Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
Más filtros

Intervalo de año de publicación
1.
BMC Biol ; 22(1): 142, 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38926759

RESUMEN

BACKGROUND: The VPS50 protein functions in synaptic and dense core vesicle acidification, and perturbations of VPS50 function produce behavioral changes in Caenorhabditis elegans. Patients with mutations in VPS50 show severe developmental delay and intellectual disability, characteristics that have been associated with autism spectrum disorders (ASDs). The mechanisms that link VPS50 mutations to ASD are unknown. RESULTS: To examine the role of VPS50 in mammalian brain function and behavior, we used the CRISPR/Cas9 system to generate knockouts of VPS50 in both cultured murine cortical neurons and living mice. In cultured neurons, KO of VPS50 did not affect the number of synaptic vesicles but did cause mislocalization of the V-ATPase V1 domain pump and impaired synaptic activity, likely as a consequence of defects in vesicle acidification and vesicle content. In mice, mosaic KO of VPS50 in the hippocampus altered synaptic transmission and plasticity and generated robust cognitive impairments. CONCLUSIONS: We propose that VPS50 functions as an accessory protein to aid the recruitment of the V-ATPase V1 domain to synaptic vesicles and in that way plays a crucial role in controlling synaptic vesicle acidification. Understanding the mechanisms controlling behaviors and synaptic function in ASD-associated mutations is pivotal for the development of targeted interventions, which may open new avenues for therapeutic strategies aimed at ASD and related conditions.


Asunto(s)
Ratones Noqueados , Vesículas Sinápticas , Animales , Ratones , Vesículas Sinápticas/metabolismo , ATPasas de Translocación de Protón Vacuolares/metabolismo , ATPasas de Translocación de Protón Vacuolares/genética , Transmisión Sináptica , Encéfalo/metabolismo , Conducta Animal/fisiología , Sinapsis/metabolismo , Sinapsis/fisiología , Neuronas/metabolismo , Neuronas/fisiología , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo
2.
BMC Biol ; 21(1): 232, 2023 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-37957716

RESUMEN

BACKGROUND: Copy number variations, and particularly duplications of genomic regions, have been strongly associated with various neurodegenerative conditions including autism spectrum disorder (ASD). These genetic variations have been found to have a significant impact on brain development and function, which can lead to the emergence of neurological and behavioral symptoms. Developing strategies to target these genomic duplications has been challenging, as the presence of endogenous copies of the duplicate genes often complicates the editing strategies. RESULTS: Using the ASD and anxiety mouse model Flailer, which contains a partial genomic duplication working as a dominant negative for MyoVa, we demonstrate the use of DN-CRISPRs to remove a 700 bp genomic region in vitro and in vivo. Importantly, DN-CRISPRs have not been used to remove genomic regions using sgRNA with an offset greater than 300 bp. We found that editing the flailer gene in primary cortical neurons reverts synaptic transport and transmission defects. Moreover, long-term depression (LTD), disrupted in Flailer animals, is recovered after gene editing. Delivery of DN-CRISPRs in vivo shows that local delivery to the ventral hippocampus can rescue some of the mutant behaviors, while intracerebroventricular delivery, completely recovers the Flailer animal phenotype associated to anxiety and ASD. CONCLUSIONS: Our results demonstrate the potential of DN-CRISPR to efficiently remove larger genomic duplications, working as a new gene therapy approach for treating neurodegenerative diseases.


Asunto(s)
Trastorno del Espectro Autista , Ratones , Animales , Trastorno del Espectro Autista/genética , Variaciones en el Número de Copia de ADN , ARN Guía de Sistemas CRISPR-Cas , Transmisión Sináptica/genética , Genómica
3.
J Virol ; 95(15): e0017021, 2021 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-33980598

RESUMEN

Murine leukemia virus (MLV) requires the infected cell to divide to access the nucleus to integrate into the host genome. It has been determined that MLV uses the microtubule and actin network to reach the nucleus at the early stages of infection. Several studies have shown that viruses use the dynein motor protein associated with microtubules for their displacement. We have previously reported that dynein light-chain roadblock type 2 (Dynlrb2) knockdown significantly decreases MLV infection compared to nonsilenced cells, suggesting a functional association between this dynein light chain and MLV preintegration complex (PIC). In this study, we aimed to determine if the dynein complex Dynlrb2 subunit plays an essential role in the retrograde transport of MLV. For this, an MLV mutant containing the green fluorescent protein (GFP) fused to the viral protein p12 was used to assay the PIC localization and speed in cells in which the expression of Dynlrb2 was modulated. We found a significant decrease in the arrival of MLV PIC to the nucleus and a reduced net speed of MLV PICs when Dynlrb2 was knocked down. In contrast, an increase in nuclear localization was observed when Dynlrb2 was overexpressed. Our results suggest that Dynlrb2 plays an essential role in MLV retrograde transport. IMPORTANCE Different viruses use different components of cytoplasmic dynein complex to traffic to their replication site. We have found that murine leukemia virus (MLV) depends on dynein light-chain Dynlrb2 for infection, retrograde traffic, and nuclear entry. Our study provides new information regarding the molecular requirements for retrograde transport of MLV preintegration complex and demonstrates the essential role of Dynlrb2 in MLV infection.


Asunto(s)
Transporte Activo de Núcleo Celular/fisiología , Dineínas Citoplasmáticas/genética , Dineínas/metabolismo , Virus de la Leucemia Murina/crecimiento & desarrollo , Replicación Viral/genética , Células 3T3 , Transporte Activo de Núcleo Celular/genética , Animales , Línea Celular , Núcleo Celular/virología , Dineínas/genética , Productos del Gen gag/genética , Células HEK293 , Interacciones Huésped-Patógeno/fisiología , Humanos , Ratones , Microtúbulos/metabolismo
4.
Molecules ; 27(18)2022 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-36144683

RESUMEN

Starch is a biocompatible and economical biopolymer in which interest has been shown in obtaining electrospun fibers. This research reports that cassava (CEX) and pea (PEX) starches pretreated by means of reactive extrusion (REX) improved the starches rheological properties and the availability of amylose to obtain fibers. Solutions of CEX and PEX (30-36% w/v) in 38% v/v formic acid were prepared and the rheological properties and electrospinability were studied. The rheological values indicated that to obtain continuous fibers without beads, the entanglement concentration (Ce) must be 1.20 and 1.25 times the concentration of CEX and PEX, respectively. In CEX, a higher amylose content and lower viscosity were obtained than in PEX, which resulted in a greater range of concentrations (32-36% w/v) to obtain continuous fibers without beads with average diameters ranging from 316 ± 65 nm to 394 ± 102 nm. In PEX, continuous fibers without beads were obtained only at 34% w/v with an average diameter of 170 ± 49 nm. This study showed that starches (20-35% amylose) pretreated through REX exhibited electrospinning properties to obtain fibers, opening the opportunity to expand their use in food, environmental, biosensor, and biomedical applications, as vehicles for the administration of bioactive compounds.


Asunto(s)
Manihot , Amilosa , Pisum sativum , Almidón , Viscosidad
5.
Molecules ; 27(11)2022 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-35684467

RESUMEN

Starch is the most abundant carbohydrate in legumes (22-45 g/100 g), with distinctive properties such as high amylose and resistant starch content, longer branch chains of amylopectin, and a C-type pattern arrangement in the granules. The present study concentrated on the investigation of hydrolyzed faba bean starch using acid, assisted by microwave energy, to obtain a possible food-grade coating material. For evaluation, the physicochemical, morphological, pasting, and structural properties were analyzed. Hydrolyzed starches developed by microwave energy in an acid medium had low viscosity, high solubility indexes, diverse amylose contents, resistant starch, and desirable thermal and structural properties to be used as a coating material. The severe conditions (moisture, 40%; pure hydrochloric acid, 4 mL/100 mL; time, 60 s; and power level, 6) of microwave-treated starches resulted in low viscosity values, high amylose content and high solubility, as well as high absorption indexes, and reducing sugars. These hydrolyzed starches have the potential to produce matrices with thermo-protectants to formulate prebiotic/probiotic (symbiotic) combinations and amylose-based inclusion complexes for functional compound delivery. This emergent technology, a dry hydrolysis route, uses much less energy consumption in a shorter reaction time and without effluents to the environment compared to conventional hydrolysis.


Asunto(s)
Almidón , Vicia faba , Amilosa/química , Hidrólisis , Microondas , Almidón Resistente , Almidón/química , Viscosidad
6.
J Cell Biochem ; 122(3-4): 367-384, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33135214

RESUMEN

Accumulating evidence indicates that epigenetic control of gene expression plays a significant role during cell lineage commitment and subsequent cell fate maintenance. Here, we assess epigenetic mechanisms operating in the rat brain that mediate silencing of genes that are expressed during early and late stages of osteogenesis. We report that repression of the osteoblast master regulator Sp7 in embryonic (E18) hippocampus is mainly mediated through the Polycomb complex PRC2 and its enzymatic product H3K27me3. During early postnatal (P10), juvenile (P30), and adult (P90) hippocampal stages, the repressive H3K27me3 mark is progressively replaced by nucleosome enrichment and increased CpG DNA methylation at the Sp7 gene promoter. In contrast, silencing of the late bone phenotypic Bglap gene in the hippocampus is PRC2-independent and accompanied by strong CpG methylation from E18 through postnatal and adult stages. Forced ectopic expression of the primary master regulator of osteogenesis Runx2 in embryonic hippocampal neurons activates the expression of its downstream target Sp7 gene. Moreover, transcriptomic analyses show that several genes associated with the mesenchymal-osteogenic lineages are transcriptionally activated in these hippocampal cells that express Runx2 and Sp7. This effect is accompanied by a loss in neuronal properties, including a significant reduction in secondary processes at the dendritic arbor and reduced expression of critical postsynaptic genes like PSD95. Together, our results reveal a developmental progression in epigenetic control mechanisms that repress the expression of the osteogenic program in hippocampal neurons at embryonic, postnatal, and adult stages.


Asunto(s)
Subunidad alfa 1 del Factor de Unión al Sitio Principal/metabolismo , Epigénesis Genética/genética , Hipocampo/metabolismo , Osteoblastos/metabolismo , Regiones Promotoras Genéticas/genética , Factores de Transcripción/metabolismo , Acetilación , Animales , Western Blotting , Células Cultivadas , Inmunoprecipitación de Cromatina , Subunidad alfa 1 del Factor de Unión al Sitio Principal/genética , Metilación de ADN/genética , Metilación de ADN/fisiología , Femenino , Masculino , Microscopía Fluorescente , Ratas , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Factores de Transcripción/genética
7.
EMBO J ; 35(8): 845-65, 2016 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-26869642

RESUMEN

Disturbance of endoplasmic reticulum (ER) proteostasis is a common feature of amyotrophic lateral sclerosis (ALS). Protein disulfide isomerases (PDIs) areERfoldases identified as possibleALSbiomarkers, as well as neuroprotective factors. However, no functional studies have addressed their impact on the disease process. Here, we functionally characterized fourALS-linked mutations recently identified in two majorPDIgenes,PDIA1 andPDIA3/ERp57. Phenotypic screening in zebrafish revealed that the expression of thesePDIvariants induce motor defects associated with a disruption of motoneuron connectivity. Similarly, the expression of mutantPDIs impaired dendritic outgrowth in motoneuron cell culture models. Cellular and biochemical studies identified distinct molecular defects underlying the pathogenicity of thesePDImutants. Finally, targetingERp57 in the nervous system led to severe motor dysfunction in mice associated with a loss of neuromuscular synapses. This study identifiesERproteostasis imbalance as a risk factor forALS, driving initial stages of the disease.


Asunto(s)
Esclerosis Amiotrófica Lateral/genética , Neuronas Motoras/patología , Procolágeno-Prolina Dioxigenasa/genética , Proteína Disulfuro Isomerasas/genética , Esclerosis Amiotrófica Lateral/patología , Animales , Animales Modificados Genéticamente , Electromiografía , Embrión no Mamífero , Estrés del Retículo Endoplásmico/genética , Humanos , Ratones Noqueados , Mutación , Neuritas/patología , Procolágeno-Prolina Dioxigenasa/metabolismo , Proteína Disulfuro Isomerasas/metabolismo , Pez Cebra/embriología , Pez Cebra/genética
8.
Int J Mol Sci ; 21(22)2020 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-33187138

RESUMEN

Ezh2 is a catalytic subunit of the polycomb repressive complex 2 (PRC2) which mediates epigenetic gene silencing through depositing the mark histone H3 lysine 27 trimethylation (H3K27me3) at target genomic sequences. Previous studies have demonstrated that Enhancer of Zeste Homolog 2 (Ezh2) was differentially expressed during maturation of hippocampal neurons; in immature neurons, Ezh2 was abundantly expressed, whereas in mature neurons the expression Ezh2 was significantly reduced. Here, we report that Ezh2 is downregulated by microRNAs (miRs) that are expressed during the hippocampal maturation process. We show that, in mature hippocampal neurons, lethal-7 (let-7) and microRNA-124 (miR-124) are robustly expressed and can target cognate motifs at the 3'-UTR of the Ezh2 gene sequence to downregulate Ezh2 expression. Together, these data demonstrate that the PRC2 repressive activity during hippocampal maturation is controlled through a post-transcriptional mechanism that mediates Ezh2 downregulation in mature neurons.


Asunto(s)
Regulación hacia Abajo/genética , Proteína Potenciadora del Homólogo Zeste 2/genética , Hipocampo/fisiología , MicroARNs/genética , Neuronas/fisiología , Regiones no Traducidas 3'/genética , Animales , Línea Celular , Epigénesis Genética/genética , Femenino , Células HEK293 , Histonas/genética , Humanos , Complejo Represivo Polycomb 2/genética , Embarazo , Interferencia de ARN/fisiología , Ratas , Ratas Sprague-Dawley
9.
J Cell Physiol ; 234(5): 6244-6253, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30256410

RESUMEN

Expression of Runx2/p57 is a hallmark of the osteoblast-lineage identity. Although several regulators that control the expression of Runx2/p57 during osteoblast-lineage commitment have been identified, the epigenetic mechanisms that sustain this expression in differentiated osteoblasts remain to be completely determined. Here, we assess epigenetic mechanisms associated with Runx2/p57 gene transcription in differentiating MC3T3 mouse osteoblasts. Our results show that an enrichment of activating histone marks at the Runx2/p57 P1 promoter is accompanied by the simultaneous interaction of Wdr5 and Utx proteins, both are components of COMPASS complexes. Knockdown of Wdr5 and Utx expression confirms the activating role of both proteins at the Runx2-P1 promoter. Other chromatin modifiers that were previously described to regulate Runx2/p57 transcription in mesenchymal precursor cells (Ezh2, Prmt5, and Jarid1b proteins) were not found to contribute to Runx2/p57 transcription in full-committed osteoblasts. We also determined the presence of additional components of COMPASS complexes at the Runx2/p57 promoter, evidencing that the Mll2/COMPASS- and Mll3/COMPASS-like complexes bind to the P1 promoter in osteoblastic cells expressing Runx2/p57 to modulate the H3K4me1 to H3K4me3 transition.


Asunto(s)
Subunidad alfa 1 del Factor de Unión al Sitio Principal/genética , Histona Demetilasas/genética , Histonas/genética , Péptidos y Proteínas de Señalización Intracelular/genética , Osteoblastos/metabolismo , Células 3T3 , Animales , Diferenciación Celular/fisiología , Subunidad alfa 1 del Factor de Unión al Sitio Principal/metabolismo , Epigénesis Genética/genética , Regulación de la Expresión Génica/fisiología , Histona Demetilasas/metabolismo , Histonas/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Ratones , Osteoblastos/citología , Transcripción Genética
10.
Tumour Biol ; 41(5): 1010428319851014, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-31109257

RESUMEN

Lung cancer has a high mortality rate in men and women worldwide. Approximately 15% of diagnosed patients with this type of cancer do not exceed the 5-year survival rate. Unfortunately, diagnosis is established in advanced stages, where other tissues or organs can be affected. In recent years, lineage-specific transcription factors have been associated with a variety of cancers. One such transcription factor possibly regulating cancer is RUNX2, the master gene of early and late osteogenesis. In thyroid and prostate cancer, it has been reported that RUNX2 regulates expression of genes important in tumor cell migration and invasion. In this study, we report on RUNX2/ p57 overexpression in 16 patients with primary non-small cell lung cancer and/or metastatic lung cancer associated with H3K27Ac at P1 gene promoter region. In some patients, H3K4Me3 enrichment was also detected, in addition to WDR5, MLL2, MLL4, and UTX enzyme recruitment, members of the COMPASS-LIKE complex. Moreover, transforming growth factor-ß induced RUNX2/ p57 overexpression and specific RUNX2 knockdown supported a role for RUNX2 in epithelial mesenchymal transition, which was demonstrated through loss of function assays in adenocarcinoma A549 lung cancer cell line. Furthermore, RUNX2 increased expression of epithelial mesenchymal transition genes VIMENTIN, TWIST1, and SNAIL1, which reflected increased migratory capacity in lung adenocarcinoma cells.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/secundario , Subunidad alfa 1 del Factor de Unión al Sitio Principal/metabolismo , Epigénesis Genética , Transición Epitelial-Mesenquimal , Neoplasias Pulmonares/patología , Regiones Promotoras Genéticas , Adulto , Anciano , Anciano de 80 o más Años , Apoptosis , Biomarcadores de Tumor/genética , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Estudios de Casos y Controles , Movimiento Celular , Proliferación Celular , Subunidad alfa 1 del Factor de Unión al Sitio Principal/genética , Femenino , Estudios de Seguimiento , Regulación Neoplásica de la Expresión Génica , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Masculino , Persona de Mediana Edad , Invasividad Neoplásica , Pronóstico , Células Tumorales Cultivadas
11.
Food Technol Biotechnol ; 57(3): 341-349, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31866747

RESUMEN

Phenolic compounds with antioxidant properties are highly sensitive molecules, which limits their application. In response, extruded esterified starch has been proposed as efficient encapsulating material. In this work, we aim to describe the encapsulation of red sorghum phenolic compounds by spray drying using extruded phosphorylated, acetylated and double esterified sorghum starch as wall material. Their respective encapsulation yields were 77.4, 67.4 and 56.8%, and encapsulation efficiency 91.4, 89.7 and 84.6%. Degree of substitution confirmed esterification of the sorghum starch and Fourier transform infrared spectroscopy showed the significant chemical and structural changes in the extruded esterified starch loaded with phenolic compounds. Microcapsules from phosphorylated sorghum starch showed the highest endothermic transition (173.89 °C) and provided a greater protection of the phenolic compounds during storage at 60 °C for 35 days than the other wall materials. Extruded esterified sorghum starch proved to be effective material for the protection of phenolic compounds due to its high encapsulation efficiency and stability during storage.

12.
Plant Foods Hum Nutr ; 74(2): 241-246, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31001726

RESUMEN

This study aimed at evaluating the effect of high-energy milling (HEM) and traditional nixtamalization (TN) on bioactive compounds and antioxidant capacity in nixtamalized creole corn flours obtained from a maize genotype cultivated under rainy temporal conditions in the Mexican semidesert. Four creole grains, including San José de Gracia white and blue (WG and BG), Negritas (NG), and Ahualulco white corn grains (SG), were used. For HEM nixtamalization, corn grains were hammer-milled; then, two different conditions were evaluated: treatment H1, with raw flours with 14% moisture content and 1.1% Ca(OH)2, and treatment H2, with raw corn flours with a 23% moisture content and 1.4% Ca(OH)2. The TN process was utilized as a control. TN recorded significant losses in luminosity value L* (p < 0.05), while HEM nixtamalized blue corn flours remained close to -b* values, that is, near to those of raw flour. Anthocyanin content showed higher content values in HEM treatments compared with TN (759.55 and 252.53 mg cyanidin 3-O-ß-D-glucoside (C3G)/kg, respectively) (p < 0.05). Total soluble phenolic content was higher in HEM nixtamalization compared with the traditional process, except for WH2 and SH2 (H2 treatment for WG and SG). Two redundant radical scavenging assays were used: antioxidant capacity (DPPH assay) exhibited less value in nixtamalized flours than in raw flour (p < 0.05). Antioxidant activity by (ABTS) assay was higher in HEM than in TN. Nixtamalized flours produced by HEM demonstrated more improvement in nutraceutical properties than those produced employing TN.


Asunto(s)
Antioxidantes/metabolismo , Manipulación de Alimentos/métodos , Fitoquímicos/metabolismo , Zea mays/química , Antocianinas/análisis , Antocianinas/metabolismo , Antioxidantes/análisis , Suplementos Dietéticos , Grano Comestible/química , Harina/análisis , México , Fenoles/análisis , Fenoles/metabolismo , Fitoquímicos/análisis
13.
J Food Sci Technol ; 56(8): 3940-3950, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31413419

RESUMEN

Starch chemical modification can be used in order to obtain modified starches (MS) with low affinity to water. Acetylated and succinylated starches whose applications as food ingredient depend upon their degree of substitution (DS) may be produced by esterifying starch through the extrusion process (EP). The Food and Drug Administration recommends a DS of 0.2 and 0.05 for acetylated and succinylated starches, respectively. The objective of this study was to find mathematical models to obtain the optimum values of DS, Water absorption Index (WAI) and Water Solubility Index (WSI) for MS with safe-for-food-use DS and low affinity to water, modifying the starches by acetylation and succinylation using EP. The process variables were Barrel Temperature (BT, 80-160 °C), Screw Speed (SS, 100-200 rpm) and Reactant Concentration (RC, Acetylation, 0-13% and Succinylation, 0-3%). The best conditions to obtain acetylated starches were RC = 7.88%, BT = 80 °C and SS = 100 rpm, presenting values of DS = 0.2, WAI = 7.67 g/g and WSI = 6.15%. On the other hand, the optimum conditions to obtain succinylated starches were RC = 1.12%, BT = 80 °C and SS = 126 rpm, obtaining values of DS = 0.05, WAI = 3.40 g/g and WSI = 7.92%. These results showed that it is possible to obtain acetylated and succinylated MS with safe-for-food-use levels of DS and with low affinity to water, using EP.

14.
Brain ; 140(12): 3252-3268, 2017 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-29155979

RESUMEN

The Dlg4 gene encodes for post-synaptic density protein 95 (PSD95), a major synaptic protein that clusters glutamate receptors and is critical for plasticity. PSD95 levels are diminished in ageing and neurodegenerative disorders, including Alzheimer's disease and Huntington's disease. The epigenetic mechanisms that (dys)regulate transcription of Dlg4/PSD95, or other plasticity genes, are largely unknown, limiting the development of targeted epigenome therapy. We analysed the Dlg4/PSD95 epigenetic landscape in hippocampal tissue and designed a Dlg4/PSD95 gene-targeting strategy: a Dlg4/PSD95 zinc finger DNA-binding domain was engineered and fused to effector domains to either repress (G9a, Suvdel76, SKD) or activate (VP64) transcription, generating artificial transcription factors or epigenetic editors (methylating H3K9). These epi-editors altered critical histone marks and subsequently Dlg4/PSD95 expression, which, importantly, impacted several hippocampal neuron plasticity processes. Intriguingly, transduction of the artificial transcription factor PSD95-VP64 rescued memory deficits in aged and Alzheimer's disease mice. Conclusively, this work validates PSD95 as a key player in memory and establishes epigenetic editing as a potential therapy to treat human neurological disorders.


Asunto(s)
Enfermedad de Alzheimer/genética , Conducta Animal , Cognición , Homólogo 4 de la Proteína Discs Large/genética , Represión Epigenética , Hipocampo/metabolismo , Memoria , Activación Transcripcional , Enfermedad de Alzheimer/patología , Enfermedad de Alzheimer/fisiopatología , Enfermedad de Alzheimer/psicología , Precursor de Proteína beta-Amiloide/genética , Animales , Modelos Animales de Enfermedad , Epigénesis Genética , Código de Histonas , Humanos , Ratones , Ratones Transgénicos , Ratas , Dedos de Zinc
15.
J Food Sci Technol ; 55(6): 2279-2287, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29892128

RESUMEN

The encapsulation by spray drying of maize anthocyanins was evaluated using two types of wall materials, consisting of normal and waxy maize starch, which were esterified with octenyl succinic anhydride. The X-ray diffraction analysis revealed that SWMS possessed a completely amorphous, while SNMS had a crystalline structure. SNMS showed peaks at 2θ = 13.1°, 19.8° and 22.4°. The results revealed that SNMS and SWMS had almost the same encapsulation productivity (EP); SNMS showed the best performance because its EP was higher (95%) than in SWMS (90%). The stability of microcapsules produced with SNMS showed the highest anthocyanin retention after storage in the water activity (aw) range of 0.11-0.94 at 40 °C.

16.
J Food Sci Technol ; 55(7): 2436-2445, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-30042559

RESUMEN

Betalains of pitaya (Stenocereus pruinosus) fruit can be used as natural pigment, but they are susceptible to deterioration by temperature, pH, and presence of sugars. In this work, a refined extract (Er) of betalains was obtained through aqueous two-phase extraction, which reduced significantly sugar and mucilage contents. In order to favor stability, the encapsulation of the refined extract was evaluated, with native potato starch that was modified through phosphorylation or succinylation and reactive extrusion. Starches were evaluated in terms of degree of substitution, Fourier transform infrared spectroscopy, scanning electron microscopy, and viscous behavior. Microcapsules were formed by spray drying and their stability was evaluated at 40 °C for 39 days and by using them as pigmenting agent of yogurt at 4 °C during 32 days. The behavior of modified starches during encapsulation was superior to that of commercial N-Lok® starch. Microcapsules based on modified starches showed better pigmenting potential and higher stability than Er and microcapsules based on N-Lok® starch. The separation of betalains from pitaya fruit may be a good alternative for adding value to this plant genetic resource.

17.
Biochim Biophys Acta ; 1859(8): 1043-55, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27216774

RESUMEN

During hippocampal neuron differentiation, the expression of critical inducers of non-neuronal cell lineages must be efficiently silenced. Runx2 transcription factor is the master regulator of mesenchymal cells responsible for intramembranous osteoblast differentiation and formation of the craniofacial bone tissue that surrounds and protects the central nervous system (CNS) in mammalian embryos. The molecular mechanisms that mediate silencing of the Runx2 gene and its downstream target osteogenic-related genes in neuronal cells have not been explored. Here, we assess the epigenetic mechanisms that mediate silencing of osteoblast-specific genes in CNS neurons. In particular, we address the contribution of histone epigenetic marks and histone modifiers on the silencing of the Runx2/p57 bone-related isoform in rat hippocampal tissues at embryonic to adult stages. Our results indicate enrichment of repressive chromatin histone marks and of the Polycomb PRC2 complex at the Runx2/p57 promoter region. Knockdown of PRC2 H3K27-methyltransferases Ezh2 and Ezh1, or forced expression of the Trithorax/COMPASS subunit Wdr5 activates Runx2/p57 mRNA expression in both immature and mature hippocampal cells. Together these results indicate that complementary epigenetic mechanisms progressively and efficiently silence critical osteoblastic genes during hippocampal neuron differentiation.


Asunto(s)
Envejecimiento/genética , Subunidad alfa 1 del Factor de Unión al Sitio Principal/genética , Silenciador del Gen , Neuronas/metabolismo , Osteoblastos/metabolismo , Complejo Represivo Polycomb 2/genética , Envejecimiento/metabolismo , Animales , Animales Recién Nacidos , Diferenciación Celular , Cromatina/química , Cromatina/metabolismo , Subunidad alfa 1 del Factor de Unión al Sitio Principal/metabolismo , Inhibidor p57 de las Quinasas Dependientes de la Ciclina/genética , Inhibidor p57 de las Quinasas Dependientes de la Ciclina/metabolismo , Embrión de Mamíferos , Regulación del Desarrollo de la Expresión Génica , Hipocampo/citología , Hipocampo/metabolismo , Histonas/genética , Histonas/metabolismo , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo , Neuronas/citología , Osteoblastos/citología , Osteogénesis/genética , Complejo Represivo Polycomb 2/metabolismo , Cultivo Primario de Células , Ratas , Ratas Sprague-Dawley
18.
J Cell Physiol ; 232(12): 3677-3692, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28160495

RESUMEN

Dendrite arbor growth, or dendritogenesis, is choreographed by a diverse set of cues, including the NMDA receptor (NMDAR) subunits NR2A and NR2B. While NR1NR2B receptors are predominantly expressed in immature neurons and promote plasticity, NR1NR2A receptors are mainly expressed in mature neurons and induce circuit stability. How the different subunits regulate these processes is unclear, but this is likely related to the presence of their distinct C-terminal sequences that couple different signaling proteins. Calcium-calmodulin-dependent protein kinase II (CaMKII) is an interesting candidate as this protein can be activated by calcium influx through NMDARs. CaMKII triggers a series of biochemical signaling cascades, involving the phosphorylation of diverse targets. Among them, the activation of cAMP response element-binding protein (CREB-P) pathway triggers a plasticity-specific transcriptional program through unknown epigenetic mechanisms. Here, we found that dendritogenesis in hippocampal neurons is impaired by several well-characterized constructs (i.e., NR2B-RS/QD) and peptides (i.e., tatCN21) that specifically interfere with the recruitment and interaction of CaMKII with the NR2B C-terminal domain. Interestingly, we found that transduction of NR2AΔIN, a mutant NR2A construct with increased interaction to CaMKII, reactivates dendritogenesis in mature hippocampal neurons in vitro and in vivo. To gain insights into the signaling and epigenetic mechanisms underlying NMDAR-mediated dendritogenesis, we used immunofluorescence staining to detect CREB-P and acetylated lysine 27 of histone H3 (H3K27ac), an activation-associated histone tail mark. In contrast to control mature neurons, our data shows that activation of the NMDAR/CaMKII/ERK-P/CREB-P signaling axis in neurons expressing NR2AΔIN is not correlated with increased nuclear H3K27ac levels.


Asunto(s)
Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Dendritas/enzimología , Hipocampo/enzimología , Histonas/metabolismo , Neurogénesis , Plasticidad Neuronal , Receptores de N-Metil-D-Aspartato/metabolismo , Acetilación , Animales , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/antagonistas & inhibidores , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/genética , Células Cultivadas , Dendritas/efectos de los fármacos , Edad Gestacional , Hipocampo/efectos de los fármacos , Hipocampo/embriología , Mutación , Neurogénesis/efectos de los fármacos , Plasticidad Neuronal/efectos de los fármacos , Péptidos/farmacología , Fenotipo , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Inhibidores de Proteínas Quinasas/farmacología , Procesamiento Proteico-Postraduccional , Interferencia de ARN , Ratas Sprague-Dawley , Receptores de N-Metil-D-Aspartato/genética , Transducción de Señal , Transfección
19.
Clin Transplant ; 31(1)2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27801525

RESUMEN

Complement component 3 (C3) presents both slow (C3S) and fast (C3F) variants, which can be locally produced and activated by immune system cells. We studied C3 recipient variants in 483 liver transplant patients by RT-PCR-HRM to determine their effect on graft outcome during the first year post-transplantation. Allograft survival was significantly decreased in C3FF recipients (C3SS 95% vs C3FS 91% vs C3FF 83%; P=.01) or C3F allele carriers (C3F absence 95% vs C3F presence 90%, P=.02). C3FF genotype or presence of C3F allele independently increased risk for allograft loss (OR: 2.38, P=.005 and OR: 2.66, P=.02, respectively). C3FF genotype was more frequent among patients whose first infection was of viral etiology (C3SS 13% vs C3FS 18% vs C3FF 32%; P=.04) and independently increased risk for post-transplant viral infections (OR: 3.60, P=.008). On the other hand, C3FF and C3F protected from rejection events (OR: 0.54, P=.03 and OR: 0.63, P=.047, respectively). Differences were not observed in hepatitis C virus recurrence or patient survival. In conclusion, we show that, independently from C3 variants produced by donor liver, C3F variant from recipient diminishes allograft survival, increases susceptibility to viral infections, and protects from rejection after transplantation. C3 genotyping of liver recipients may be useful to stratify risk.


Asunto(s)
Complemento C3b/genética , Rechazo de Injerto/prevención & control , Trasplante de Hígado/efectos adversos , Polimorfismo Genético , Donantes de Tejidos , Receptores de Trasplantes , Virosis/etiología , Adolescente , Adulto , Anciano , Biomarcadores/metabolismo , Niño , Preescolar , Femenino , Estudios de Seguimiento , Rechazo de Injerto/etiología , Supervivencia de Injerto , Humanos , Lactante , Recién Nacido , Masculino , Persona de Mediana Edad , Complicaciones Posoperatorias , Pronóstico , Isoformas de Proteínas , Factores de Riesgo , Trasplante Homólogo , Virosis/patología , Adulto Joven
20.
Plant Foods Hum Nutr ; 72(3): 243-249, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28744719

RESUMEN

Resistant starch type IV (RSIV) can be produced by chemical modifications (etherized or esterified) such as conversion, substitution, or cross-linking, which can prevent its digestion by blocking enzyme access and forming atypical linkages. In this research, the effects of barrel temperature (145.86-174.14 °C), the screw speed (42.93-57.07 Hz) and derivatization (esterification) in the formation of RSIV content of directly expanded snacks (second generation snacks) were studied. Potato starch was chemically modified by phosphorylation and succinylation, and expanded by using the extrusion cooking process. Snacks with phosphorylated starch showed expansion index from 2.57 to 3.23, bulk density from 306.19 to 479.00 kg/m3 and RSIV from 43.27 to 55.81%. Snacks with succinylated starch had expansion index from 3.52 to 3.82, bulk density from 99.85 to 134.51 kg/m3 and RSIV from 23.17 to 35.01%. The results found in this work showed that it is possible to manufacture extruded directly expanded snacks (second-generation snacks) such as a ready-to-eat (RTE) with good physicochemical properties and without substantial loss of extrusion functionality, which could bring a healthy benefit due to the presence of RSIV.


Asunto(s)
Manipulación de Alimentos/métodos , Solanum tuberosum/química , Almidón/química , Culinaria , Fosforilación , Bocadillos , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA