Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Proc Natl Acad Sci U S A ; 112(27): 8427-32, 2015 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-26080445

RESUMEN

The use of receptor-ligand interactions to direct toxins to kill diseased cells selectively has shown considerable promise for treatment of a number of cancers and, more recently, autoimmune disease. Here we move the fusion toxin protein (FTP) technology beyond cancer/autoimmune therapeutics to target the human viral pathogen, human cytomegalovirus (HCMV), on the basis of its expression of the 7TM G protein-coupled chemokine receptor US28. The virus origin of US28 provides an exceptional chemokine-binding profile with high selectivity and improved binding for the CX3C chemokine, CX3CL1. Moreover, US28 is constitutively internalizing by nature, providing highly effective FTP delivery. We designed a synthetic CX3CL1 variant engineered to have ultra-high affinity for US28 and greater specificity for US28 than the natural sole receptor for CX3CL1, CX3CR1, and we fused the synthetic variant with the cytotoxic domain of Pseudomonas Exotoxin A. This novel strategy of a rationally designed FTP provided unparalleled anti-HCMV efficacy and potency in vitro and in vivo.


Asunto(s)
Proteínas Bacterianas/metabolismo , Quimiocina CX3CL1/metabolismo , Infecciones por Citomegalovirus/prevención & control , Receptores de Quimiocina/antagonistas & inhibidores , Proteínas Recombinantes de Fusión/farmacología , Proteínas Virales/antagonistas & inhibidores , Proteínas Bacterianas/genética , Línea Celular , Supervivencia Celular/efectos de los fármacos , Quimiocina CX3CL1/genética , Citomegalovirus/genética , Citomegalovirus/metabolismo , Citomegalovirus/fisiología , Infecciones por Citomegalovirus/virología , Relación Dosis-Respuesta a Droga , Diseño de Fármacos , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Fibroblastos/virología , Células HEK293 , Interacciones Huésped-Patógeno/efectos de los fármacos , Humanos , Pulmón/citología , Unión Proteica/efectos de los fármacos , Receptores de Quimiocina/metabolismo , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Factores de Tiempo , Proteínas Virales/metabolismo
2.
Nat Methods ; 11(5): 572-8, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24633408

RESUMEN

A method for non-invasive visualization of genetically labeled cells in animal disease models with micrometer-level resolution would greatly facilitate development of cell-based therapies. Imaging of fluorescent proteins (FPs) using red excitation light in the 'optical window' above 600 nm is one potential method for visualizing implanted cells. However, previous efforts to engineer FPs with peak excitation beyond 600 nm have resulted in undesirable reductions in brightness. Here we report three new red-excitable monomeric FPs obtained by structure-guided mutagenesis of mNeptune. Two of these, mNeptune2 and mNeptune2.5, demonstrate improved maturation and brighter fluorescence than mNeptune, whereas the third, mCardinal, has a red-shifted excitation spectrum without reduction in brightness. We show that mCardinal can be used to non-invasively and longitudinally visualize the differentiation of myoblasts into myocytes in living mice with high anatomical detail.


Asunto(s)
Diferenciación Celular , Diagnóstico por Imagen/métodos , Proteínas Luminiscentes/metabolismo , Microscopía Fluorescente/métodos , Animales , Cristalografía por Rayos X , Biblioteca de Genes , Células HeLa , Hemoglobinas/química , Humanos , Enlace de Hidrógeno , Masculino , Ratones , Ratones Desnudos , Datos de Secuencia Molecular , Células Musculares/metabolismo , Músculo Esquelético/patología , Músculos/patología , Mutagénesis , Mioblastos/metabolismo , Mioglobina/química , Células 3T3 NIH , Regeneración , Células Madre/citología , Proteína Fluorescente Roja
3.
J Biol Chem ; 287(1): 672-681, 2012 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-22086920

RESUMEN

Schizosaccharomyces pombe Sre1 is a membrane-bound transcription factor that controls adaptation to hypoxia. Like its mammalian homolog, sterol regulatory element-binding protein (SREBP), Sre1 activation requires release from the membrane. However, in fission yeast, this release occurs through a strikingly different mechanism that requires the Golgi Dsc E3 ubiquitin ligase complex and the proteasome. The mechanistic details of Sre1 cleavage, including the link between the Dsc E3 ligase complex and proteasome, are not well understood. Here, we present results of a genetic selection designed to identify additional components required for Sre1 cleavage. From the selection, we identified two new components of the fission yeast SREBP pathway: Dsc5 and Cdc48. The AAA (ATPase associated with diverse cellular activities) ATPase Cdc48 and Dsc5, a ubiquitin regulatory X domain-containing protein, interact with known Dsc complex components and are required for SREBP cleavage. These findings provide a mechanistic link between the Dsc E3 ligase complex and the proteasome in SREBP cleavage and add to a growing list of similarities between the Dsc E3 ligase and membrane E3 ligases involved in endoplasmic reticulum-associated degradation.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Proteínas Portadoras/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas de la Membrana/metabolismo , Subunidades de Proteína/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/metabolismo , Proteínas de Unión a los Elementos Reguladores de Esteroles/metabolismo , Ubiquitina-Proteína Ligasas/química , Proteínas Portadoras/química , Retículo Endoplásmico/metabolismo , Proteínas de la Membrana/química , Mutagénesis , Estructura Terciaria de Proteína , Subunidades de Proteína/química , Proteolisis , Schizosaccharomyces/citología , Schizosaccharomyces/enzimología , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/química , Proteína que Contiene Valosina
4.
J Biol Chem ; 286(31): 27139-46, 2011 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-21680738

RESUMEN

HMG-CoA reductase (HMGR) catalyzes a rate-limiting step in sterol biosynthesis and is a key control point in the feedback inhibition that regulates this pathway. Through the action of the membrane protein Insig, HMGR synthesis and degradation are regulated to maintain sterol homeostasis. The fission yeast Schizosaccharomyces pombe encodes homologs of HMGR and Insig called hmg1(+) and ins1(+), respectively. In contrast to the mammalian system, Ins1 regulates Hmg1 by a nondegradative mechanism involving phosphorylation of the Hmg1 active site. Here, we investigate the role of the Ins1-Hmg1 system in coupling glucose sensing to regulation of sterol biosynthesis. We show that Ins1-dependent Hmg1 phosphorylation is strongly induced in response to glucose withdrawal and that HMGR activity is correspondingly reduced. We also find that inability to activate Hmg1 phosphorylation under nutrient limiting conditions results in overaccumulation of sterol pathway intermediates. Furthermore, we show that regulation of Hmg1 phosphorylation requires the protein phosphatase 2A-related phosphatase Ppe1 and its regulator Sds23. These results describe a mechanism by which cells tune the rate of sterol synthesis to match nutrient availability.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Glucosa/farmacología , Hidroximetilglutaril-CoA Reductasas/metabolismo , Fosfoproteínas Fosfatasas/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/metabolismo , Adenilato Quinasa/metabolismo , Inmunoprecipitación , Schizosaccharomyces/enzimología
5.
J Theor Biol ; 300: 232-41, 2012 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-22310068

RESUMEN

When part of a biological system cannot be investigated directly by experimentation, we face the problem of structure identification: how can we construct a model for an unknown part of a mostly known system using measurements gathered from its input and output? This problem is especially difficult to solve when the measurements available are noisy and sparse, i.e. widely and unevenly spaced in time, as is common when measuring biological quantities at the cellular level. Here we present a procedure to identify a static nonlinearity embedded between two dynamical systems using noisy, sparse measurements. To reduce the level of error caused by measurement noise, we introduce the concept of weighted-sum predictability. If we make the input and output subsystems weighted-sum predictable and normalize the measurements to their weighted sum, we achieve better noise reduction than through normalizing to a loading control. We then interpolate the normalized measurements to obtain continuous input and output signals, with which we solve directly for the input-output characteristics of the unknown static nonlinearity. We demonstrate the effectiveness of this structure identification procedure by applying it to identify a model for ergosterol sensing by the proteins Sre1 and Scp1 in fission yeast. Simulations with this model produced outputs consistent with experimental observations. The techniques introduced here will provide researchers with a new tool by which biological systems can be identified and characterized.


Asunto(s)
Modelos Biológicos , Biología de Sistemas/métodos , Ergosterol/biosíntesis , Humanos , Schizosaccharomyces/metabolismo , Transducción de Señal/fisiología
6.
J Biol Chem ; 285(52): 41051-61, 2010 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-20959444

RESUMEN

In fission yeast, the endoplasmic reticulum membrane-bound proteins Sre1 and Scp1, orthologs of mammalian sterol regulatory element binding protein (SREBP) and Scap, monitor sterol synthesis as an indirect measure of oxygen supply. When cellular oxygen levels are low, sterol synthesis is inhibited, and the Sre1-Scp1 complex responds by increasing transcription of genes required for adaptation to hypoxia. Sre1 and Scp1 are believed to detect a blockage in sterol synthesis by monitoring levels of particular sterols, but the evidence concerning which sterol signals this condition is unclear. Here, we demonstrate that Sre1-Scp1 senses ergosterol. Processing experimental data with a mathematical model of Sre1 and Scp1 function reveals a clear quantitative relationship between ergosterol concentration in the endoplasmic reticulum and Sre1 activation. Based on this relationship, we predict that the Sre1-Scp1 complex exists under "active" and "inactive" states and that the transition between these states is cooperatively mediated by ergosterol.


Asunto(s)
Ergosterol/metabolismo , Proteínas de Microfilamentos/metabolismo , Modelos Biológicos , Elementos de Respuesta/fisiología , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/metabolismo , Transducción de Señal/fisiología , Retículo Endoplásmico/genética , Retículo Endoplásmico/metabolismo , Ergosterol/genética , Humanos , Proteínas de Microfilamentos/genética , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/genética
7.
Elife ; 92020 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-32762848

RESUMEN

Frizzleds (Fzd) are the primary receptors for Wnt morphogens, which are essential regulators of stem cell biology, yet the structural basis of Wnt signaling through Fzd remains poorly understood. Here we report the structure of an unliganded human Fzd5 determined by single-particle cryo-EM at 3.7 Å resolution, with the aid of an antibody chaperone acting as a fiducial marker. We also analyzed the topology of low-resolution XWnt8/Fzd5 complex particles, which revealed extreme flexibility between the Wnt/Fzd-CRD and the Fzd-TM regions. Analysis of Wnt/ß-catenin signaling in response to Wnt3a versus a 'surrogate agonist' that cross-links Fzd to LRP6, revealed identical structure-activity relationships. Thus, canonical Wnt/ß-catenin signaling appears to be principally reliant on ligand-induced Fzd/LRP6 heterodimerization, versus the allosteric mechanisms seen in structurally analogous class A G protein-coupled receptors, and Smoothened. These findings deepen our mechanistic understanding of Wnt signal transduction, and have implications for harnessing Wnt agonism in regenerative medicine.


Asunto(s)
Receptores Frizzled/ultraestructura , Vía de Señalización Wnt , Microscopía por Crioelectrón , Receptores Frizzled/fisiología , Humanos
8.
Mol Cell Biol ; 26(7): 2817-31, 2006 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-16537923

RESUMEN

Fission yeast sterol regulatory element binding protein (SREBP), called Sre1p, functions in an oxygen-sensing pathway to allow adaptation to fluctuating oxygen concentrations. The Sre1p-Scp1p complex responds to oxygen-dependent sterol synthesis as an indirect measure of oxygen availability. To examine the role of Sre1p in anaerobic gene expression in Schizosaccharomyces pombe, we performed transcriptional profiling experiments after a shift to anaerobic conditions for 1.5 h. Of the 4,940 genes analyzed, expression levels of 521 (10.5%) and 686 (13.9%) genes were significantly increased and decreased, respectively, under anaerobic conditions. Sre1p controlled 68% of genes induced > or = 2-fold. Oxygen-requiring biosynthetic pathways for ergosterol, heme, sphingolipid, and ubiquinone were primary targets of Sre1p. Induction of glycolytic genes and repression of mitochondrial oxidative phosphorylation genes largely did not require Sre1p. Using chromatin immunoprecipitation, we demonstrated that Sre1p acts directly at target gene promoters and stimulates its own transcription under anaerobic conditions. sre1+ promoter analysis identified two DNA elements that are both necessary and sufficient for oxygen-dependent, Sre1p-dependent transcription. Interestingly, these elements are homologous to sterol regulatory elements bound by mammalian SREBP, highlighting the evolutionary conservation between Sre1p and SREBP. We conclude that Sre1p is a principal activator of anaerobic gene expression, upregulating genes required for nonrespiratory oxygen consumption.


Asunto(s)
Regulación Fúngica de la Expresión Génica , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/genética , Anaerobiosis , Regulación hacia Abajo/genética , Genes Fúngicos/genética , Oxígeno/metabolismo , Regiones Promotoras Genéticas/genética , Elementos Reguladores de la Transcripción/genética , Schizosaccharomyces/crecimiento & desarrollo , Factores de Tiempo , Regulación hacia Arriba/genética
9.
Elife ; 72018 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-29882741

RESUMEN

Human cytomegalovirus has hijacked and evolved a human G-protein-coupled receptor into US28, which functions as a promiscuous chemokine 'sink' to facilitate evasion of host immune responses. To probe the molecular basis of US28's unique ligand cross-reactivity, we deep-sequenced CX3CL1 chemokine libraries selected on 'molecular casts' of the US28 active-state and find that US28 can engage thousands of distinct chemokine sequences, many of which elicit diverse signaling outcomes. The structure of a G-protein-biased CX3CL1-variant in complex with US28 revealed an entirely unique chemokine amino terminal peptide conformation and remodeled constellation of receptor-ligand interactions. Receptor signaling, however, is remarkably robust to mutational disruption of these interactions. Thus, US28 accommodates and functionally discriminates amongst highly degenerate chemokine sequences by sensing the steric bulk of the ligands, which distort both receptor extracellular loops and the walls of the ligand binding pocket to varying degrees, rather than requiring sequence-specific bonding chemistries for recognition and signaling.


Asunto(s)
Quimiocina CX3CL1/química , Receptores de Quimiocina/química , Receptores Acoplados a Proteínas G/química , Transducción de Señal , Proteínas Virales/química , Animales , Quimiocina CX3CL1/metabolismo , Quimiocina CX3CL1/farmacología , Citomegalovirus/genética , Citomegalovirus/metabolismo , Proteínas de Unión al GTP/química , Proteínas de Unión al GTP/genética , Proteínas de Unión al GTP/metabolismo , Células HEK293 , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Ligandos , Modelos Moleculares , Mutación , Unión Proteica , Conformación Proteica , Receptores de Quimiocina/agonistas , Receptores de Quimiocina/metabolismo , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/metabolismo , Proteínas Virales/agonistas , Proteínas Virales/metabolismo
10.
Science ; 347(6226): 1113-7, 2015 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-25745166

RESUMEN

Chemokines are small proteins that function as immune modulators through activation of chemokine G protein-coupled receptors (GPCRs). Several viruses also encode chemokines and chemokine receptors to subvert the host immune response. How protein ligands activate GPCRs remains unknown. We report the crystal structure at 2.9 angstrom resolution of the human cytomegalovirus GPCR US28 in complex with the chemokine domain of human CX3CL1 (fractalkine). The globular body of CX3CL1 is perched on top of the US28 extracellular vestibule, whereas its amino terminus projects into the central core of US28. The transmembrane helices of US28 adopt an active-state-like conformation. Atomic-level simulations suggest that the agonist-independent activity of US28 may be due to an amino acid network evolved in the viral GPCR to destabilize the receptor's inactive state.


Asunto(s)
Quimiocina CX3CL1/química , Receptores de Quimiocina/química , Proteínas Virales/química , Antagonistas de los Receptores CCR5/química , Cristalografía por Rayos X , Ciclohexanos/química , Humanos , Ligandos , Maraviroc , Piperidinas/química , Unión Proteica , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Receptores CXCR4/antagonistas & inhibidores , Receptores de Quimiocina/agonistas , Triazoles/química , Proteínas Virales/agonistas
11.
Prog Lipid Res ; 50(4): 403-10, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21801748

RESUMEN

HMG-CoA reductase (HMGR), a highly conserved, membrane-bound enzyme, catalyzes a rate-limiting step in sterol and isoprenoid biosynthesis and is the primary target of hypocholesterolemic drug therapy. HMGR activity is tightly regulated to ensure maintenance of lipid homeostasis, disruption of which is a major cause of human morbidity and mortality. HMGR regulation takes place at the levels of transcription, translation, post-translational modification and degradation. In this review, we discuss regulation of mammalian, Saccharomyces cerevisiae and Schizosaccharomyces pombe HMGR and highlight recent advances in the field. We find that the general features of HMGR regulation, including a requirement for the HMGR-binding protein Insig, are remarkably conserved between mammals and ascomycetous fungi, including S. cerevisiae and S. pombe. However the specific details by which this regulation occurs differ in surprising ways, revealing the broad evolutionary themes underlying both HMGR regulation and Insig function.


Asunto(s)
Regulación de la Expresión Génica/fisiología , Hidroximetilglutaril-CoA Reductasas/metabolismo , Saccharomyces cerevisiae/genética , Schizosaccharomyces/genética , Transducción de Señal/fisiología , Esteroles/metabolismo , Acilcoenzima A/metabolismo , Adenilato Quinasa/metabolismo , Animales , Humanos , Hidroximetilglutaril-CoA Reductasas/química , Hidroximetilglutaril-CoA Reductasas/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Mamíferos , Proteínas de la Membrana/metabolismo , Unión Proteica/genética , Proteína Fosfatasa 2/metabolismo , Procesamiento Proteico-Postraduccional/genética , Saccharomyces cerevisiae/enzimología , Schizosaccharomyces/enzimología
12.
Cell Metab ; 8(6): 522-31, 2008 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19041767

RESUMEN

Insig functions as a central regulator of cellular cholesterol homeostasis by controlling activity of HMG-CoA reductase (HMGR) in cholesterol synthesis. Insig both accelerates the degradation of HMGR and suppresses HMGR transcription through the SREBP-Scap pathway. The fission yeast Schizosaccharomyces pombe encodes homologs of Insig, HMGR, SREBP, and Scap, called ins1(+), hmg1(+), sre1(+), and scp1(+). Here, we characterize fission yeast Insig and demonstrate that Ins1 is dedicated to regulation of Hmg1, but not the Sre1-Scp1 pathway. Using a sterol-sensing domain mutant of Hmg1, we demonstrate that Ins1 binding to Hmg1 inhibits enzyme activity by promoting phosphorylation of the Hmg1 active site, which increases the K(M) for NADPH. Ins1-dependent phosphorylation of Hmg1 requires the MAP kinase Sty1/Spc1, and Hmg1 phosphorylation is physiologically regulated by nutrient stress. Thus, in fission yeast, Insig regulates sterol synthesis by a different mechanism than in mammalian cells, controlling HMGR phosphorylation in response to nutrient supply.


Asunto(s)
Hidroximetilglutaril-CoA Reductasas/metabolismo , Proteínas de la Membrana/fisiología , Proteínas de Schizosaccharomyces pombe/fisiología , Schizosaccharomyces/enzimología , Secuencia de Aminoácidos , Hidroximetilglutaril-CoA Reductasas/biosíntesis , Inmunoprecipitación , Péptidos y Proteínas de Señalización Intracelular/metabolismo , MAP Quinasa Quinasa 1/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Datos de Secuencia Molecular , Fosforilación , Schizosaccharomyces/crecimiento & desarrollo , Proteínas de Schizosaccharomyces pombe/metabolismo , Estrés Fisiológico
13.
J Virol ; 77(22): 11992-2001, 2003 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-14581536

RESUMEN

Epstein-Barr virus OriP confers cell cycle-dependent DNA replication and stable maintenance on plasmids in EBNA1-positive cells. The dyad symmetry region of OriP contains four EBNA1 binding sites that are punctuated by 9-bp repeats referred to as nonamers. Previous work has shown that the nonamers bind to cellular factors associated with human telomeres and contribute to episomal maintenance of OriP. In this work, we show that substitution mutation of all three nonamer sites reduces both DNA replication and plasmid maintenance of OriP-containing plasmids by 2.5- to 5-fold. The nonamers were required for high-affinity binding of TRF1, TRF2, and hRap1 to the dyad symmetry element but were not essential for the binding of EBNA1 as determined by DNA affinity purification from nuclear extracts. Chromatin immunoprecipitation assays indicated that TRF1, TRF2, and hRap1 bound OriP in vivo. Cell cycle studies indicate that TRF2 binding to OriP peaks in G(1)/S while TRF1 binding peaks in G(2)/M. OriP replication was inhibited by transfection of full-length TRF1 but not by deletion mutants lacking the myb DNA binding domain. In contrast, OriP replication was not affected by transfection of full-length TRF2 or hRap1 but was potently inhibited by dominant-negative TRF2 or hRap1 amino-terminal truncation mutants. Knockdown experiments with short interfering RNAs (siRNAs) directed against TRF2 and hRap1 severely reduced OriP replication, while TRF1 siRNA had a modest stimulatory effect on OriP replication. These results indicate that TRF2 and hRap1 promote, while TRF1 antagonizes, OriP-dependent DNA replication and suggest that these telomeric factors contribute to the establishment of replication competence at OriP.


Asunto(s)
Replicación del ADN , Plásmidos , Proteínas de Unión a Telómeros/fisiología , Proteína 1 de Unión a Repeticiones Teloméricas/fisiología , Proteína 2 de Unión a Repeticiones Teloméricas/fisiología , Replicación Viral , Ciclo Celular , ADN/metabolismo , Células HeLa , Humanos , Complejo Shelterina , Telómero
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA