina , Humanos , Transporte de Proteínas , Red trans-Golgi/metabolismo
2.
Traffic ; 21(1): 45-59, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31471931

RESUMEN

The endosomal system functions as a network of protein and lipid sorting stations that receives molecules from endocytic and secretory pathways and directs them to the lysosome for degradation, or exports them from the endosome via retrograde trafficking or plasma membrane recycling pathways. Retrograde trafficking pathways describe endosome-to-Golgi transport while plasma membrane recycling pathways describe trafficking routes that return endocytosed molecules to the plasma membrane. These pathways are crucial for lysosome biogenesis, nutrient acquisition and homeostasis and for the physiological functions of many types of specialized cells. Retrograde and recycling sorting machineries of eukaryotic cells were identified chiefly through genetic screens using the budding yeast Saccharomyces cerevisiae system and discovered to be highly conserved in structures and functions. In this review, we discuss advances regarding retrograde trafficking and recycling pathways, including new discoveries that challenge existing ideas about the organization of the endosomal system, as well as how these pathways intersect with cellular homeostasis pathways.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Membrana Celular/metabolismo , Endosomas/metabolismo , Aparato de Golgi/metabolismo , Transporte de Proteínas , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
3.
J Biol Chem ; 295(34): 12305-12316, 2020 08 21.
Artículo en Inglés | MEDLINE | ID: mdl-32651229

RESUMEN

Retromer orchestrates the selection and export of integral membrane proteins from the endosome via retrograde and plasma membrane recycling pathways. Long-standing hypotheses regarding the retromer sorting mechanism posit that oligomeric interactions between retromer and associated accessory factors on the endosome membrane drives clustering of retromer-bound integral membrane cargo prior to its packaging into a nascent transport carrier. To test this idea, we examined interactions between components of the sorting nexin 3 (SNX3)-retromer sorting pathway using quantitative single particle fluorescence microscopy in a reconstituted system. This system includes a supported lipid bilayer, fluorescently labeled retromer, SNX3, and two model cargo proteins, RAB7, and retromer-binding segments of the WASHC2C subunit of the WASH complex. We found that the distribution of membrane-associated retromer is predominantly comprised of monomer (∼18%), dimer (∼35%), trimer (∼24%), and tetramer (∼13%). Unexpectedly, neither the presence of membrane-associated cargo nor accessory factors substantially affected this distribution. The results indicate that retromer has an intrinsic propensity to form low order oligomers on a supported lipid bilayer and that neither membrane association nor accessory factors potentiate oligomerization. The results support a model whereby SNX3-retromer is a minimally concentrative coat protein complex adapted to bulk membrane trafficking from the endosomal system.


Asunto(s)
Membrana Dobles de Lípidos/química , Complejos Multiproteicos/química , Proteínas de Unión a Fosfato/química , Nexinas de Clasificación/química , Proteínas de Unión al GTP rab/química , Humanos , Complejos Multiproteicos/metabolismo , Proteínas de Unión a Fosfato/metabolismo , Nexinas de Clasificación/metabolismo , Proteínas de Unión al GTP rab/metabolismo , Proteínas de Unión a GTP rab7
4.
Traffic ; 18(2): 134-144, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-28026081

RESUMEN

The yeast SNX4 sub-family of sorting nexin containing a Bin-Amphiphysin-Rvs domain (SNX-BAR) proteins, Snx4/Atg24, Snx41 and Atg20/Snx42, are required for endocytic recycling and selective autophagy. Here, we show that Snx4 forms 2 functionally distinct heterodimers: Snx4-Atg20 and Snx4-Snx41. Each heterodimer coats an endosome-derived tubule that mediates retrograde sorting of distinct cargo; the v-SNARE, Snc1, is a cargo of the Snx4-Atg20 pathway, and Snx4-Snx41 mediates retrograde sorting of Atg27, an integral membrane protein implicated in selective autophagy. Live cell imaging of individual endosomes shows that Snx4 and the Vps5-Vps17 retromer SNX-BAR heterodimer operate concurrently on a maturing endosome. Consistent with this, the yeast dynamin family protein, Vps1, which was previously shown to promote fission of retromer-coated tubules, promotes fission of Snx4-Atg20 coated tubules. The results indicate that the yeast SNX-BAR proteins coat 3 distinct types of endosome-derived carriers that mediate endosome-to-Golgi retrograde trafficking.


Asunto(s)
Proteínas Fúngicas/metabolismo , Transporte de Proteínas/fisiología , Proteínas R-SNARE/metabolismo , Nexinas de Clasificación/metabolismo , Levaduras/metabolismo , Proteínas Portadoras/metabolismo , Endosomas/metabolismo , Aparato de Golgi/metabolismo , Proteínas de Transporte Vesicular/metabolismo
5.
Proc Natl Acad Sci U S A ; 113(24): 6677-82, 2016 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-27247384

RESUMEN

One of the principal functions of the trans Golgi network (TGN) is the sorting of proteins into distinct vesicular transport carriers that mediate secretion and interorganelle trafficking. Are lipids also sorted into distinct TGN-derived carriers? The Golgi is the principal site of the synthesis of sphingomyelin (SM), an abundant sphingolipid that is transported. To address the specificity of SM transport to the plasma membrane, we engineered a natural SM-binding pore-forming toxin, equinatoxin II (Eqt), into a nontoxic reporter termed Eqt-SM and used it to monitor intracellular trafficking of SM. Using quantitative live cell imaging, we found that Eqt-SM is enriched in a subset of TGN-derived secretory vesicles that are also enriched in a glycophosphatidylinositol-anchored protein. In contrast, an integral membrane secretory protein (CD8α) is not enriched in these carriers. Our results demonstrate the sorting of native SM at the TGN and its transport to the plasma membrane by specific carriers.


Asunto(s)
Antígenos CD8/metabolismo , Membrana Celular/metabolismo , Vesículas Secretoras/metabolismo , Esfingomielinas/metabolismo , Red trans-Golgi/metabolismo , Transporte Biológico Activo/efectos de los fármacos , Transporte Biológico Activo/fisiología , Antígenos CD8/genética , Membrana Celular/genética , Venenos de Cnidarios/farmacología , Células HeLa , Humanos , Vesículas Secretoras/genética , Esfingomielinas/genética , Red trans-Golgi/genética
6.
PLoS Pathog ; 11(2): e1004699, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25693203

RESUMEN

Trafficking of human papillomaviruses to the Golgi apparatus during virus entry requires retromer, an endosomal coat protein complex that mediates the vesicular transport of cellular transmembrane proteins from the endosome to the Golgi apparatus or the plasma membrane. Here we show that the HPV16 L2 minor capsid protein is a retromer cargo, even though L2 is not a transmembrane protein. We show that direct binding of retromer to a conserved sequence in the carboxy-terminus of L2 is required for exit of L2 from the early endosome and delivery to the trans-Golgi network during virus entry. This binding site is different from known retromer binding motifs and can be replaced by a sorting signal from a cellular retromer cargo. Thus, HPV16 is an unconventional particulate retromer cargo, and retromer binding initiates retrograde transport of viral components from the endosome to the trans-Golgi network during virus entry. We propose that the carboxy-terminal segment of L2 protein protrudes through the endosomal membrane and is accessed by retromer in the cytoplasm.


Asunto(s)
Proteínas de la Cápside/metabolismo , Núcleo Celular/virología , Papillomavirus Humano 16/metabolismo , Proteínas Oncogénicas Virales/metabolismo , Liberación del Virus/fisiología , Antígenos Virales/metabolismo , Sitios de Unión , Cápside/metabolismo , Proteínas de la Cápside/genética , Línea Celular , Endosomas/virología , Aparato de Golgi/metabolismo , Aparato de Golgi/virología , Células HEK293 , Células HeLa , Humanos , Proteínas Oncogénicas Virales/genética , Unión Proteica , Interferencia de ARN , ARN Interferente Pequeño , Transducción de Señal , Internalización del Virus
7.
Proc Natl Acad Sci U S A ; 111(1): 267-72, 2014 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-24344282

RESUMEN

Retromer is an evolutionarily conserved protein complex composed of the VPS26, VPS29, and VPS35 proteins that selects and packages cargo proteins into transport carriers that export cargo from the endosome. The mechanisms by which retromer is recruited to the endosome and captures cargo are unknown. We show that membrane recruitment of retromer is mediated by bivalent recognition of an effector of PI3K, SNX3, and the RAB7A GTPase, by the VPS35 retromer subunit. These bivalent interactions prime retromer to capture integral membrane cargo, which enhances membrane association of retromer and initiates cargo sorting. The role of RAB7A is severely impaired by a mutation, K157N, that causes Charcot-Marie-Tooth neuropathy 2B. The results elucidate minimal requirements for retromer assembly on the endosome membrane and reveal how PI3K and RAB signaling are coupled to initiate retromer-mediated cargo export.


Asunto(s)
Endosomas/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Transporte Vesicular/química , Transporte Biológico , Proteínas Portadoras/química , Reactivos de Enlaces Cruzados , Humanos , Liposomas/química , Espectrometría de Masas , Mutación , Fosfatidilinositol 3-Quinasas/metabolismo , Unión Proteica , Transporte de Proteínas , Proteínas de Saccharomyces cerevisiae/química , Transducción de Señal , Nexinas de Clasificación/química , Proteínas de Unión al GTP rab/química , Proteínas de Unión a GTP rab7
8.
Cell Mol Life Sci ; 72(18): 3441-3455, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26022064

RESUMEN

Sorting of macromolecules within the endosomal system is vital for physiological control of nutrient homeostasis, cell motility, and proteostasis. Trafficking routes that export macromolecules from the endosome via vesicle and tubule transport carriers constitute plasma membrane recycling and retrograde endosome-to-Golgi pathways. Proteins of the sorting nexin family have been discovered to function at nearly every step of endosomal transport carrier biogenesis and it is becoming increasingly clear that they form the core machineries of cargo-specific transport pathways that are closely integrated with cellular physiology. Here, we summarize recent progress in elucidating the pathways that mediate the biogenesis of endosome-derived transport carriers.


Asunto(s)
Transporte Biológico/fisiología , Endosomas/metabolismo , Endosomas/fisiología , Proteínas de Transporte Vesicular/metabolismo , Membrana Celular/metabolismo , Membrana Celular/fisiología , Aparato de Golgi/metabolismo , Aparato de Golgi/fisiología , Humanos
9.
Mol Biol Cell ; 35(5): br11, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38536441

RESUMEN

Bridge-like lipid transfer protein family member 2 (BLTP2) is an evolutionary conserved protein with unknown function(s). The absence of BLTP2 in Drosophila melanogaster results in impaired cellular secretion and larval death, while in mice (Mus musculus), it causes preweaning lethality. Structural predictions propose that BLTP2 belongs to the repeating ß-groove domain-containing (also called the VPS13) protein family, forming a long tube with a hydrophobic core, suggesting that it operates as a lipid transfer protein (LTP). We establish BLTP2 as a negative regulator of ciliogenesis in RPE-1 cells based on a strong genetic interaction with WDR44, a gene that also suppresses ciliogenesis. Like WDR44, BLTP2 localizes to membrane contact sites involving the endoplasmic reticulum and the tubular endosome network in HeLa cells and that BLTP2 depletion enhanced ciliogenesis in RPE-1 cells grown in serum-containing medium, a condition where ciliogenesis is normally suppressed. This study establishes human BLTP2 as a putative LTP acting between tubular endosomes and ER that regulates primary cilium biogenesis.


Asunto(s)
Proteínas Portadoras , Drosophila melanogaster , Humanos , Animales , Ratones , Células HeLa , Drosophila melanogaster/metabolismo , Proteínas Portadoras/metabolismo , Proteínas/metabolismo , Familia
10.
Traffic ; 12(8): 948-55, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21382144

RESUMEN

Bidirectional traffic between the Golgi apparatus and the endosomal system sustains the functions of the trans-Golgi network (TGN) in secretion and organelle biogenesis. Export of cargo from the TGN via anterograde trafficking pathways depletes the organelle of sorting receptors, processing proteases, SNARE molecules, and other factors, and these are subsequently retrieved from endosomes via the retrograde pathway. Recent studies indicate that retrograde trafficking is vital to early metazoan development, nutrient homeostasis, and for processes that protect against Alzheimer's and other neurological diseases.


Asunto(s)
Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Endosomas/patología , Endosomas/fisiología , Red trans-Golgi/patología , Red trans-Golgi/fisiología , Animales , Endosomas/metabolismo , Humanos , Transporte de Proteínas , Transducción de Señal , Red trans-Golgi/metabolismo
11.
Artículo en Inglés | MEDLINE | ID: mdl-37487627

RESUMEN

The sorting and trafficking of lipids between organelles gives rise to a dichotomy of bulk membrane properties between organelles of the secretory and endolysosome networks, giving rise to two "membrane territories" based on differences in lipid-packing density, net membrane charge, and bilayer leaflet asymmetries. The cellular organelle membrane dichotomy emerges from ER-to-PM anterograde membrane trafficking and the synthesis of sphingolipids and cholesterol flux at the trans-Golgi network, which constitutes the interface between the two membrane territories. Organelle homeostasis is maintained by vesicle-mediated retrieval of bulk membrane from the distal organelles of each territory to the endoplasmic reticulum or plasma membrane and by soluble lipid transfer proteins that traffic particular lipids. The concept of cellular membrane territories emphasizes the contrasting features of organelle membranes of the secretory and endolysosome networks and the essential roles of lipid-sorting pathways that maintain organelle function.


Asunto(s)
Retículo Endoplásmico , Lípidos , Retículo Endoplásmico/metabolismo , Membrana Celular/metabolismo , Transporte de Proteínas , Transporte Biológico
12.
J Cell Biol ; 222(12)2023 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-37787764

RESUMEN

Sphingomyelin plays a key role in cellular cholesterol homeostasis by binding to and sequestering cholesterol in the plasma membrane. We discovered that synthesis of very long chain (VLC) sphingomyelins is inversely regulated by cellular cholesterol levels; acute cholesterol depletion elicited a rapid induction of VLC-sphingolipid synthesis, increased trafficking to the Golgi apparatus and plasma membrane, while cholesterol loading reduced VLC-sphingolipid synthesis. This sphingolipid-cholesterol metabolic axis is distinct from the sterol responsive element binding protein pathway as it requires ceramide synthase 2 (CerS2) activity, epidermal growth factor receptor signaling, and was unaffected by inhibition of protein translation. Depletion of VLC-ceramides reduced plasma membrane cholesterol content, reduced plasma membrane lipid packing, and unexpectedly resulted in the accumulation of cholesterol in the cytoplasmic leaflet of the lysosome membrane. This study establishes the existence of a cholesterol-sphingolipid regulatory axis that maintains plasma membrane lipid homeostasis via regulation of sphingomyelin synthesis and trafficking.


Asunto(s)
Membrana Celular , Membranas Intracelulares , Esfingomielinas , Esfingosina N-Aciltransferasa , Citoplasma , Homeostasis , Esfingomielinas/biosíntesis , Esfingosina N-Aciltransferasa/metabolismo , Colesterol , Receptores ErbB/metabolismo
13.
PLoS Pathog ; 11(8): e1005036, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26291450
14.
J Cell Biol ; 177(1): 115-25, 2007 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-17420293

RESUMEN

Amajor function of the endocytic system is the sorting of cargo to various organelles. Endocytic sorting of the yeast reductive iron transporter, which is composed of the Fet3 and Ftr1 proteins, is regulated by available iron. When iron is provided to iron-starved cells, Fet3p-Ftr1p is targeted to the lysosome-like vacuole and degraded. In contrast, when iron is not available, Fet3p-Ftr1p is maintained on the plasma membrane via an endocytic recycling pathway requiring the sorting nexin Grd19/Snx3p, the pentameric retromer complex, and the Ypt6p Golgi Rab GTPase module. A recycling signal in Ftr1p was identified and found to bind directly to Grd19/Snx3p. Retromer and Grd19/Snx3p partially colocalize to tubular endosomes, where they are physically associated. After export from the endosome, Fet3p-Ftr1p transits through the Golgi apparatus for resecretion. Thus, Grd19/Snx3p, functions as a cargo-specific adapter for the retromer complex, establishing a precedent for a mechanism by which sorting nexins expand the repertoire of retromer-dependent cargos.


Asunto(s)
Proteínas Portadoras/fisiología , Endocitosis , Proteínas de Saccharomyces cerevisiae/fisiología , Saccharomyces cerevisiae/metabolismo , Sitios de Unión , Membrana Celular/metabolismo , Ceruloplasmina/metabolismo , Endosomas/metabolismo , Aparato de Golgi/metabolismo , Proteínas Fluorescentes Verdes/análisis , Hierro/metabolismo , Proteínas de Transporte de Membrana/química , Proteínas de Transporte de Membrana/metabolismo , Señales de Clasificación de Proteína , Estructura Terciaria de Proteína , Transporte de Proteínas/fisiología , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Vesículas Transportadoras/metabolismo
15.
Mol Biol Cell ; 33(10): ar86, 2022 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-35830596

RESUMEN

The trans-Golgi network must coordinate sorting and secretion of proteins and lipids to intracellular organelles and the plasma membrane. During polarization of epithelial cells, changes in the lipidome and the expression and distribution of proteins contribute to the formation of apical and basolateral plasma membrane domains. Previous studies using HeLa cells show that the syndecan-1 transmembrane domain confers sorting within sphingomyelin-rich vesicles in a sphingomyelin secretion pathway. In polarized Madin-Darby canine kidney cells, we reveal differences in the sorting of syndecan-1, whereupon the correct trafficking of the protein is not dependent on its transmembrane domain and changes in sphingomyelin content of cells during polarization. Instead, we reveal that correct basolateral targeting of syndecan-1 requires a full-length PDZ motif in syndecan-1 and the PDZ domain golgin protein GOPC. Moreover, we reveal changes in Golgi morphology elicited by GOPC overexpression. These results suggest that the role of GOPC in sorting syndecan-1 is indirect and likely due to GOPC effects on Golgi organization.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas de la Matriz de Golgi/metabolismo , Sindecano-1 , Animales , Membrana Celular/metabolismo , Polaridad Celular , Perros , Células Epiteliales/metabolismo , Células HeLa , Humanos , Células de Riñón Canino Madin Darby , Transporte de Proteínas , Esfingomielinas/metabolismo , Sindecano-1/metabolismo
16.
Nat Commun ; 13(1): 1875, 2022 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-35388011

RESUMEN

Lysosomes are vital organelles vulnerable to injuries from diverse materials. Failure to repair or sequester damaged lysosomes poses a threat to cell viability. Here we report that cells exploit a sphingomyelin-based lysosomal repair pathway that operates independently of ESCRT to reverse potentially lethal membrane damage. Various conditions perturbing organelle integrity trigger a rapid calcium-activated scrambling and cytosolic exposure of sphingomyelin. Subsequent metabolic conversion of sphingomyelin by neutral sphingomyelinases on the cytosolic surface of injured lysosomes promotes their repair, also when ESCRT function is compromised. Conversely, blocking turnover of cytosolic sphingomyelin renders cells more sensitive to lysosome-damaging drugs. Our data indicate that calcium-activated scramblases, sphingomyelin, and neutral sphingomyelinases are core components of a previously unrecognized membrane restoration pathway by which cells preserve the functional integrity of lysosomes.


Asunto(s)
Calcio , Esfingomielinas , Calcio/metabolismo , Citosol/metabolismo , Complejos de Clasificación Endosomal Requeridos para el Transporte/genética , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Lisosomas/metabolismo , Esfingomielinas/metabolismo
17.
Elife ; 112022 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-36102623

RESUMEN

Sphingomyelin is a dominant sphingolipid in mammalian cells. Its production in the trans-Golgi traps cholesterol synthesized in the ER to promote formation of a sphingomyelin/sterol gradient along the secretory pathway. This gradient marks a fundamental transition in physical membrane properties that help specify organelle identify and function. We previously identified mutations in sphingomyelin synthase SMS2 that cause osteoporosis and skeletal dysplasia. Here, we show that SMS2 variants linked to the most severe bone phenotypes retain full enzymatic activity but fail to leave the ER owing to a defective autonomous ER export signal. Cells harboring pathogenic SMS2 variants accumulate sphingomyelin in the ER and display a disrupted transbilayer sphingomyelin asymmetry. These aberrant sphingomyelin distributions also occur in patient-derived fibroblasts and are accompanied by imbalances in cholesterol organization, glycerophospholipid profiles, and lipid order in the secretory pathway. We postulate that pathogenic SMS2 variants undermine the capacity of osteogenic cells to uphold nonrandom lipid distributions that are critical for their bone forming activity.


Asunto(s)
Vías Secretoras , Esfingomielinas , Animales , Colesterol , Glicerofosfolípidos , Mamíferos/metabolismo , Ratones , Ratones Noqueados , Esfingomielinas/metabolismo , Transferasas (Grupos de Otros Fosfatos Sustitutos)
18.
Nat Cell Biol ; 6(5): 414-9, 2004 May.
Artículo en Inglés | MEDLINE | ID: mdl-15077114

RESUMEN

Myristoylation of ARF family GTPases is required for their association with Golgi and endosomal membranes, where they regulate protein sorting and the lipid composition of these organelles. The Golgi-localized ARF-like GTPase Arl3p/ARP lacks a myristoylation signal, indicating that its targeting mechanism is distinct from myristoylated ARFs. We demonstrate that acetylation of the N-terminal methionine of Arl3p requires the NatC N(alpha)-acetyltransferase and that this modification is required for its Golgi localization. Chemical crosslinking and fluorescence microscopy experiments demonstrate that localization of Arl3p also requires Sys1p, a Golgi-localized integral membrane protein, which may serve as a receptor for acetylated Arl3p.


Asunto(s)
Factores de Ribosilacion-ADP/metabolismo , Acetiltransferasas/metabolismo , Aparato de Golgi/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Factores de Ribosilacion-ADP/genética , Acetilación , Arilamina N-Acetiltransferasa/genética , Arilamina N-Acetiltransferasa/metabolismo , Acetiltransferasa B N-Terminal , Transporte de Proteínas/fisiología , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Transporte Vesicular
19.
J Cell Biol ; 220(5)2021 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-33848329

RESUMEN

Cisternae of the Golgi apparatus adhere to each other to form stacks, which are aligned side by side to form the Golgi ribbon. Two proteins, GRASP65 and GRASP55, previously implicated in stacking of cisternae, are shown to be required for the formation of the Golgi ribbon.


Asunto(s)
Aparato de Golgi/metabolismo , Aparato de Golgi/fisiología , Proteínas de la Matriz de Golgi/metabolismo , Animales , Consenso , Citocinesis/fisiología , Mamíferos/metabolismo , Mamíferos/fisiología , Proteínas de la Membrana/metabolismo , Mitosis/fisiología , Transporte de Proteínas/fisiología
20.
Biol Open ; 10(3)2021 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-33593792

RESUMEN

Phosphatidylethanolamine is an abundant component of most cellular membranes whose physical and chemical properties modulate multiple aspects of organelle membrane dynamics. An evolutionarily ancient mechanism for producing phosphatidylethanolamine is to decarboxylate phosphatidylserine and the enzyme catalyzing this reaction, phosphatidylserine decarboxylase, localizes to the inner membrane of the mitochondrion. We characterize a second form of phosphatidylserine decarboxylase, termed PISD-LD, that is generated by alternative splicing of PISD pre-mRNA and localizes to lipid droplets and to mitochondria. Sub-cellular targeting is controlled by a common segment of PISD-LD that is distinct from the catalytic domain and is regulated by nutritional state. Growth conditions that promote neutral lipid storage in lipid droplets favors targeting to lipid droplets, while targeting to mitochondria is favored by conditions that promote consumption of lipid droplets. Depletion of both forms of phosphatidylserine decarboxylase impairs triacylglycerol synthesis when cells are challenged with free fatty acid, indicating a crucial role phosphatidylserine decarboxylase in neutral lipid storage. The results reveal a previously unappreciated role for phosphatidylserine decarboxylase in lipid droplet biogenesis.


Asunto(s)
Carboxiliasas/metabolismo , Gotas Lipídicas/metabolismo , Metabolismo de los Lípidos , Fosfatidilserinas/metabolismo , Empalme Alternativo , Secuencia de Aminoácidos , Biomarcadores , Carboxiliasas/química , Carboxiliasas/genética , Cromatografía en Capa Delgada , Ácidos Grasos , Perfilación de la Expresión Génica , Células HeLa , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Mitocondrias/genética , Mitocondrias/metabolismo , Imagen Molecular , Señales de Clasificación de Proteína , Imagen de Lapso de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA