Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
PLoS Pathog ; 17(4): e1009384, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33886696

RESUMEN

It is estimated that more than 1 billion people across the world are affected by a neglected tropical disease (NTD) that requires medical intervention. These diseases tend to afflict people in areas with high rates of poverty and cost economies billions of dollars every year. Collaborative drug discovery efforts are required to reduce the burden of these diseases in endemic regions. The release of "Open Access Boxes" is an initiative launched by Medicines for Malaria Venture (MMV) in collaboration with its partners to catalyze new drug discovery in neglected diseases. These boxes are mainly requested by biology researchers across the globe who may not otherwise have access to compounds to screen nor knowledge of the workflow that needs to be followed after identification of actives from their screening campaigns. Here, we present guidelines on how to move such actives beyond the hit identification stage, to help in capacity strengthening and enable a greater impact of the initiative.


Asunto(s)
Descubrimiento de Drogas , Malaria/tratamiento farmacológico , Enfermedades Desatendidas/tratamiento farmacológico , Estudios de Validación como Asunto , Acceso a la Información , Humanos , Medicina Tropical/métodos
2.
Mol Pharmacol ; 102(3): 172-182, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35798366

RESUMEN

Human and animal malaria parasites increase their host erythrocyte permeability to a broad range of solutes as mediated by parasite-associated ion channels. Molecular and pharmacological studies have implicated an essential role in parasite nutrient acquisition, but inhibitors suitable for development of antimalarial drugs are missing. Here, we generated a potent and specific drug lead using Plasmodium falciparum, a virulent human pathogen, and derivatives of MBX-2366, a nanomolar affinity pyridazinone inhibitor from a high-throughput screen. As this screening hit lacks the bioavailability and stability needed for in vivo efficacy, we synthesized 315 derivatives to optimize drug-like properties, establish target specificity, and retain potent activity against the parasite-induced permeability. Using a robust, iterative pipeline, we generated MBX-4055, a derivative active against divergent human parasite strains. MBX-4055 has improved oral absorption with acceptable in vivo tolerability and pharmacokinetics. It also has no activity against a battery of 35 human channels and receptors and is refractory to acquired resistance during extended in vitro selection. Single-molecule and single-cell patch-clamp indicate direct action on the plasmodial surface anion channel, a channel linked to parasite-encoded RhopH proteins. These studies identify pyridazinones as novel and tractable antimalarial scaffolds with a defined mechanism of action. SIGNIFICANCE STATEMENT: Because antimalarial drugs are prone to evolving resistance in the virulent human P. falciparum pathogen, new therapies are needed. This study has now developed a novel drug-like series of pyridazinones that target an unexploited parasite anion channel on the host cell surface, display excellent in vitro and in vivo ADME properties, are refractory to acquired resistance, and demonstrate a well defined mechanism of action.


Asunto(s)
Antimaláricos , Antagonistas del Ácido Fólico , Animales , Aniones/química , Aniones/metabolismo , Antimaláricos/farmacología , Eritrocitos/metabolismo , Humanos , Nutrientes , Plasmodium falciparum/metabolismo
3.
Malar J ; 19(1): 1, 2020 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-31898492

RESUMEN

BACKGROUND: Modelling and simulation are being increasingly utilized to support the discovery and development of new anti-malarial drugs. These approaches require reliable in vitro data for physicochemical properties, permeability, binding, intrinsic clearance and cytochrome P450 inhibition. This work was conducted to generate an in vitro data toolbox using standardized methods for a set of 45 anti-malarial drugs and to assess changes in physicochemical properties in relation to changing target product and candidate profiles. METHODS: Ionization constants were determined by potentiometric titration and partition coefficients were measured using a shake-flask method. Solubility was assessed in biorelevant media and permeability coefficients and efflux ratios were determined using Caco-2 cell monolayers. Binding to plasma and media proteins was measured using either ultracentrifugation or rapid equilibrium dialysis. Metabolic stability and cytochrome P450 inhibition were assessed using human liver microsomes. Sample analysis was conducted by LC-MS/MS. RESULTS: Both solubility and fraction unbound decreased, and permeability and unbound intrinsic clearance increased, with increasing Log D7.4. In general, development compounds were somewhat more lipophilic than legacy drugs. For many compounds, permeability and protein binding were challenging to assess and both required the use of experimental conditions that minimized the impact of non-specific binding. Intrinsic clearance in human liver microsomes was varied across the data set and several compounds exhibited no measurable substrate loss under the conditions used. Inhibition of cytochrome P450 enzymes was minimal for most compounds. CONCLUSIONS: This is the first data set to describe in vitro properties for 45 legacy and development anti-malarial drugs. The studies identified several practical methodological issues common to many of the more lipophilic compounds and highlighted areas which require more work to customize experimental conditions for compounds being designed to meet the new target product profiles. The dataset will be a valuable tool for malaria researchers aiming to develop PBPK models for the prediction of human PK properties and/or drug-drug interactions. Furthermore, generation of this comprehensive data set within a single laboratory allows direct comparison of properties across a large dataset and evaluation of changing property trends that have occurred over time with changing target product and candidate profiles.


Asunto(s)
Antimaláricos/metabolismo , Antimaláricos/farmacología , Desarrollo de Medicamentos , Descubrimiento de Drogas , Antimaláricos/sangre , Antimaláricos/normas , Células CACO-2 , Cromatografía Liquida , Sistema Enzimático del Citocromo P-450/metabolismo , Interacciones Farmacológicas , Humanos , Cinética , Microsomas Hepáticos , Permeabilidad , Unión Proteica , Solubilidad , Espectrometría de Masas en Tándem
4.
J Vector Borne Dis ; 56(1): 15-24, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31070161

RESUMEN

The global fight against malaria requires continual development of new tools. Collaborations in India have played a key role in MMV's partnerships to discover, develop and deliver new medicines. Over the last decade, India has become a focal point of global medicinal chemistry, and combined with investments in basic science, this has led to the discovery of new potential drugs. India also brings significant experience to drug development, in clinical trials, but also in formulation and manufacturing. Finally, innovative new approaches in case management have streamlined impact at the level of communities and the patients.


Asunto(s)
Control de Enfermedades Transmisibles/tendencias , Malaria/tratamiento farmacológico , Malaria/prevención & control , Antimaláricos/uso terapéutico , Control de Enfermedades Transmisibles/métodos , Descubrimiento de Drogas/estadística & datos numéricos , Descubrimiento de Drogas/tendencias , Salud Global , Humanos , India/epidemiología , Vacunas contra la Malaria
5.
Malar J ; 17(1): 402, 2018 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-30384848

RESUMEN

Over the last 15 years, the majority of malaria drug discovery and development efforts have focused on new molecules and regimens to treat patients with uncomplicated or severe disease. In addition, a number of new molecular scaffolds have been discovered which block the replication of the parasite in the liver, offering the possibility of new tools for oral prophylaxis or chemoprotection, potentially with once-weekly dosing. However, an intervention which requires less frequent administration than this would be a key tool for the control and elimination of malaria. Recent progress in HIV drug discovery has shown that small molecules can be formulated for injections as native molecules or pro-drugs which provide protection for at least 2 months. Advances in antibody engineering offer an alternative approach whereby a single injection could potentially provide protection for several months. Building on earlier profiles for uncomplicated and severe malaria, a target product profile is proposed here for an injectable medicine providing long-term protection from this disease. As with all of such profiles, factors such as efficacy, cost, safety and tolerability are key, but with the changing disease landscape in Africa, new clinical and regulatory approaches are required to develop prophylactic/chemoprotective medicines. An overall framework for these approaches is suggested here.


Asunto(s)
Antimaláricos , Desarrollo de Medicamentos , Descubrimiento de Drogas , Inyecciones Intravenosas , Malaria/prevención & control , Humanos
6.
Malar J ; 16(1): 26, 2017 01 13.
Artículo en Inglés | MEDLINE | ID: mdl-28086874

RESUMEN

A decade of discovery and development of new anti-malarial medicines has led to a renewed focus on malaria elimination and eradication. Changes in the way new anti-malarial drugs are discovered and developed have led to a dramatic increase in the number and diversity of new molecules presently in pre-clinical and early clinical development. The twin challenges faced can be summarized by multi-drug resistant malaria from the Greater Mekong Sub-region, and the need to provide simplified medicines. This review lists changes in anti-malarial target candidate and target product profiles over the last 4 years. As well as new medicines to treat disease and prevent transmission, there has been increased focus on the longer term goal of finding new medicines for chemoprotection, potentially with long-acting molecules, or parenteral formulations. Other gaps in the malaria armamentarium, such as drugs to treat severe malaria and endectocides (that kill mosquitoes which feed on people who have taken the drug), are defined here. Ultimately the elimination of malaria requires medicines that are safe and well-tolerated to be used in vulnerable populations: in pregnancy, especially the first trimester, and in those suffering from malnutrition or co-infection with other pathogens. These updates reflect the maturing of an understanding of the key challenges in producing the next generation of medicines to control, eliminate and ultimately eradicate malaria.


Asunto(s)
Antimaláricos/aislamiento & purificación , Antimaláricos/farmacología , Descubrimiento de Drogas/tendencias , Malaria/tratamiento farmacológico , Malaria/prevención & control , Ensayos Clínicos como Asunto , Evaluación Preclínica de Medicamentos/tendencias , Humanos
7.
Antimicrob Agents Chemother ; 59(4): 1977-82, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25605352

RESUMEN

The cytochrome bc1 complex (cyt bc1) is the third component of the mitochondrial electron transport chain and is the target of several potent antimalarial compounds, including the naphthoquinone atovaquone (ATV) and the 4(1H)-quinolone ELQ-300. Mechanistically, cyt bc1 facilitates the transfer of electrons from ubiquinol to cytochrome c and contains both oxidative (Qo) and reductive (Qi) catalytic sites that are amenable to small-molecule inhibition. Although many antimalarial compounds, including ATV, effectively target the Qo site, it has been challenging to design selective Qi site inhibitors with the ability to circumvent clinical ATV resistance, and little is known about how chemical structure contributes to site selectivity within cyt bc1. Here, we used the proposed Qi site inhibitor ELQ-300 to generate a drug-resistant Plasmodium falciparum clone containing an I22L mutation at the Qi region of cyt b. Using this D1 clone and the Y268S Qo mutant strain, P. falciparum Tm90-C2B, we created a structure-activity map of Qi versus Qo site selectivity for a series of endochin-like 4(1H)-quinolones (ELQs). We found that Qi site inhibition was associated with compounds containing 6-position halogens or aryl 3-position side chains, while Qo site inhibition was favored by 5,7-dihalogen groups or 7-position substituents. In addition to identifying ELQ-300 as a preferential Qi site inhibitor, our data suggest that the 4(1H)-quinolone scaffold is compatible with binding to either site of cyt bc1 and that minor chemical changes can influence Qo or Qi site inhibition by the ELQs.


Asunto(s)
Antimaláricos/farmacología , Complejo III de Transporte de Electrones/antagonistas & inhibidores , Plasmodium falciparum/efectos de los fármacos , Plasmodium falciparum/enzimología , Quinolonas/farmacología , Animales , Citocromos b/genética , Citocromos b/metabolismo , Resistencia a Medicamentos , Complejo III de Transporte de Electrones/genética , Modelos Moleculares , Mutación/genética , Plasmodium falciparum/genética , Unión Proteica , Relación Estructura-Actividad
8.
Antimicrob Agents Chemother ; 59(9): 5555-60, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26124159

RESUMEN

ELQ-300 is a preclinical candidate that targets the liver and blood stages of Plasmodium falciparum, as well as the forms that are crucial to transmission of disease: gametocytes, zygotes, and ookinetes. A significant obstacle to the clinical development of ELQ-300 is related to its physicochemical properties. Its relatively poor aqueous solubility and high crystallinity limit absorption to the degree that only low blood concentrations can be achieved following oral dosing. While these low blood concentrations are sufficient for therapy, the levels are too low to establish an acceptable safety margin required by regulatory agencies for clinical development. One way to address the challenging physicochemical properties of ELQ-300 is through the development of prodrugs. Here, we profile ELQ-337, a bioreversible O-linked carbonate ester prodrug of the parent molecule. At the molar equivalent dose of 3 mg/kg of body weight, the delivery of ELQ-300 from ELQ-337 is enhanced by 3- to 4-fold, reaching a maximum concentration of drug in serum (C max) of 5.9 µM by 6 h after oral administration, and unlike ELQ-300 at any dose, ELQ-337 provides single-dose cures of patent malaria infections in mice at low-single-digit milligram per kilogram doses. Our findings show that the prodrug strategy represents a viable approach to overcome the physicochemical limitations of ELQ-300 to deliver the active drug to the bloodstream at concentrations sufficient for safety and toxicology studies, as well as achieving single-dose cures.


Asunto(s)
Antimaláricos/química , Antimaláricos/uso terapéutico , Malaria/tratamiento farmacológico , Profármacos/uso terapéutico , Quinolonas/uso terapéutico , Animales , Cristalografía por Rayos X , Complejo III de Transporte de Electrones/antagonistas & inhibidores , Femenino , Ratones , Plasmodium falciparum/efectos de los fármacos , Plasmodium falciparum/patogenicidad , Profármacos/química , Quinolonas/química
9.
Proc Natl Acad Sci U S A ; 109(39): 15936-41, 2012 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-23019377

RESUMEN

Toxoplasma gondii is a widely distributed protozoan pathogen that causes devastating ocular and central nervous system disease. We show that the endochin-like quinolone (ELQ) class of compounds contains extremely potent inhibitors of T. gondii growth in vitro and is effective against acute and latent toxoplasmosis in mice. We screened 50 ELQs against T. gondii and selected two lead compounds, ELQ-271 and ELQ-316, for evaluation. ELQ-271 and ELQ-316, have in vitro IC(50) values of 0.1 nM and 0.007 nM, respectively. ELQ-271 and ELQ-316 have ED(50) values of 0.14 mg/kg and 0.08 mg/kg when administered orally to mice with acute toxoplasmosis. Moreover, ELQ-271 and ELQ-316 are highly active against the cyst form of T. gondii in mice at low doses, reducing cyst burden by 76-88% after 16 d of treatment. To investigate the ELQ mechanism of action against T. gondii, we demonstrate that endochin and ELQ-271 inhibit cytochrome c reduction by the T. gondii cytochrome bc(1) complex at 8 nM and 31 nM, respectively. We also show that ELQ-271 inhibits the Saccharomyces cerevisiae cytochrome bc(1) complex, and an M221Q amino acid substitution in the Q(i) site of the protein leads to >100-fold resistance. We conclude that ELQ-271 and ELQ-316 are orally bioavailable drugs that are effective against acute and latent toxoplasmosis, likely acting as inhibitors of the Q(i) site of the T. gondii cytochrome bc(1) complex.


Asunto(s)
Antiprotozoarios/farmacología , Inhibidores Enzimáticos/farmacología , Quinolinas/farmacología , Toxoplasma/crecimiento & desarrollo , Toxoplasmosis/tratamiento farmacológico , Animales , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Evaluación Preclínica de Medicamentos , Complejo III de Transporte de Electrones/antagonistas & inhibidores , Femenino , Humanos , Ratones , Proteínas Protozoarias/antagonistas & inhibidores , Ratas , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/antagonistas & inhibidores , Toxoplasma/enzimología , Toxoplasmosis/enzimología
10.
Malar J ; 13: 190, 2014 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-24886460

RESUMEN

BACKGROUND: In view of the need to continuously feed the pipeline with new anti-malarial agents adapted to differentiated and more stringent target product profiles (e.g., new modes of action, transmission-blocking activity or long-duration chemo-protection), a chemical library consisting of more than 250,000 compounds has been evaluated in a blood-stage Plasmodium falciparum growth inhibition assay and further assessed for chemical diversity and novelty. METHODS: The selection cascade used for the triaging of hits from the chemical library started with a robust three-step in vitro assay followed by an in silico analysis of the resulting confirmed hits. Upon reaching the predefined requirements for selectivity and potency, the set of hits was subjected to computational analysis to assess chemical properties and diversity. Furthermore, known marketed anti-malarial drugs were co-clustered acting as 'signposts' in the chemical space defined by the hits. Then, in cerebro evaluation of the chemical structures was performed to identify scaffolds that currently are or have been the focus of anti-malarial medicinal chemistry programmes. Next, prioritization according to relaxed physicochemical parameters took place, along with the search for structural analogues. Ultimately, synthesis of novel chemotypes with desired properties was performed and the resulting compounds were subsequently retested in a P. falciparum growth inhibition assay. RESULTS: This screening campaign led to a 1.25% primary hit rate, which decreased to 0.77% upon confirmatory repeat screening. With the predefined potency (EC50 < 1 µM) and selectivity (SI > 10) criteria, 178 compounds progressed to the next steps where chemical diversity, physicochemical properties and novelty assessment were taken into account. This resulted in the selection of 15 distinct chemical series. CONCLUSION: A selection cascade was applied to prioritize hits resulting from the screening of a medium-sized chemical library against blood-stage P. falciparum. Emphasis was placed on chemical novelty whereby computational clustering, data mining of known anti-malarial chemotypes and the application of relaxed physicochemical filters, were key to the process. This led to the selection of 15 chemical series from which ten confirmed their activity when newly synthesized sample were tested.


Asunto(s)
Antimaláricos/aislamiento & purificación , Evaluación Preclínica de Medicamentos , Plasmodium falciparum/efectos de los fármacos , Bibliotecas de Moléculas Pequeñas , Algoritmos , Antimaláricos/química , Antimaláricos/farmacología , Humanos
11.
Parasitology ; 141(1): 128-39, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23863111

RESUMEN

Malaria is a disease that still affects a significant proportion of the global human population. Whilst advances have been made in lowering the numbers of cases and deaths, it is clear that a strategy based solely on disease control year on year, without reducing transmission and ultimately eradicating the parasite, is unsustainable. This article highlights the current mainstay treatments alongside a selection of emerging new clinical molecules from the portfolio of Medicines for Malaria Venture (MMV) and our partners. In each case, the key highlights from each research phase are described to demonstrate how these new potential medicines were discovered. Given the increased focus of the community on eradicating the disease, the strategy for next generation combination medicines that will provide such potential is explained.


Asunto(s)
Antimaláricos/farmacología , Descubrimiento de Drogas , Estadios del Ciclo de Vida/efectos de los fármacos , Malaria/tratamiento farmacológico , Plasmodium falciparum/efectos de los fármacos , Plasmodium vivax/efectos de los fármacos , Antimaláricos/síntesis química , Ensayos Clínicos como Asunto , Erradicación de la Enfermedad , Combinación de Medicamentos , Diseño de Fármacos , Humanos , Malaria/parasitología , Malaria/prevención & control , Plasmodium falciparum/crecimiento & desarrollo , Plasmodium falciparum/metabolismo , Plasmodium vivax/crecimiento & desarrollo , Plasmodium vivax/metabolismo , Relación Estructura-Actividad
12.
Nat Rev Drug Discov ; 23(6): 461-479, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38750260

RESUMEN

Antimicrobial resistance poses a significant threat to the sustainability of effective treatments against the three most prevalent infectious diseases: malaria, human immunodeficiency virus (HIV) infection and tuberculosis. Therefore, there is an urgent need to develop novel drugs and treatment protocols capable of reducing the emergence of resistance and combating it when it does occur. In this Review, we present an overview of the status and underlying molecular mechanisms of drug resistance in these three diseases. We also discuss current strategies to address resistance during the research and development of next-generation therapies. These strategies vary depending on the infectious agent and the array of resistance mechanisms involved. Furthermore, we explore the potential for cross-fertilization of knowledge and technology among these diseases to create innovative approaches for minimizing drug resistance and advancing the discovery and development of new anti-infective treatments. In conclusion, we advocate for the implementation of well-defined strategies to effectively mitigate and manage resistance in all interventions against infectious diseases.


Asunto(s)
Infecciones por VIH , Malaria , Tuberculosis , Humanos , Malaria/tratamiento farmacológico , Infecciones por VIH/tratamiento farmacológico , Tuberculosis/tratamiento farmacológico , Antituberculosos/uso terapéutico , Antituberculosos/farmacología , Animales , Antimaláricos/uso terapéutico , Antimaláricos/farmacología
13.
mBio ; 15(3): e0316923, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38323831

RESUMEN

Malaria parasites have adaptive mechanisms to modulate their intracellular redox status to tolerate the enhanced oxidizing effects created by malaria fever, hemoglobinopathies and other stress conditions, including antimalaria drugs. Emerging artemisinin (ART) resistance in Plasmodium falciparum is a complex phenotype linked to the parasite's tolerance of the activated drug's oxidative damage along with changes in vesicular transport, lipid metabolism, DNA repair, and exported proteins. In an earlier study, we discovered that many of these metabolic processes are induced in P. falciparum to respond to the oxidative damage caused by artemisinin, which exhibited a highly significant overlap with the parasite's adaptive response mechanisms to survive febrile temperatures. In addition, there was a significant overlap with the parasite's survival responses to oxidative stress. In this study, we investigated these relationships further using an in vitro model to evaluate if oxidative stress and heat-shock conditions could alter the parasite's response to artemisinin. The results revealed that compared to ideal culture conditions, the antimalarial efficacy of artemisinin was significantly reduced in parasites growing in intraerythrocytic oxidative stress but not in heat-shock condition. In contrast, heat shock significantly reduced the efficacy of lumefantrine that is an important ART combination therapy partner drug. We propose that prolonged exposure to intraerythrocytic microenvironmental oxidative stress, as would occur in endemic regions with high prevalence for sickle trait and other hemoglobinopathies, can predispose malaria parasites to develop tolerance to the oxidative damage caused by antimalarial drugs like artemisinin. IMPORTANCE: Emerging resistance to the frontline antimalarial drug artemisinin represents a significant threat to worldwide malaria control and elimination. The patterns of parasite changes associated with emerging resistance represent a complex array of metabolic processes evident in various genetic mutations and altered transcription profiles. Genetic factors identified in regulating P. falciparum sensitivity to artemisinin overlap with the parasite's responses to malarial fever, sickle trait, and other types of oxidative stresses, suggesting conserved inducible survival responses. In this study we show that intraerythrocytic stress conditions, oxidative stress and heat shock, can significantly decrease the sensitivity of the parasite to artemisinin and lumefantrine, respectively. These results indicate that an intraerythrocytic oxidative stress microenvironment and heat-shock condition can alter antimalarial drug efficacy. Evaluating efficacy of antimalarial drugs under ideal in vitro culture conditions may not accurately predict drug efficacy in all malaria patients.


Asunto(s)
Anemia de Células Falciformes , Antimaláricos , Artemisininas , Antagonistas del Ácido Fólico , Hemoglobinopatías , Malaria Falciparum , Malaria , Humanos , Antimaláricos/farmacología , Plasmodium falciparum/genética , Artemisininas/farmacología , Malaria Falciparum/tratamiento farmacológico , Malaria/tratamiento farmacológico , Lumefantrina/farmacología , Lumefantrina/uso terapéutico , Combinación de Medicamentos , Proteínas Protozoarias/genética , Antagonistas del Ácido Fólico/farmacología , Estrés Oxidativo , Hemoglobinopatías/tratamiento farmacológico , Anemia de Células Falciformes/tratamiento farmacológico , Resistencia a Medicamentos/genética
14.
J Cheminform ; 16(1): 63, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38831351

RESUMEN

Drug discovery is an intricate and costly process. Repurposing existing drugs and active compounds offers a viable pathway to develop new therapies for various diseases. By leveraging publicly available biomedical information, it is possible to predict compounds' activity and identify their potential targets across diverse organisms. In this study, we aimed to assess the antiplasmodial activity of compounds from the Repurposing, Focused Rescue, and Accelerated Medchem (ReFRAME) library using in vitro and bioinformatics approaches. We assessed the in vitro antiplasmodial activity of the compounds using blood-stage and liver-stage drug susceptibility assays. We used protein sequences of known targets of the ReFRAME compounds with high antiplasmodial activity (EC50 < 10 uM) to conduct a protein-pairwise search to identify similar Plasmodium falciparum 3D7 proteins (from PlasmoDB) using NCBI protein BLAST. We further assessed the association between the compounds' in vitro antiplasmodial activity and level of similarity between their known and predicted P. falciparum target proteins using simple linear regression analyses. BLAST analyses revealed 735 P. falciparum proteins that were similar to the 226 known protein targets associated with the ReFRAME compounds. Antiplasmodial activity of the compounds was positively associated with the degree of similarity between the compounds' known targets and predicted P. falciparum protein targets (percentage identity, E value, and bit score), the number of the predicted P. falciparum targets, and their respective mutagenesis index and fitness scores (R2 between 0.066 and 0.92, P < 0.05). Compounds predicted to target essential P. falciparum proteins or those with a druggability index of 1 showed the highest antiplasmodial activity.

15.
Eur J Med Chem ; 275: 116599, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38909569

RESUMEN

The increase in research funding for the development of antimalarials since 2000 has led to a surge of new chemotypes with potent antimalarial activity. High-throughput screens have delivered several thousand new active compounds in several hundred series, including the 4,7-diphenyl-1,4,5,6,7,8-hexahydroquinolines, hereafter termed dihydropyridines (DHPs). We optimized the DHPs for antimalarial activity. Structure-activity relationship studies focusing on the 2-, 3-, 4-, 6-, and 7-positions of the DHP core led to the identification of compounds potent (EC50 < 10 nM) against all strains of P. falciparum tested, including the drug-resistant parasite strains K1, W2, and TM90-C2B. Evaluation of efficacy of several compounds in vivo identified two compounds that reduced parasitemia by >75 % in mice 6 days post-exposure following a single 50 mg/kg oral dose. Resistance acquisition experiments with a selected dihydropyridine led to the identification of a single mutation conveying resistance in the gene encoding for Plasmodium falciparum multi-drug resistance protein 1 (PfMDR1). The same dihydropyridine possessed transmission blocking activity. The DHPs have the potential for the development of novel antimalarial drug candidates.

16.
Malar J ; 12: 187, 2013 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-23742293

RESUMEN

In the fight against malaria new medicines are an essential weapon. For the parts of the world where the current gold standard artemisinin combination therapies are active, significant improvements can still be made: for example combination medicines which allow for single dose regimens, cheaper, safer and more effective medicines, or improved stability under field conditions. For those parts of the world where the existing combinations show less than optimal activity, the priority is to have activity against emerging resistant strains, and other criteria take a secondary role. For new medicines to be optimal in malaria control they must also be able to reduce transmission and prevent relapse of dormant forms: additional constraints on a combination medicine. In the absence of a highly effective vaccine, new medicines are also needed to protect patient populations. In this paper, an outline definition of the ideal and minimally acceptable characteristics of the types of clinical candidate molecule which are needed (target candidate profiles) is suggested. In addition, the optimal and minimally acceptable characteristics of combination medicines are outlined (target product profiles). MMV presents now a suggested framework for combining the new candidates to produce the new medicines. Sustained investment over the next decade in discovery and development of new molecules is essential to enable the long-term delivery of the medicines needed to combat malaria.


Asunto(s)
Antimaláricos/aislamiento & purificación , Descubrimiento de Drogas/métodos , Malaria/tratamiento farmacológico , Malaria/prevención & control , Antimaláricos/farmacocinética , Antimaláricos/farmacología , Antimaláricos/uso terapéutico , Descubrimiento de Drogas/tendencias , Resistencia a Medicamentos , Estabilidad de Medicamentos , Quimioterapia Combinada/métodos , Humanos
17.
Nat Rev Drug Discov ; 22(10): 807-826, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37652975

RESUMEN

Recent antimalarial drug discovery has been a race to produce new medicines that overcome emerging drug resistance, whilst considering safety and improving dosing convenience. Discovery efforts have yielded a variety of new molecules, many with novel modes of action, and the most advanced are in late-stage clinical development. These discoveries have led to a deeper understanding of how antimalarial drugs act, the identification of a new generation of drug targets, and multiple structure-based chemistry initiatives. The limited pool of funding means it is vital to prioritize new drug candidates. They should exhibit high potency, a low propensity for resistance, a pharmacokinetic profile that favours infrequent dosing, low cost, preclinical results that demonstrate safety and tolerability in women and infants, and preferably the ability to block Plasmodium transmission to Anopheles mosquito vectors. In this Review, we describe the approaches that have been successful, progress in preclinical and clinical development, and existing challenges. We illustrate how antimalarial drug discovery can serve as a model for drug discovery in diseases of poverty.


Asunto(s)
Antimaláricos , Plasmodium , Animales , Femenino , Humanos , Antimaláricos/farmacología , Antimaláricos/uso terapéutico , Resistencia a Medicamentos , Descubrimiento de Drogas/métodos
18.
Pharmaceuticals (Basel) ; 16(2)2023 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-37009844

RESUMEN

With artemisinin-resistant Plasmodium falciparum parasites emerging in Africa, the need for new antimalarial chemotypes is persistently high. The ideal pharmacodynamic parameters of a candidate drug are a rapid onset of action and a fast rate of parasite killing or clearance. To determine these parameters, it is essential to discriminate viable from nonviable parasites, which is complicated by the fact that viable parasites can be metabolically inactive, whilst dying parasites can still be metabolically active and morphologically unaffected. Standard growth inhibition assays, read out via microscopy or [3H] hypoxanthine incorporation, cannot reliably discriminate between viable and nonviable parasites. Conversely, the in vitro parasite reduction ratio (PRR) assay is able to measure viable parasites with high sensitivity. It provides valuable pharmacodynamic parameters, such as PRR, 99.9% parasite clearance time (PCT99.9%) and lag phase. Here we report the development of the PRR assay version 2 (V2), which comes with a shorter assay duration, optimized quality controls and an objective, automated analysis pipeline that systematically estimates PRR, PCT99.9% and lag time and returns meaningful secondary parameters such as the maximal killing rate of a drug (Emax) at the assayed concentration. These parameters can be fed directly into pharmacokinetic/pharmacodynamic models, hence aiding and standardizing lead selection, optimization, and dose prediction.

19.
ACS Med Chem Lett ; 14(12): 1733-1741, 2023 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-38116432

RESUMEN

Efforts to tackle malaria must continue for a disease that threatens half of the global population. Parasite resistance to current therapies requires new chemotypes that are able to demonstrate effectiveness and safety. Previously, we developed a machine-learning-based approach to predict compound antimalarial activity, which was trained on the compound collections of several organizations. The resulting prediction platform, MAIP, was made freely available to the scientific community and offers a solution to prioritize molecules of interest in virtual screening and hit-to-lead optimization. Here, we experimentally validate MAIP and demonstrate how the approach was used in combination with a robust compound selection workflow and a recently introduced innovative high-throughput screening (HTS) cascade to select and purchase compounds from a public library for subsequent experimental screening. We observed a 12-fold enrichment compared with a randomly selected set of molecules, and the eight hits we ultimately selected exhibit good potency and absorption, distribution, metabolism, and excretion (ADME) profiles.

20.
CPT Pharmacometrics Syst Pharmacol ; 12(9): 1335-1346, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37587640

RESUMEN

As part of a collaboration between Medicines for Malaria Venture (MMV), Certara UK and Monash University, physiologically-based pharmacokinetic (PBPK) models were developed for 20 antimalarials, using data obtained from standardized in vitro assays and clinical studies within the literature. The models have been applied within antimalarial drug development at MMV for more than 5 years. During this time, a strategy for their impactful use has evolved. All models are described in the supplementary material and are available to researchers. Case studies are also presented, demonstrating real-world development and clinical applications, including the assessment of the drug-drug interaction liability between combination partners or with co-administered drugs. This work emphasizes the benefit of PBPK modeling for antimalarial drug development and decision making, and presents a strategy to integrate it into the research and development process. It also provides a repository of shared information to benefit the global health research community.


Asunto(s)
Antimaláricos , Humanos , Desarrollo de Medicamentos , Proyectos de Investigación , Universidades
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA