Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Plant Cell Environ ; 47(9): 3393-3410, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38488802

RESUMEN

Understanding the short-term responses of mesophyll conductance (gm) and stomatal conductance (gsc) to environmental changes remains a challenging yet central aspect of plant physiology. This review synthesises our current knowledge of these short-term responses, which underpin CO2 diffusion within leaves. Recent methodological advances in measuring gm using online isotopic discrimination and chlorophyll fluorescence have improved our confidence in detecting short-term gm responses, but results need to be carefully evaluated. Environmental factors like vapour pressure deficit and CO2 concentration indirectly impact gm through gsc changes, highlighting some of the complex interactions between the two parameters. Evidence suggests that short-term responses of gm are not, or at least not fully, mechanistically linked to changes in gsc, cautioning against using gsc as a reliable proxy for gm. The overarching challenge lies in unravelling the mechanistic basis of short-term gm responses, which will contribute to the development of accurate models bridging laboratory insights with broader ecological implications. Addressing these gaps in understanding is crucial for refining predictions of gm behaviour under changing environmental conditions.


Asunto(s)
Células del Mesófilo , Estomas de Plantas , Células del Mesófilo/fisiología , Células del Mesófilo/metabolismo , Estomas de Plantas/fisiología , Dióxido de Carbono/metabolismo , Ambiente , Hojas de la Planta/fisiología , Hojas de la Planta/metabolismo , Transpiración de Plantas/fisiología
2.
Plant Cell Environ ; 47(9): 3541-3560, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39132738

RESUMEN

C2 photosynthesis is a photosynthetic pathway in which photorespiratory CO2 release and refixation are enhanced in leaf bundle sheath (BS) tissues. The evolution of C2 photosynthesis has been hypothesized to be a major step in the origin of C4 photosynthesis, highlighting the importance of studying C2 evolution. In this study, physiological, anatomical, ultrastructural, and immunohistochemical properties of leaf photosynthetic tissues were investigated in six non-C4 Tribulus species and four C4 Tribulus species. At 42°C, T. cristatus exhibited a photosynthetic CO2 compensation point in the absence of respiration (C*) of 21 µmol mol-1, below the C3 mean C* of 73 µmol mol-1. Tribulus astrocarpus had a C* value at 42°C of 55 µmol mol-1, intermediate between the C3 species and the C2 T. cristatus. Glycine decarboxylase (GDC) allocation to BS tissues was associated with lower C*. Tribulus cristatus and T. astrocarpus allocated 86% and 30% of their GDC to the BS tissues, respectively, well above the C3 mean of 11%. Tribulus astrocarpus thus exhibits a weaker C2 (termed sub-C2) phenotype. Increased allocation of mitochondria to the BS and decreased length-to-width ratios of BS cells, were present in non-C4 species, indicating a potential role in C2 and C4 evolution.


Asunto(s)
Evolución Biológica , Fotosíntesis , Hojas de la Planta , Fotosíntesis/fisiología , Hojas de la Planta/fisiología , Hojas de la Planta/metabolismo , Dióxido de Carbono/metabolismo , Glicina-Deshidrogenasa (Descarboxilante)/metabolismo
3.
Plant Cell Environ ; 47(9): 3344-3364, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38321805

RESUMEN

Gas exchange measurements enable mechanistic insights into the processes that underpin carbon and water fluxes in plant leaves which in turn inform understanding of related processes at a range of scales from individual cells to entire ecosytems. Given the importance of photosynthesis for the global climate discussion it is important to (a) foster a basic understanding of the fundamental principles underpinning the experimental methods used by the broad community, and (b) ensure best practice and correct data interpretation within the research community. In this review, we outline the biochemical and biophysical parameters of photosynthesis that can be investigated with gas exchange measurements and we provide step-by-step guidance on how to reliably measure them. We advise on best practices for using gas exchange equipment and highlight potential pitfalls in experimental design and data interpretation. The Supporting Information contains exemplary data sets, experimental protocols and data-modelling routines. This review is a community effort to equip both the experimental researcher and the data modeller with a solid understanding of the theoretical basis of gas-exchange measurements, the rationale behind different experimental protocols and the approaches to data interpretation.


Asunto(s)
Fotosíntesis , Fotosíntesis/fisiología , Hojas de la Planta/fisiología , Hojas de la Planta/metabolismo , Dióxido de Carbono/metabolismo , Plantas/metabolismo
4.
Methods Mol Biol ; 2790: 41-61, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38649565

RESUMEN

Leaf-level gas exchange enables insights into the physiology and in vivo biochemical processes of plants. Advances in infrared gas analysis have resulted in user-friendly off-the-shelf gas exchange systems that allow researchers to collect physiological measurements with the push of a few buttons. Here, I describe how to set up the gas exchange equipment, what to pay attention to while making measurements, and provide some guidelines on how to analyze and interpret the data obtained.


Asunto(s)
Fotosíntesis , Hojas de la Planta , Hojas de la Planta/metabolismo , Embryophyta , Dióxido de Carbono/metabolismo , Dióxido de Carbono/análisis , Gases/metabolismo
5.
Methods Mol Biol ; 2790: 1-26, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38649563

RESUMEN

Measurements of in vivo photosynthesis are powerful tools that probe the largest fluxes of carbon and energy in an illuminated leaf, but often the specific techniques used are so varied and specialized that it is difficult for researchers outside the field to select and perform the most useful assays for their research questions. The goal of this chapter is to provide a broad overview of the current tools available for the study of photosynthesis, both in vivo and in vitro, so as to provide a foundation for selecting appropriate techniques, many of which are presented in detail in subsequent chapters. This chapter will also organize current methods into a comparative framework and provide examples of how they have been applied to research questions of broad agronomical, ecological, or biological importance. This chapter closes with an argument that the future of in vivo measurements of photosynthesis lies in the ability to use multiple methods simultaneously and discusses the benefits of this approach to currently open physiological questions. This chapter, combined with the relevant methods chapters, could serve as a laboratory course in methods in photosynthesis research or as part of a more comprehensive laboratory course in general plant physiology methods.


Asunto(s)
Fotosíntesis , Hojas de la Planta/metabolismo , Hojas de la Planta/fisiología , Plantas/metabolismo , Clorofila/metabolismo , Dióxido de Carbono/metabolismo , Dióxido de Carbono/análisis
6.
Methods Mol Biol ; 2790: 163-211, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38649572

RESUMEN

Stable carbon isotopes are a powerful tool to study photosynthesis. Initial applications consisted of determining isotope ratios of plant biomass using mass spectrometry. Subsequently, theoretical models relating C isotope values to gas exchange characteristics were introduced and tested against instantaneous online measurements of 13C photosynthetic discrimination. Beginning in the twenty-first century, laser absorption spectroscopes with sufficient precision for determining isotope mixing ratios became commercially available. This has allowed collection of large data sets at lower cost and with unprecedented temporal resolution. More data and accompanying knowledge have permitted refinement of 13C discrimination model equations, but often at the expense of increased model complexity and difficult parametrization. This chapter describes instantaneous online measurements of 13C photosynthetic discrimination, provides recommendations for experimental setup, and presents a thorough compilation of equations available to researchers. We update our previous 2018 version of this chapter by including recently improved descriptions of (photo)respiratory processes and associated fractionations. We discuss the capabilities and limitations of the diverse 13C discrimination model equations and provide guidance for selecting the model complexity needed for different applications.


Asunto(s)
Isótopos de Carbono , Fotosíntesis , Modelos Biológicos , Dióxido de Carbono/metabolismo , Plantas/metabolismo
7.
J Am Soc Mass Spectrom ; 35(6): 1292-1300, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38662593

RESUMEN

Endogenous antibodies, or immunoglobulins (Igs), abundantly present in body fluids, represent some of the most challenging samples to analyze, largely due to the immense variability in their sequences and concentrations. It has been estimated that our body can produce billions of different Ig proteins with different isotypes, making their individual analysis seemingly impossible. However, recent advances in protein-centric proteomics using LC-MS coupled to Orbitrap mass analyzers to profile intact Fab fragments formed by selective cleavage at the IgG-hinge revealed that IgG repertoires may be less diverse, albeit unique for each donor. Serum repertoires seem to be dominated by a few hundred clones that cumulatively make up 50-95% of the total IgG content. Enabling such analyses required careful optimization of the chromatography and mass analysis, as all Fab analytes are highly alike in mass (46-51 kDa) and sequence. To extend the opportunities of this mass-spectrometry-based profiling of antibody repertoires, we here report the optimization and evaluation of an alternative MS platform, namely, the timsTOF, for antibody repertoire profiling. The timsTOF mass analyzer has gained traction in recent years for peptide-centric proteomics and found wide applicability in plasma proteomics, affinity proteomics, and HLA peptidomics, to name a few. However, for protein-centric analysis, this platform has been less explored. Here, we demonstrate that the timsTOF platform can be adapted to perform protein-centric LC-MS-based profiling of antibody repertoires. In a side-by-side comparison of the timsTOF and the Orbitrap we demonstrate that the extracted serum antibody repertoires are alike qualitatively and quantitatively, whereby in particular the sensitivity of the timsTOF platform excels. Future incorporation of advanced top-down capabilities on the timsTOF may make this platform a very valuable alternative for protein-centric proteomics and top-down proteomics and thus also for personalized antibody repertoire profiling.


Asunto(s)
Fragmentos Fab de Inmunoglobulinas , Espectrometría de Masas , Proteómica , Humanos , Fragmentos Fab de Inmunoglobulinas/química , Fragmentos Fab de Inmunoglobulinas/análisis , Fragmentos Fab de Inmunoglobulinas/sangre , Cromatografía Liquida/métodos , Proteómica/métodos , Espectrometría de Masas/métodos , Inmunoglobulina G/sangre , Inmunoglobulina G/química , Inmunoglobulina G/análisis , Medicina de Precisión/métodos , Cromatografía Líquida con Espectrometría de Masas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA