Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 579(7798): 250-255, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32161389

RESUMEN

The lithified lower oceanic crust is one of Earth's last biological frontiers as it is difficult to access. It is challenging for microbiota that live in marine subsurface sediments or igneous basement to obtain sufficient carbon resources and energy to support growth1-3 or to meet basal power requirements4 during periods of resource scarcity. Here we show how limited and unpredictable sources of carbon and energy dictate survival strategies used by low-biomass microbial communities that live 10-750 m below the seafloor at Atlantis Bank, Indian Ocean, where Earth's lower crust is exposed at the seafloor. Assays of enzyme activities, lipid biomarkers, marker genes and microscopy indicate heterogeneously distributed and viable biomass with ultralow cell densities (fewer than 2,000 cells per cm3). Expression of genes involved in unexpected heterotrophic processes includes those with a role in the degradation of polyaromatic hydrocarbons, use of polyhydroxyalkanoates as carbon-storage molecules and recycling of amino acids to produce compounds that can participate in redox reactions and energy production. Our study provides insights into how microorganisms in the plutonic crust are able to survive within fractures or porous substrates by coupling sources of energy to organic and inorganic carbon resources that are probably delivered through the circulation of subseafloor fluids or seawater.


Asunto(s)
Organismos Acuáticos/genética , Organismos Acuáticos/metabolismo , Metabolismo Energético/genética , Sedimentos Geológicos/microbiología , Microbiota/genética , Océanos y Mares , Ciclo del Carbono/genética , Perfilación de la Expresión Génica
2.
Mol Ecol ; 32(11): 2750-2765, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36852430

RESUMEN

Fungal communities are diverse and abundant in coastal waters, yet, their ecological roles and adaptations remain largely unknown. To address these gaps, ITS2 metabarcoding and metatranscriptomic analyses were used to capture the whole suite of fungal diversity and their metabolic potential in water column and sediments in the Yellow Sea during August and October 2019. ITS2 metabarcoding described successfully the abundance of Dikarya during August and October at the different examined habitats, but strongly underrepresented or failed to identify other fungal taxa, including zoosporic and early-diverging lineages, that were abundant in the mycobiome as uncovered by metatranscriptomes. Metatranscriptomics also revealed enriched expression of genes annotated to zoosporic fungi (e.g., chytrids) mainly in the surface water column in October. This enriched expression was correlated with the two-fold increase in chlorophyll-a intensity attributed to phytoplanktonic species which are known to be parasitized by chytrids. The concurrent high expression of genes related to calcium signalling and GTPase activity suggested that these metabolic traits facilitate the parasitic lifestyle of chytrids. Similarly, elevated expression of phagosome genes annotated to Rozellomycota, an early-diverging fungal phylum not fully detected with ITS2 metabarcoding, suggested that this taxon utilizes a suite of feeding modes, including phagotrophy in this coastal setting. Our data highlight the necessity of using combined approaches to accurately describe the community structure of coastal mycobiome. We also provide in-depth insights into the fungal ecological roles in coastal waters, and report potential metabolic mechanisms utilized by fungi to cope with environmental stresses that occur during distinct seasonal months in coastal ecosystems.


Asunto(s)
Ecosistema , Micobioma , Hongos/genética , Micobioma/genética , China , Microbiología del Agua , Agua de Mar/microbiología
4.
Mol Ecol ; 30(14): 3624-3637, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34002437

RESUMEN

Little is known about how multiple factors including land-based inputs and ocean currents affect the spatiotemporal distribution of the mycoplankton in coastal regions. To explore the seasonal changes of mycoplanktonic communities and potential environmental drivers, we collected water samples from the Yellow Sea, used here as a model for subtropical sea habitats, in different seasons over two years. Compared with winter and spring, summer exhibited higher levels of fungal richness and community heterogeneity in the water column. The seasonal shifts in mycoplankton diversity and community composition were mainly ascribed to freshwater inputs, the Cold Water Mass and invasion of the Yellow Sea Warm Current. Among the physicochemical variables tested, temperature was the primary determinant of fungal diversity and showed contrasting influences on fungal richness in the surface and bottom waters during summer. In addition, we provide evidence for the community similarity and dissolved nutrients of different water bodies to highlight the potential origin of the Cold Water Mass. Our findings bring new understanding on the factors determining the dynamics of mycoplankton communities by modelling the influence of physicochemical variables and tracking the geographical distribution of certain fungal taxa.


Asunto(s)
Ecosistema , Hongos , Estaciones del Año , Temperatura
5.
Mar Drugs ; 19(8)2021 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-34436250

RESUMEN

Among the different tools to address the antibiotic resistance crisis, bioprospecting in complex uncharted habitats to detect novel microorganisms putatively producing original antimicrobial compounds can definitely increase the current therapeutic arsenal of antibiotics. Fungi from numerous habitats have been widely screened for their ability to express specific biosynthetic gene clusters (BGCs) involved in the synthesis of antimicrobial compounds. Here, a collection of unique 75 deep oceanic crust fungi was screened to evaluate their biotechnological potential through the prism of their antimicrobial activity using a polyphasic approach. After a first genetic screening to detect specific BGCs, a second step consisted of an antimicrobial screening that tested the most promising isolates against 11 microbial targets. Here, 12 fungal isolates showed at least one antibacterial and/or antifungal activity (static or lytic) against human pathogens. This analysis also revealed that Staphylococcus aureus ATCC 25923 and Enterococcus faecalis CIP A 186 were the most impacted, followed by Pseudomonas aeruginosa ATCC 27853. A specific focus on three fungal isolates allowed us to detect interesting activity of crude extracts against multidrug-resistant Staphylococcus aureus. Finally, complementary mass spectrometry (MS)-based molecular networking analyses were performed to putatively assign the fungal metabolites and raise hypotheses to link them to the observed antimicrobial activities.


Asunto(s)
Antibacterianos/farmacología , Organismos Acuáticos/química , Hongos/metabolismo , Animales , Farmacorresistencia Microbiana , Pruebas de Sensibilidad Microbiana , Pseudomonas aeruginosa/efectos de los fármacos , Staphylococcus aureus/efectos de los fármacos
6.
Environ Microbiol ; 22(9): 3950-3967, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32743889

RESUMEN

The lithified oceanic crust, lower crust gabbros in particular, has remained largely unexplored by microbiologists. Recently, evidence for heterogeneously distributed viable and transcriptionally active autotrophic and heterotrophic microbial populations within low-biomass communities was found down to 750 m below the seafloor at the Atlantis Bank Gabbro Massif, Indian Ocean. Here, we report on the diversity, activity and adaptations of fungal communities in the deep oceanic crust from ~10 to 780 mbsf by combining metabarcoding analyses with mid/high-throughput culturing approaches. Metabarcoding along with culturing indicate a low diversity of viable fungi, mostly affiliated to ubiquitous (terrestrial and aquatic environments) taxa. Ecophysiological analyses coupled with metatranscriptomics point to viable and transcriptionally active fungal populations engaged in cell division, translation, protein modifications and other vital cellular processes. Transcript data suggest possible adaptations for surviving in the nutrient-poor, lithified deep biosphere that include the recycling of organic matter. These active communities appear strongly influenced by the presence of cracks and veins in the rocks where fluids and resulting rock alteration create micro-niches.


Asunto(s)
Adaptación Fisiológica , Hongos/fisiología , Sedimentos Geológicos/microbiología , Micobioma/genética , Agua de Mar/microbiología , Biodiversidad , Ciclo del Carbono , Hongos/clasificación , Hongos/genética , Hongos/metabolismo , Sedimentos Geológicos/química , Océano Índico , Agua de Mar/química
7.
Microb Ecol ; 78(4): 820-831, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30993370

RESUMEN

Fungi play an important role in cycling organic matter and nutrients in marine ecosystems. However, the distribution of fungal communities in the ocean, especially the vertical distribution along depth in the water column, remained poorly understood. Here, we assess the depth-related distribution pattern of fungal communities along the water column from epi- to abyssopelagic zones of the Western Pacific Ocean using internal transcribed spacer 2 (ITS2) metabarcoding. Majority of the assigned OTUs were affiliated to Ascomycota, followed by three other minor phyla (Basidiomycota, Chytridiomycota, and Mucoromycota). The epipelagic zone harbored a higher OTU richness with distinct fungal communities as compared with meso-, bathy-, and abyssopelagic zones. Across the whole water column, depth appears as a key parameter for both fungal α- and ß-diversity. However, when the dataset was split into the upper (5-500 m) and deeper (below 500 m) layers, no significant correlation was observed between depth and community compositions. In the upper layer, temperature and dissolved oxygen were recognized as the primary environmental factors shaping fungal α- and ß- diversity. By parsing fungal OTUs into ecological categories, multi-trophic mode of nutrition was found to be more prevalent with increasing depth, suggesting a potential adaptation to the extreme conditions of the deep sea. This study provides new and meaningful information on the depth-stratified fungal diversity, community structure, and putative ecological roles in the open sea.


Asunto(s)
Hongos/aislamiento & purificación , Micobioma , Agua de Mar/microbiología , Código de Barras del ADN Taxonómico , ADN de Hongos/análisis , ADN Espaciador Ribosómico/análisis , Hongos/clasificación , Océano Pacífico
8.
Mol Ecol ; 27(2): 564-576, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29178346

RESUMEN

How ocean currents shape fungal transport, dispersal and more broadly fungal biogeography remains poorly understood. The East China Sea (ECS) is a complex and dynamic habitat with different water masses blending microbial communities. The internal transcribed spacer 2 region of fungal rDNA was analysed in water and sediment samples directly collected from the coastal (CWM), Kuroshio (KSWM), Taiwan warm (TWM) and the shelf mixed water mass (MWM), coupled with hydrographic properties measurements, to determine how ocean currents impact the fungal community composition. Almost 9k fungal operational taxonomic units (OTUs) spanning six phyla, 25 known classes, 102 orders and 694 genera were obtained. The typical terrestrial and freshwater fungal genus, Byssochlamys, was dominant in the CWM, while increasing abundance of a specific OTU affiliated with Aspergillus was revealed from coastal to open ocean water masses (TWM and KSWM). Compared with water samples, sediment harboured an increased diversity with distinct fungal communities. The proximity of the Yangtze and Qiantang estuaries homogenizes the surface water and sediment communities. A significant influence of ocean currents on community structure was found, which is believed to reduce proportionally the variation explained by environmental parameters at the scale of the total water masses. Dissolved oxygen and depth were identified as the major parameters structuring the fungal community. Our results indicate that passive fungal dispersal driven by ocean currents and river run-off, in conjunction with the distinct hydrographic conditions of individual water masses, shapes the fungal community composition and distribution pattern in the ECS.


Asunto(s)
Biodiversidad , Hongos/fisiología , Océanos y Mares , Agua de Mar/microbiología , China , ADN Ribosómico/genética , Sedimentos Geológicos/microbiología , Ríos/microbiología , Microbiología del Agua
9.
Mar Drugs ; 15(4)2017 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-28387732

RESUMEN

Four bioactive compounds have been isolated from the fungus Oidiodendron griseum UBOCC-A-114129 cultivated from deep subsurface sediment. They were structurally characterized using a combination of LC-MS/MS and NMR analyses as fuscin and its derivatives (dihydrofuscin, dihydrosecofuscin, and secofuscin) and identified as polyketides. Albeit those compounds were already obtained from terrestrial fungi, this is the first report of their production by an Oidiodendron species and by the deepest subseafloor isolate ever studied for biological activities. We report a weak antibacterial activity of dihydrosecofuscin and secofuscin mainly directed against Gram-positive bacteria (Minimum Inhibitory Concentration (MIC) equal to Minimum Bactericidal Concentration (MBC), in the range of 100 µg/mL). The activity on various protein kinases was also analyzed and revealed a significant inhibition of CDC2-like kinase-1 (CLK1) by dihysecofuscin.


Asunto(s)
Antibacterianos/farmacología , Ascomicetos/metabolismo , Policétidos/farmacología , Benzopiranos/farmacología , Factores Biológicos/farmacología , Bacterias Grampositivas/efectos de los fármacos , Pruebas de Sensibilidad Microbiana/métodos , Espectrometría de Masas en Tándem/métodos
10.
Int J Syst Evol Microbiol ; 66(9): 3600-3606, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-27306608

RESUMEN

Two yeast strains that are members of the same species were isolated from different marine habitats, i.e. one from Mid-Atlantic Ridge ocean water samples located in the direct vicinity of black smokers near the Rainbow deep-sea hydrothermal vent and one from Brazilian marine water samples off the Ipanema beach. Strains CLIB 1964T and CLIB 1965 are anamorphic ascomycetous yeasts affiliated to the Yamadazyma clade of Saccharomycetales. Interestingly, these strains were phylogenetically and distinctly positioned into a group of species comprising all species of the genus Yamadazyma isolated from marine habitats including deep-sea hydrothermal vents, i.e.Candida atmosphaerica,C. spencermartinsiae,C. atlantica,C. oceani and C. taylorii. These strains differed significantly in their D1/D2 domain sequences of the LSU rRNA gene from the closely related species mentioned above, by 2.6, 3.0, 3.4, 3.8 and 6.0 %, respectively. Internal transcribed spacer region sequence divergence was also significant and corresponded to 4.6, 4.7, 4.7, 12.0 and 24.7 % with C. atlantica,C. atmosphaerica, C. spencermartinsiae,C. oceani and C. taylorii, respectively. Phenotypically, strains CLIB 1964T and CLIB 1965 could be distinguished from closely related species by their inability to assimilate l-sorbose. CLIB 1964T (=CBS 14301T=UBOCC-A-214001T) is the designated type strain for Yamadazyma barbieri sp. nov. The MycoBank number is MB 815884.


Asunto(s)
Respiraderos Hidrotermales/microbiología , Filogenia , Saccharomycetales/clasificación , Océano Atlántico , Brasil , ADN de Hongos/genética , Técnicas de Tipificación Micológica , ARN Ribosómico/genética , Saccharomycetales/genética , Saccharomycetales/aislamiento & purificación , Análisis de Secuencia de ADN
11.
Mar Drugs ; 14(3)2016 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-26978374

RESUMEN

The evolving global threat of antimicrobial resistance requires a deep renewal of the antibiotic arsenal including the isolation and characterization of new drugs. Underexplored marine ecosystems may represent an untapped reservoir of novel bioactive molecules. Deep-sea fungi isolated from a record-depth sediment core of almost 2000 m below the seafloor were investigated for antimicrobial activities. This antimicrobial screening, using 16 microbial targets, revealed 33% of filamentous fungi synthesizing bioactive compounds with activities against pathogenic bacteria and fungi. Interestingly, occurrence of antimicrobial producing isolates was well correlated with the complexity of the habitat (in term of microbial richness), as higher antimicrobial activities were obtained at specific layers of the sediment core. It clearly highlights complex deep-sea habitats as chemical battlefields where synthesis of numerous bioactive compounds appears critical for microbial competition. The six most promising deep subseafloor fungal isolates were selected for the production and extraction of bioactive compounds. Depending on the fungal isolates, antimicrobial compounds were only biosynthesized in semi-liquid or solid-state conditions as no antimicrobial activities were ever detected using liquid fermentation. An exception was made for one fungal isolate, and the extraction procedure designed to extract amphipathic compounds was successful and highlighted the amphiphilic profile of the bioactive metabolites.


Asunto(s)
Antibacterianos/aislamiento & purificación , Antifúngicos/aislamiento & purificación , Hongos/aislamiento & purificación , Sedimentos Geológicos/microbiología , Antibacterianos/farmacología , Antifúngicos/farmacología , Bacterias/efectos de los fármacos , Hongos/efectos de los fármacos , Hongos/metabolismo , Agua de Mar/microbiología
12.
Microsc Microanal ; 22(1): 63-70, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26810277

RESUMEN

An original high-pressure microscopy chamber has been designed for real-time visualization of biological cell growth during high isostatic (gas or liquid) pressure treatments up to 200 MPa. This new system is highly flexible allowing cell visualization under a wide range of pressure levels as the thickness and the material of the observation window can be easily adapted. Moreover, the design of the observation area allows different microscope objectives to be used as close as possible to the observation window. This chamber can also be temperature controlled. In this study, the resistance and optical properties of this new high-pressure chamber have been tested and characterized. The use of this new chamber was illustrated by a real-time study of the growth of two different yeast strains - Saccharomyces cerevisiae and Candida viswanathii - under high isostatic gas pressure (30 or 20 MPa, respectively). Using image analysis software, we determined the evolution of the area of colonies as a function of time, and thus calculated colony expansion rates.


Asunto(s)
Técnicas Citológicas/instrumentación , Técnicas Citológicas/métodos , Gases , Presión Hidrostática , Microscopía/instrumentación , Microscopía/métodos , Candida/citología , Candida/crecimiento & desarrollo , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/crecimiento & desarrollo
13.
Appl Environ Microbiol ; 81(10): 3571-83, 2015 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-25769836

RESUMEN

The fungal kingdom is replete with unique adaptive capacities that allow fungi to colonize a wide variety of habitats, ranging from marine habitats to freshwater and terrestrial habitats. The diversity, importance, and ecological roles of marine fungi have recently been highlighted in deep-subsurface sediments using molecular methods. Fungi in the deep-marine subsurface may be specifically adapted to life in the deep biosphere, but this can be demonstrated only using culture-based analyses. In this study, we investigated culturable fungal communities from a record-depth sediment core sampled from the Canterbury Basin (New Zealand) with the aim to reveal endemic or ubiquist adapted isolates playing a significant ecological role(s). About 200 filamentous fungi (68%) and yeasts (32%) were isolated. Fungal isolates were affiliated with the phyla Ascomycota and Basidiomycota, including 21 genera. Screening for genes involved in secondary metabolite synthesis also revealed their bioactive compound synthesis potential. Our results provide evidence that deep-subsurface fungal communities are able to survive, adapt, grow, and interact with other microbial communities and highlight that the deep-sediment habitat is another ecological niche for fungi.


Asunto(s)
Hongos/aislamiento & purificación , Hongos/fisiología , Sedimentos Geológicos/microbiología , Agua de Mar/microbiología , Adaptación Fisiológica , Ecosistema , Hongos/clasificación , Hongos/genética , Sedimentos Geológicos/química , Datos de Secuencia Molecular , Nueva Zelanda , Filogenia
14.
Nucleic Acids Res ; 41(Database issue): D597-604, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23193267

RESUMEN

The interrogation of genetic markers in environmental meta-barcoding studies is currently seriously hindered by the lack of taxonomically curated reference data sets for the targeted genes. The Protist Ribosomal Reference database (PR(2), http://ssu-rrna.org/) provides a unique access to eukaryotic small sub-unit (SSU) ribosomal RNA and DNA sequences, with curated taxonomy. The database mainly consists of nuclear-encoded protistan sequences. However, metazoans, land plants, macrosporic fungi and eukaryotic organelles (mitochondrion, plastid and others) are also included because they are useful for the analysis of high-troughput sequencing data sets. Introns and putative chimeric sequences have been also carefully checked. Taxonomic assignation of sequences consists of eight unique taxonomic fields. In total, 136 866 sequences are nuclear encoded, 45 708 (36 501 mitochondrial and 9657 chloroplastic) are from organelles, the remaining being putative chimeric sequences. The website allows the users to download sequences from the entire and partial databases (including representative sequences after clustering at a given level of similarity). Different web tools also allow searches by sequence similarity. The presence of both rRNA and rDNA sequences, taking into account introns (crucial for eukaryotic sequences), a normalized eight terms ranked-taxonomy and updates of new GenBank releases were made possible by a long-term collaboration between experts in taxonomy and computer scientists.


Asunto(s)
ADN Ribosómico/química , Bases de Datos de Ácidos Nucleicos , Genes de ARNr , ARN Ribosómico/química , Subunidades Ribosómicas Pequeñas de Eucariotas/química , Código de Barras del ADN Taxonómico , Eucariontes/clasificación , Eucariontes/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Internet
15.
J Fungi (Basel) ; 10(6)2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38921415

RESUMEN

Plastic pollution of the ocean is a major environmental threat. In this context, a better understanding of the microorganisms able to colonize and potentially degrade these pollutants is of interest. This study explores the colonization and biodegradation potential of fungal communities on foamed polystyrene and alternatives biodegradable plastics immersed in a marina environment over time, using the Brest marina (France) as a model site. The methodology involved a combination of high-throughput 18S rRNA gene amplicon sequencing to investigate fungal taxa associated with plastics compared to the surrounding seawater, and a culture-dependent approach to isolate environmentally relevant fungi to further assess their capabilities to utilize polymers as carbon sources. Metabarcoding results highlighted the significant diversity of fungal communities associated with both foamed polystyrene and biodegradable plastics, revealing a dynamic colonization process influenced by the type of polymer and immersion time. Notably, the research suggests a potential for certain fungal species to utilize polymers as a carbon source, emphasizing the need for further exploration of fungal biodegradation potential and mechanisms.

16.
J Fungi (Basel) ; 9(10)2023 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-37888271

RESUMEN

Intertidal zones comprise diverse habitats and directly suffer from the influences of human activities. Nevertheless, the seasonal fluctuations in fungal diversity and community structure in these areas are not well comprehended. To address this gap, samples of seawater and sediment were collected seasonally from the estuary and swimming beaches of Qingdao's intertidal areas in China and were analyzed using a metabarcoding approach targeting ITS2 rDNA regions. Compared to the seawater community dominated by Ciliophora and Agaricomycetes, the sediment community was rather dominated by Dothideomycetes and Eurotiomycetes. Furthermore, the seawater community shifted with the seasons but not with the locations, while the sediment community shifted seasonally and spatially, with a specific trend showing that Cladosporium, Alternaria, and Aureobasidium occurred predominantly in the estuarine habitats during winter and in the beach habitats during spring. These spatiotemporal shifts in fungal communities' composition were supported by the PERMANOVA test and could be explained partially by the environmental variables checked, including temperature, salinity, and total organic carbon. Unexpectedly, the lowest fungal richness was observed in the summer sediments from two swimming beaches which were attracting a high influx of tourists during summer, leading to a significant anthropogenic influence. Predicted trophic modes of fungal taxa exhibited a seasonal pattern with an abundance of saprotrophic fungi in the summer sediments, positively correlating to the temperature, while the taxa affiliated with symbiotroph and pathotroph-saprotroph occurred abundantly in the winter and spring sediments, respectively. Our results demonstrate the space-time shifts in terms of the fungal community, as well as the trophic modes in the intertidal region, providing in-depth insights into the potential influence of environmental factors and human activity on intertidal mycobiomes.

17.
Artículo en Inglés | MEDLINE | ID: mdl-37140856

RESUMEN

The Tara Microplastics mission was conducted for 7 months to investigate plastic pollution along nine major rivers in Europe-Thames, Elbe, Rhine, Seine, Loire, Garonne, Ebro, Rhone, and Tiber. An extensive suite of sampling protocols was applied at four to five sites on each river along a salinity gradient from the sea and the outer estuary to downstream and upstream of the first heavily populated city. Biophysicochemical parameters including salinity, temperature, irradiance, particulate matter, large and small microplastics (MPs) concentration and composition, prokaryote and microeukaryote richness, and diversity on MPs and in the surrounding waters were routinely measured onboard the French research vessel Tara or from a semi-rigid boat in shallow waters. In addition, macroplastic and microplastic concentrations and composition were determined on river banks and beaches. Finally, cages containing either pristine pieces of plastics in the form of films or granules, and others containing mussels were immersed at each sampling site, 1 month prior to sampling in order to study the metabolic activity of the plastisphere by meta-OMICS and to run toxicity tests and pollutants analyses. Here, we fully described the holistic set of protocols designed for the Mission Tara Microplastics and promoted standard procedures to achieve its ambitious goals: (1) compare traits of plastic pollution among European rivers, (2) provide a baseline of the state of plastic pollution in the Anthropocene, (3) predict their evolution in the frame of the current European initiatives, (4) shed light on the toxicological effects of plastic on aquatic life, (5) model the transport of microplastics from land towards the sea, and (6) investigate the potential impact of pathogen or invasive species rafting on drifting plastics from the land to the sea through riverine systems.

18.
Mar Biotechnol (NY) ; 25(4): 519-536, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37354383

RESUMEN

The initiation of this study relies on a targeted genome-mining approach to highlight the presence of a putative vanadium-dependent haloperoxidase-encoding gene in the deep-sea hydrothermal vent fungus Hortaea werneckii UBOCC-A-208029. To date, only three fungal vanadium-dependent haloperoxidases have been described, one from the terrestrial species Curvularia inaequalis, one from the fungal plant pathogen Botrytis cinerea, and one from a marine derived isolate identified as Alternaria didymospora. In this study, we describe a new vanadium chloroperoxidase from the black yeast H. werneckii, successfully cloned and overexpressed in a bacterial host, which possesses higher affinity for bromide (Km = 26 µM) than chloride (Km = 237 mM). The enzyme was biochemically characterized, and we have evaluated its potential for biocatalysis by determining its stability and tolerance in organic solvents. We also describe its potential three-dimensional structure by building a model using the AlphaFold 2 artificial intelligence tool. This model shows some conservation of the 3D structure of the active site compared to the vanadium chloroperoxidase from C. inaequalis but it also highlights some differences in the active site entrance and the volume of the active site pocket, underlining its originality.


Asunto(s)
Ascomicetos , Cloruro Peroxidasa , Exophiala , Respiraderos Hidrotermales , Cloruro Peroxidasa/genética , Cloruro Peroxidasa/química , Cloruro Peroxidasa/metabolismo , Exophiala/metabolismo , Saccharomyces cerevisiae/metabolismo , Vanadio/metabolismo , Inteligencia Artificial , Ascomicetos/genética
19.
Antonie Van Leeuwenhoek ; 100(1): 75-82, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21359849

RESUMEN

A novel species in the genus Candida was obtained from deep-sea hydrothermal fields on the Mid-Atlantic Ridge. Strains Mo39, MARY089 and CBS 5307, respectively, isolated from an unidentified deep-sea coral collected near Rainbow hydrothermal vent, from water samples near Menez Gwen hydrothermal field and from the stomach of a marine fish are considered as a novel taxon. Sequence similarities in the D1/D2 region of the 26S rRNA gene indicated that strains Mo39, MARY089 and CBS 5307 have for closest neighbors Candida spencermartinsiae, Candida taylorii, Candida atmosphaerica and Candida atlantica. The strains, respectively, differ from C. spencermartinsiae, C. taylorii, C. atmosphaerica andCandida atlantica by 4, 4.3, 4.3 and 4.7% in the D1/D2 domain. Strains Mo39, MARY089 and CBS 5307 were differentiated from others by differences in the ability to assimilate D: -Gluconate and in the ability to grow at relatively high temperature. Only strain Mo39 displays an optimal growth at 3% sea salts, indicating that this strain is clearly adapted to live in marine conditions. Sequence similarities between strains Mo39, MARY089 and CBS 5307 and related species and differences in the ability to utilize specific carbon compounds revealed that these strains represent a hitherto unknown species. Sexual reproduction was not observed in strains Mo39, MARY089 and CBS 5307. An anamorphic name Candida oceani sp. nov. is proposed for the type strain Mo39(T) (= CBS 11857(T) = DSM 23777(T)) and the two other strains MARY089 and CBS 5307. To our knowledge, this is the first description of a micro-eukaryotic organism including a strain isolated from a deep-sea coral near a hydrothermal ecosystem.


Asunto(s)
Antozoos/microbiología , Candida/aislamiento & purificación , Agua de Mar/microbiología , Animales , Candida/clasificación , Candida/genética , ADN de Hongos/genética , Datos de Secuencia Molecular , Filogenia , ARN Ribosómico/genética
20.
FEMS Microbiol Ecol ; 97(8)2021 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-34245561

RESUMEN

Relatively little is known about the diversity of fungi in deep-sea, hydrothermal sediments. Less thoroughly explored environments are likely untapped reservoirs of unique biodiversity with the potential to augment our current arsenal of microbial compounds with biomedical and/or industrial applications. In this study, we applied traditional culture-based methods to examine a subset of the morphological and phylogenetic diversity of filamentous fungi and yeasts present in 11 hydrothermally influenced sediment samples collected from eight sites on the seafloor of Guaymas Basin, Mexico. A total of 12 unique isolates affiliating with Ascomycota and Basidiomycota were obtained and taxonomically identified on the basis of morphological features and analyses of marker genes including actin, ß-tubulin, small subunit ribosomal DNA (18S rRNA), internal transcribed spacer (ITS) and large subunit ribosomal DNA (26S rRNA) D1/D2 domain sequences (depending on taxon). A total of 11 isolates possess congeners previously detected in, or recovered from, deep-sea environments. A total of seven isolates exhibited antibacterial activity against human bacterial pathogens Staphylococcus aureus ATCC-35556 and/or Escherichia coli ATCC-25922. This first investigation suggests that hydrothermal environments may serve as promising reservoirs of much greater fungal diversity, some of which may produce biomedically useful metabolites.


Asunto(s)
Ascomicetos , Respiraderos Hidrotermales , Antibacterianos/farmacología , Ascomicetos/genética , Biodiversidad , Hongos/genética , Sedimentos Geológicos , Humanos , México , Filogenia , ARN Ribosómico 18S , Agua de Mar
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA