Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Angew Chem Int Ed Engl ; 62(30): e202305646, 2023 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-37235528

RESUMEN

Chiral metal-organic frameworks (MOFs) have gained rising attention as ordered nanoporous materials for enantiomer separations, chiral catalysis, and sensing. Among those, chiral MOFs are generally obtained through complex synthetic routes by using a limited choice of reactive chiral organic precursors as the primary linkers or auxiliary ligands. Here, we report a template-controlled synthesis of chiral MOFs from achiral precursors grown on chiral nematic cellulose-derived nanostructured bio-templates. We demonstrate that chiral MOFs, specifically, zeolitic imidazolate framework (ZIF), unc-[Zn(2-MeIm)2 , 2-MeIm=2-methylimidazole], can be grown from regular precursors within nanoporous organized chiral nematic nanocelluloses via directed assembly on twisted bundles of cellulose nanocrystals. The template-grown chiral ZIF possesses tetragonal crystal structure with chiral space group of P41 , which is different from traditional cubic crystal structure of I-43 m for freely grown conventional ZIF-8. The uniaxially compressed dimensions of the unit cell of templated ZIF and crystalline dimensions are signatures of this structure. We observe that the templated chiral ZIF can facilitate the enantiotropic sensing. It shows enantioselective recognition and chiral sensing abilities with a low limit of detection of 39 µM and the corresponding limit of chiral detection of 300 µM for representative chiral amino acid, D- and L- alanine.

2.
Langmuir ; 38(39): 12070-12081, 2022 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-36150123

RESUMEN

Thermo-responsive ionic polymers have the ability to form adaptive and switchable morphologies, which may offer enhanced control in energy storage and catalytic applications. Current thermo-responsive polymers are composed of covalently attached thermo-responsive moieties, restricting their mobility and global dynamic response. Here, we report the synthesis and assembly at the water-air interface of symmetric and asymmetric amphiphilic thermo-responsive branched polymers with weakly ionically bound arms of amine-terminated poly(N-isopropylacrylamide) (PNIPAM) macro-cations. As we observed, symmetric branched polymers formed multimolecular nanosized micellar assemblies, whereas corresponding asymmetric polymers formed large, interconnected worm-like aggregates. Dramatic changes in localized and large-scale chemical composition confirmed the reversible adsorption and desorption of the mobile PNIPAM macro-cations below and above the low critical solution temperature (LCST) and their non-uniform redistribution within polymer monolayer. Increasing the temperature above LCST led to the formation of large interconnected micellar aggregates because of the micelle-centered aggregation of the hydrophobized PNIPAM macro-cationic terminal chains in the aqueous subphase. Overall, this work provides insights into the dynamic nature of the chemical composition of branched ionic polymers with weakly ionically bound thermo-responsive terminal chains and its effect on both morphology and local/surface chemistry of monolayers at LCST transition.

3.
Adv Mater ; 33(38): e2103329, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34331313

RESUMEN

Real-time active control of the handedness of circularly polarized light emission requires sophisticated manufacturing and structural reconfigurations of inorganic optical components that can rarely be achieved in traditional passive optical structures. Here, robust and flexible emissive optically-doped biophotonic materials that facilitate the dynamic optical activity are reported. These optically active bio-enabled materials with a chiral nematic-like organization of cellulose nanocrystals with intercalated organic dye generated strong circularly polarized photoluminescence with a high asymmetric factor. Reversible phase-shifting of the photochromic molecules intercalated into chiral nematic organization enables alternating circularly polarized light emission with on-demand handedness. Real-time alternating handedness can be triggered by either remote light illumination or changes in the acidic environment. This unique dynamic chiro-optical behavior presents an efficient way to design emissive bio-derived materials for dynamic programmable active photonic materials for optical communication, optical coding, visual protection, and visual adaptation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA