Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 110(15): 5823-8, 2013 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-23530231

RESUMEN

We performed a population genomics study of the aye-aye, a highly specialized nocturnal lemur from Madagascar. Aye-ayes have low population densities and extensive range requirements that could make this flagship species particularly susceptible to extinction. Therefore, knowledge of genetic diversity and differentiation among aye-aye populations is critical for conservation planning. Such information may also advance our general understanding of Malagasy biogeography, as aye-ayes have the largest species distribution of any lemur. We generated and analyzed whole-genome sequence data for 12 aye-ayes from three regions of Madagascar (North, West, and East). We found that the North population is genetically distinct, with strong differentiation from other aye-ayes over relatively short geographic distances. For comparison, the average FST value between the North and East aye-aye populations--separated by only 248 km--is over 2.1-times greater than that observed between human Africans and Europeans. This finding is consistent with prior watershed- and climate-based hypotheses of a center of endemism in northern Madagascar. Taken together, these results suggest a strong and long-term biogeographical barrier to gene flow. Thus, the specific attention that should be directed toward preserving large, contiguous aye-aye habitats in northern Madagascar may also benefit the conservation of other distinct taxonomic units. To help facilitate future ecological- and conservation-motivated population genomic analyses by noncomputational biologists, the analytical toolkit used in this study is available on the Galaxy Web site.


Asunto(s)
Genética de Población , Genómica , Lemur/genética , Lemur/fisiología , Animales , Evolución Molecular , Genoma , Genotipo , Geografía , Internet , Madagascar , Filogenia , Polimorfismo de Nucleótido Simple , Análisis de Secuencia de ADN , Factores de Tiempo
2.
Proc Natl Acad Sci U S A ; 109(36): E2382-90, 2012 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-22826254

RESUMEN

Polar bears (PBs) are superbly adapted to the extreme Arctic environment and have become emblematic of the threat to biodiversity from global climate change. Their divergence from the lower-latitude brown bear provides a textbook example of rapid evolution of distinct phenotypes. However, limited mitochondrial and nuclear DNA evidence conflicts in the timing of PB origin as well as placement of the species within versus sister to the brown bear lineage. We gathered extensive genomic sequence data from contemporary polar, brown, and American black bear samples, in addition to a 130,000- to 110,000-y old PB, to examine this problem from a genome-wide perspective. Nuclear DNA markers reflect a species tree consistent with expectation, showing polar and brown bears to be sister species. However, for the enigmatic brown bears native to Alaska's Alexander Archipelago, we estimate that not only their mitochondrial genome, but also 5-10% of their nuclear genome, is most closely related to PBs, indicating ancient admixture between the two species. Explicit admixture analyses are consistent with ancient splits among PBs, brown bears and black bears that were later followed by occasional admixture. We also provide paleodemographic estimates that suggest bear evolution has tracked key climate events, and that PB in particular experienced a prolonged and dramatic decline in its effective population size during the last ca. 500,000 years. We demonstrate that brown bears and PBs have had sufficiently independent evolutionary histories over the last 4-5 million years to leave imprints in the PB nuclear genome that likely are associated with ecological adaptation to the Arctic environment.


Asunto(s)
Adaptación Biológica/genética , Cambio Climático/historia , Evolución Molecular , Genética de Población , Genoma/genética , Ursidae/genética , Animales , Regiones Árticas , Secuencia de Bases , Marcadores Genéticos/genética , Historia Antigua , Datos de Secuencia Molecular , Densidad de Población , Dinámica Poblacional , Análisis de Secuencia de ADN , Especificidad de la Especie
3.
Genome Res ; 16(12): 1557-65, 2006 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-16983148

RESUMEN

This article analyzes mammalian genome rearrangements at higher resolution than has been published to date. We identify 3171 intervals, covering approximately 92% of the human genome, within which we find no rearrangements larger than 50 kilobases (kb) in the lineages leading to human, mouse, rat, and dog from their most recent common ancestor. Combining intervals that are adjacent in all contemporary species produces 1338 segments that may contain large insertions or deletions but that are free of chromosome fissions or fusions as well as inversions or translocations >50 kb in length. We describe a new method for predicting the ancestral order and orientation of those intervals from their observed adjacencies in modern species. We combine the results from this method with data from chromosome painting experiments to produce a map of an early mammalian genome that accounts for 96.8% of the available human genome sequence data. The precision is further increased by mapping inversions as small as 31 bp. Analysis of the predicted evolutionary breakpoints in the human lineage confirms certain published observations but disagrees with others. Although only a few mammalian genomes are currently sequenced to high precision, our theoretical analyses and computer simulations indicate that our results are reasonably accurate and that they will become highly accurate in the foreseeable future. Our methods were developed as part of a project to reconstruct the genome sequence of the last ancestor of human, dogs, and most other placental mammals.


Asunto(s)
Evolución Molecular , Genoma Humano , Genoma , Algoritmos , Animales , Composición de Base , Emparejamiento Base , Rotura Cromosómica , Inversión Cromosómica , Mapeo Cromosómico , Pintura Cromosómica , Cromosomas , Simulación por Computador , Perros , Eliminación de Gen , Reordenamiento Génico , Humanos , Ratones , Modelos Genéticos , Ratas , Alineación de Secuencia/métodos , Homología de Secuencia de Ácido Nucleico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA