Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Ann N Y Acad Sci ; 1527(1): 49-59, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37534923

RESUMEN

Scientific conferences play an important role in advancing research, scholarship, and the careers of emerging scientists. The COVID-19 pandemic offered meeting organizers and researchers alike an opportunity to reimagine what scientific conferences could look like. Virtual conferences can increase inclusivity and accessibility while decreasing costs and carbon emissions. However, it is generally perceived that the digital world fails to adequately recapitulate many of the benefits of in-person face-to-face interactions; these include socializing, and collaborative environments that can forge new research directions and provide critical career development opportunities. On November 15 and 16, 2022, researchers, representatives from diverse scientific conference organizations, leaders in virtual platform technologies, and innovators in conference design gathered online for the Open Access Keystone eSymposium "Reimagining Scientific Conferences." The meeting focused on how conference organizers can leverage lessons from the pandemic and emerging virtual platforms to engage new audiences, rethink strategies for scientific exchange, and decrease the carbon footprint of in-person events.


Asunto(s)
COVID-19 , Humanos , Pandemias , Conducta Social
2.
Ann N Y Acad Sci ; 1519(1): 153-166, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36382536

RESUMEN

Therapeutic antibodies have broad indications across diverse disease states, such as oncology, autoimmune diseases, and infectious diseases. New research continues to identify antibodies with therapeutic potential as well as methods to improve upon endogenous antibodies and to design antibodies de novo. On April 27-30, 2022, experts in antibody research across academia and industry met for the Keystone symposium "Antibodies as Drugs" to present the state-of-the-art in antibody therapeutics, repertoires and deep learning, bispecific antibodies, and engineering.


Asunto(s)
Anticuerpos Biespecíficos , Humanos , Anticuerpos Biespecíficos/uso terapéutico , Inmunoterapia
3.
Ann N Y Acad Sci ; 1523(1): 38-50, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36960914

RESUMEN

Immunometabolism considers the relationship between metabolism and immunity. Typically, researchers focus on either the metabolic pathways within immune cells that affect their function or the impact of immune cells on systemic metabolism. A more holistic approach that considers both these viewpoints is needed. On September 5-8, 2022, experts in the field of immunometabolism met for the Keystone symposium "Immunometabolism at the Crossroads of Obesity and Cancer" to present recent research across the field of immunometabolism, with the setting of obesity and cancer as an ideal example of the complex interplay between metabolism, immunity, and cancer. Speakers highlighted new insights on the metabolic links between tumor cells and immune cells, with a focus on leveraging unique metabolic vulnerabilities of different cell types in the tumor microenvironment as therapeutic targets and demonstrated the effects of diet, the microbiome, and obesity on immune system function and cancer pathogenesis and therapy. Finally, speakers presented new technologies to interrogate the immune system and uncover novel metabolic pathways important for immunity.


Asunto(s)
Neoplasias , Humanos , Neoplasias/metabolismo , Sistema Inmunológico , Redes y Vías Metabólicas , Obesidad/terapia , Obesidad/metabolismo , Microambiente Tumoral
4.
Ann N Y Acad Sci ; 1521(1): 32-45, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36718537

RESUMEN

Viruses infect millions of people each year. Both endemic viruses circulating throughout the population as well as novel epidemic and pandemic viruses pose ongoing threats to global public health. Developing more effective tools to address viruses requires not only in-depth knowledge of the virus itself but also of our immune system's response to infection. On June 29 to July 2, 2022, researchers met for the Keystone symposium "Viral Immunity: Basic Mechanisms and Therapeutic Applications." This report presents concise summaries from several of the symposium presenters.


Asunto(s)
Gripe Humana , Pandemias , Humanos , Gripe Humana/epidemiología
5.
Ann N Y Acad Sci ; 1522(1): 60-73, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36722473

RESUMEN

Respiratory viruses are a common cause of morbidity and mortality around the world. Viruses like influenza, RSV, and most recently SARS-CoV-2 can rapidly spread through a population, causing acute infection and, in vulnerable populations, severe or chronic disease. Developing effective treatment and prevention strategies often becomes a race against ever-evolving viruses that develop resistance, leaving therapy efficacy either short-lived or relevant for specific viral strains. On June 29 to July 2, 2022, researchers met for the Keystone symposium "Respiratory Viruses: New Frontiers." Researchers presented new insights into viral biology and virus-host interactions to understand the mechanisms of disease and identify novel treatment and prevention approaches that are effective, durable, and broad.


Asunto(s)
COVID-19 , Gripe Humana , Infecciones por Virus Sincitial Respiratorio , Humanos , COVID-19/patología , COVID-19/virología , Interacciones Microbiota-Huesped , Gripe Humana/patología , Gripe Humana/virología , Infecciones por Virus Sincitial Respiratorio/patología , Infecciones por Virus Sincitial Respiratorio/virología , Virus Sincitiales Respiratorios , SARS-CoV-2
6.
Ann N Y Acad Sci ; 1523(1): 24-37, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36961472

RESUMEN

Extracellular vesicles (EVs) are small, lipid-bilayer-bound particles released by cells that can contain important bioactive molecules, including lipids, RNAs, and proteins. Once released in the extracellular environment, EVs can act as messengers locally as well as to distant tissues to coordinate tissue homeostasis and systemic responses. There is a growing interest in not only understanding the physiology of EVs as signaling particles but also leveraging them as minimally invasive diagnostic and prognostic biomarkers (e.g., they can be found in biofluids) and drug-delivery vehicles. On October 30-November 2, 2022, researchers in the EV field convened for the Keystone symposium "Exosomes, Microvesicles, and Other Extracellular Vesicles" to discuss developing standardized language and methodology, new data on the basic biology of EVs and potential clinical utility, as well as novel technologies to isolate and characterize EVs.


Asunto(s)
Micropartículas Derivadas de Células , Exosomas , Vesículas Extracelulares , Humanos , Exosomas/metabolismo , Vesículas Extracelulares/metabolismo , Micropartículas Derivadas de Células/metabolismo , ARN/metabolismo
7.
Ann N Y Acad Sci ; 1521(1): 46-66, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36697369

RESUMEN

Positive-strand RNA viruses have been the cause of several recent outbreaks and epidemics, including the Zika virus epidemic in 2015, the SARS outbreak in 2003, and the ongoing SARS-CoV-2 pandemic. On June 18-22, 2022, researchers focusing on positive-strand RNA viruses met for the Keystone Symposium "Positive-Strand RNA Viruses" to share the latest research in molecular and cell biology, virology, immunology, vaccinology, and antiviral drug development. This report presents concise summaries of the scientific discussions at the symposium.


Asunto(s)
COVID-19 , Infección por el Virus Zika , Virus Zika , Humanos , SARS-CoV-2 , Virus ARN Monocatenarios Positivos , Antivirales/uso terapéutico , Pandemias , Infección por el Virus Zika/epidemiología , Infección por el Virus Zika/prevención & control , Infección por el Virus Zika/tratamiento farmacológico
8.
Ann N Y Acad Sci ; 1524(1): 65-86, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37020354

RESUMEN

The COVID-19 pandemic has taught us many things, among the most important of which is that vaccines are one of the cornerstones of public health that help make modern longevity possible. While several different vaccines have been successful at stemming the morbidity and mortality associated with various infectious diseases, many pathogens/diseases remain recalcitrant to the development of effective vaccination. Recent advances in vaccine technology, immunology, structural biology, and other fields may yet yield insight that will address these diseases; they may also help improve societies' preparedness for future pandemics. On June 1-4, 2022, experts in vaccinology from academia, industry, and government convened for the Keystone symposium "Progress in Vaccine Development for Infectious Diseases" to discuss state-of-the-art technologies, recent advancements in understanding vaccine-mediated immunity, and new aspects of antigen design to aid vaccine effectiveness.


Asunto(s)
COVID-19 , Enfermedades Transmisibles , Vacunas , Humanos , Pandemias/prevención & control , COVID-19/prevención & control , Vacunas/uso terapéutico , Vacunación , Desarrollo de Vacunas
9.
Biochemistry ; 51(11): 2213-23, 2012 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-22372511

RESUMEN

Focal adhesion kinase (FAK), a key regulator of cell adhesion and migration, is overexpressed in many types of cancer. The C-terminal focal adhesion targeting (FAT) domain of FAK is necessary for proper localization of FAK to focal adhesions and subsequent activation. Phosphorylation of Y926 in the FAT domain by the tyrosine kinase Src has been shown to promote metastasis and invasion in vivo by linking the FAT domain to the MAPK pathway via its interaction with growth factor receptor-bound protein 2. Several groups have reported that inherent conformational dynamics in the FAT domain likely regulate phosphorylation of Y926; however, what regulates these dynamics is unknown. In this paper, we demonstrate that there are two sites of in vitro Src-mediated phosphorylation in the FAT domain: Y926, which has been shown to affect FAK function in vivo, and Y1008, which has no known biological role. The phosphorylation of these two tyrosine residues is pH-dependent, but this does not reflect the pH dependence of Src kinase activity. Circular dichroism and nuclear magnetic resonance data indicate that the stability and conformational dynamics of the FAT domain are sensitive to changes in pH over a physiological pH range. In particular, regions of the FAT domain previously shown to regulate phosphorylation of Y926 as well as regions near Y1008 show pH-dependent dynamics on the microsecond to millisecond time scale.


Asunto(s)
Proteína-Tirosina Quinasas de Adhesión Focal/metabolismo , Familia-src Quinasas/metabolismo , Sitios de Unión , Adhesión Celular , Concentración de Iones de Hidrógeno , Fosforilación , Dominios Homologos src
10.
Ann N Y Acad Sci ; 1518(1): 196-208, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36177906

RESUMEN

Complex three-dimensional in vitro organ-like models, or organoids, offer a unique biological tool with distinct advantages over two-dimensional cell culture systems, which can be too simplistic, and animal models, which can be too complex and may fail to recapitulate human physiology and pathology. Significant progress has been made in driving stem cells to differentiate into different organoid types, though several challenges remain. For example, many organoid models suffer from high heterogeneity, and it can be difficult to fully incorporate the complexity of in vivo tissue and organ development to faithfully reproduce human biology. Successfully addressing such limitations would increase the viability of organoids as models for drug development and preclinical testing. On April 3-6, 2022, experts in organoid development and biology convened at the Keystone Symposium "Organoids as Tools for Fundamental Discovery and Translation" to discuss recent advances and insights from this relatively new model system into human development and disease.


Asunto(s)
Modelos Biológicos , Organoides , Animales , Humanos , Organoides/metabolismo , Células Madre , Modelos Animales
11.
Ann N Y Acad Sci ; 1510(1): 79-99, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35000205

RESUMEN

Targeted protein degradation is critical for proper cellular function and development. Protein degradation pathways, such as the ubiquitin proteasomes system, autophagy, and endosome-lysosome pathway, must be tightly regulated to ensure proper elimination of misfolded and aggregated proteins and regulate changing protein levels during cellular differentiation, while ensuring that normal proteins remain unscathed. Protein degradation pathways have also garnered interest as a means to selectively eliminate target proteins that may be difficult to inhibit via other mechanisms. On June 7 and 8, 2021, several experts in protein degradation pathways met virtually for the Keystone eSymposium "Targeting protein degradation: from small molecules to complex organelles." The event brought together researchers working in different protein degradation pathways in an effort to begin to develop a holistic, integrated vision of protein degradation that incorporates all the major pathways to understand how changes in them can lead to disease pathology and, alternatively, how they can be leveraged for novel therapeutics.


Asunto(s)
Complejo de la Endopetidasa Proteasomal , Ubiquitina , Autofagia/fisiología , Humanos , Orgánulos , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteínas/metabolismo , Proteolisis , Ubiquitina/metabolismo
12.
Ann N Y Acad Sci ; 1511(1): 59-86, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35029310

RESUMEN

The rapid development of COVID-19 vaccines was the result of decades of research to establish flexible vaccine platforms and understand pathogens with pandemic potential, as well as several novel changes to the vaccine discovery and development processes that partnered industry and governments. And while vaccines offer the potential to drastically improve global health, low-and-middle-income countries around the world often experience reduced access to vaccines and reduced vaccine efficacy. Addressing these issues will require novel vaccine approaches and platforms, deeper insight how vaccines mediate protection, and innovative trial designs and models. On June 28-30, 2021, experts in vaccine research, development, manufacturing, and deployment met virtually for the Keystone eSymposium "Innovative Vaccine Approaches" to discuss advances in vaccine research and development.


Asunto(s)
COVID-19 , Vacunas contra la Influenza , Vacunas , COVID-19/prevención & control , Vacunas contra la COVID-19/uso terapéutico , Salud Global , Humanos , Pandemias/prevención & control , Vacunas/uso terapéutico
13.
Ann N Y Acad Sci ; 1518(1): 183-195, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36177947

RESUMEN

The ability to engineer complex multicellular systems has enormous potential to inform our understanding of biological processes and disease and alter the drug development process. Engineering living systems to emulate natural processes or to incorporate new functions relies on a detailed understanding of the biochemical, mechanical, and other cues between cells and between cells and their environment that result in the coordinated action of multicellular systems. On April 3-6, 2022, experts in the field met at the Keystone symposium "Engineering Multicellular Living Systems" to discuss recent advances in understanding how cells cooperate within a multicellular system, as well as recent efforts to engineer systems like organ-on-a-chip models, biological robots, and organoids. Given the similarities and common themes, this meeting was held in conjunction with the symposium "Organoids as Tools for Fundamental Discovery and Translation".


Asunto(s)
Ingeniería , Organoides , Humanos , Ingeniería de Tejidos
14.
Ann N Y Acad Sci ; 1518(1): 209-225, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36183296

RESUMEN

The COVID-19 pandemic caught the world largely unprepared, including scientific and policy communities. On April 10-13, 2022, researchers across academia, industry, government, and nonprofit organizations met at the Keystone symposium "Lessons from the Pandemic: Responding to Emerging Zoonotic Viral Diseases" to discuss the successes and challenges of the COVID-19 pandemic and what lessons can be applied moving forward. Speakers focused on experiences not only from the COVID-19 pandemic but also from outbreaks of other pathogens, including the Ebola virus, Lassa virus, and Nipah virus. A general consensus was that investments made during the COVID-19 pandemic in infrastructure, collaborations, laboratory and manufacturing capacity, diagnostics, clinical trial networks, and regulatory enhancements-notably, in low-to-middle income countries-must be maintained and strengthened to enable quick, concerted responses to future threats, especially to zoonotic pathogens.


Asunto(s)
COVID-19 , Ebolavirus , Humanos , Pandemias , COVID-19/epidemiología , Brotes de Enfermedades
15.
Mol Cell Proteomics ; 8(2): 273-86, 2009 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-18838738

RESUMEN

Cross-linking combined with mass spectrometry is an emerging approach for studying protein structure and protein-protein interactions. However, unambiguous mass spectrometric identification of cross-linked peptides derived from proteolytically digested cross-linked proteins is still challenging. Here we describe the use of a novel cross-linker, bimane bisthiopropionic acid N-succinimidyl ester (BiPS), that overcomes many of the challenges associated with other cross-linking reagents. BiPS is distinguished from other cross-linkers by a unique combination of properties: it is photocleavable, fluorescent, homobifunctional, amine-reactive, and isotopically coded. As demonstrated with a model protein complex, RNase S, the fluorescent moiety of BiPS allows for sensitive and specific monitoring of the different cross-linking steps, including detection and isolation of cross-linked proteins by gel electrophoresis, determination of in-gel digestion completion, and fluorescence-based separation of cross-linked peptides by HPLC. The isotopic coding of BiPS results in characteristic ion signal "doublets" in mass spectra, thereby permitting ready detection of cross-linker-containing peptides. Under MALDI-MS conditions, partial photocleavage of the cross-linker occurs, releasing the cross-linked peptides. This allows differentiation between dead-end, intra-, and interpeptide cross-links based on losses of specific mass fragments. It also allows the use of the isotope doublets as mass spectrometric "signatures." A software program was developed that permits automatic cross-link identification and assignment of the cross-link type. Furthermore photocleavage of BiPS assists in cross-link identification by allowing separate tandem mass spectrometry sequencing of each peptide comprising the original cross-link. By combining the use of BiPS with MS, we have provided the first direct evidence for the docking site of a phosphorylated G-protein-coupled receptor C terminus on the multifunctional adaptor protein beta-arrestin, clearly demonstrating the broad potential and application of this novel cross-linker in structural and cellular biology.


Asunto(s)
Reactivos de Enlaces Cruzados/farmacología , Ácidos Hidroxámicos/farmacología , Luz , Proteómica , Secuencia de Aminoácidos , Animales , Arrestinas/química , Arrestinas/metabolismo , Sitios de Unión , Fluorescencia , Ácidos Hidroxámicos/química , Isótopos , Datos de Secuencia Molecular , Fosfopéptidos/química , Fosfopéptidos/metabolismo , Ratas , Receptores de Vasopresinas/química , Receptores de Vasopresinas/metabolismo , Ribonucleasas/química , Ribonucleasas/metabolismo , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , beta-Arrestinas
16.
Ann N Y Acad Sci ; 1484(1): 3-8, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32860255

RESUMEN

Our food systems depend on complex interactions between farmers and food producers, local and federal governments, and consumers. Underlying these interactions are economic, environmental, and societal factors that can impact the types of food available, access to food, affordability, and food safety. The recent SARS-CoV-2 global pandemic has affected multiple aspects of our food systems, from federal governments' decisions to limit food exports, to the ability of government agencies to inspect food and facilities to the ability of consumers to dine at restaurants. It has also provided opportunities for societies to take a close look at the vulnerabilities in our food systems and reinvent them to be more robust and resilient. For the most part, how these changes ultimately affect the safety and accessibility of food around the world remains to be seen.


Asunto(s)
COVID-19 , Inocuidad de los Alimentos , Servicios de Alimentación , Pandemias/economía , SARS-CoV-2 , COVID-19/economía , COVID-19/epidemiología , Congresos como Asunto , Servicios de Alimentación/economía , Servicios de Alimentación/legislación & jurisprudencia , Servicios de Alimentación/organización & administración , Servicios de Alimentación/normas , Humanos
17.
Ann N Y Acad Sci ; 1489(1): 17-29, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33155324

RESUMEN

For years, experts have warned that a global pandemic was only a matter of time. Indeed, over the past two decades, several outbreaks and pandemics, from SARS to Ebola, have tested our ability to respond to a disease threat and provided the opportunity to refine our preparedness systems. However, when a novel coronavirus with human-to-human transmissibility emerged in China in 2019, many of these systems were found lacking. From international disputes over data and resources to individual disagreements over the effectiveness of facemasks, the COVID-19 pandemic has revealed several vulnerabilities. As of early November 2020, the WHO has confirmed over 46 million cases and 1.2 million deaths worldwide. While the world will likely be reeling from the effects of COVID-19 for months, and perhaps years, to come, one key question must be asked, How can we do better next time? This report summarizes views of experts from around the world on how lessons from past pandemics have shaped our current disease preparedness and response efforts, and how the COVID-19 pandemic may offer an opportunity to reinvent public health and healthcare systems to be more robust the next time a major challenge appears.


Asunto(s)
COVID-19/epidemiología , COVID-19/terapia , Atención a la Salud , Pandemias , Salud Pública , Congresos como Asunto , Humanos
18.
Ann N Y Acad Sci ; 1506(1): 18-34, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34341993

RESUMEN

The human circadian system consists of the master clock in the suprachiasmatic nuclei of the hypothalamus as well as in peripheral molecular clocks located in organs throughout the body. This system plays a major role in the temporal organization of biological and physiological processes, such as body temperature, blood pressure, hormone secretion, gene expression, and immune functions, which all manifest consistent diurnal patterns. Many facets of modern life, such as work schedules, travel, and social activities, can lead to sleep/wake and eating schedules that are misaligned relative to the biological clock. This misalignment can disrupt and impair physiological and psychological parameters that may ultimately put people at higher risk for chronic diseases like cancer, cardiovascular disease, and other metabolic disorders. Understanding the mechanisms that regulate sleep circadian rhythms may ultimately lead to insights on behavioral interventions that can lower the risk of these diseases. On February 25, 2021, experts in sleep, circadian rhythms, and chronobiology met virtually for the Keystone eSymposium "Sleep & Circadian Rhythms: Pillars of Health" to discuss the latest research for understanding the bidirectional relationships between sleep, circadian rhythms, and health and disease.


Asunto(s)
Ritmo Circadiano/fisiología , Congresos como Asunto/tendencias , Comidas/fisiología , Informe de Investigación , Sueño/fisiología , Animales , Presión Sanguínea/fisiología , Enfermedades Cardiovasculares/genética , Enfermedades Cardiovasculares/fisiopatología , Enfermedades Cardiovasculares/psicología , Relojes Circadianos/fisiología , Humanos , Comidas/psicología , Neoplasias/genética , Neoplasias/fisiopatología , Neoplasias/psicología , Factores de Riesgo
19.
Ann N Y Acad Sci ; 1506(1): 5-17, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34342000

RESUMEN

Neurodevelopmental neuropsychiatric disorders, such as autism spectrum disorder and schizophrenia, have strong genetic risk components, but the underlying mechanisms have proven difficult to decipher. Rare, high-risk variants may offer an opportunity to delineate the biological mechanisms responsible more clearly for more common idiopathic diseases. Indeed, different rare variants can cause the same behavioral phenotype, demonstrating genetic heterogeneity, while the same rare variant can cause different behavioral phenotypes, demonstrating variable expressivity. These observations suggest convergent underlying biological and neurological mechanisms; identification of these mechanisms may ultimately reveal new therapeutic targets. At the 2021 Keystone eSymposium "Neuropsychiatric and Neurodevelopmental Disorders: Harnessing Rare Variants" a panel of experts in the field described significant progress in genomic discovery and human phenotyping and raised several consistent issues, including the need for detailed natural history studies of rare disorders, the challenges in cohort recruitment, and the importance of viewing phenotypes as quantitative traits that are impacted by rare variants.


Asunto(s)
Congresos como Asunto/tendencias , Variación Genética/genética , Trastornos Mentales/genética , Trastornos del Neurodesarrollo/genética , Penetrancia , Informe de Investigación , Humanos , Trastornos Mentales/diagnóstico , Trastornos Mentales/psicología , Trastornos del Neurodesarrollo/diagnóstico , Trastornos del Neurodesarrollo/psicología
20.
Ann N Y Acad Sci ; 1489(1): 30-47, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33184911

RESUMEN

Cancer immunotherapy has dramatically changed the approach to cancer treatment. The aim of targeting the immune system to recognize and destroy cancer cells has afforded many patients the prospect of achieving deep, long-term remission and potential cures. However, many challenges remain for achieving the goal of effective immunotherapy for all cancer patients. Checkpoint inhibitors have been able to achieve long-term responses in a minority of patients, yet improving response rates with combination therapies increases the possibility of toxicity. Chimeric antigen receptor T cells have demonstrated high response rates in hematological cancers, although most patients experience relapse. In addition, some cancers are notoriously immunologically "cold" and typically are not effective targets for immunotherapy. Overcoming these obstacles will require new strategies to improve upon the efficacy of current agents, identify biomarkers to select appropriate therapies, and discover new modalities to expand the accessibility of immunotherapy to additional tumor types and patient populations.


Asunto(s)
Inmunoterapia Adoptiva , Inmunoterapia/tendencias , Recurrencia Local de Neoplasia/terapia , Neoplasias/terapia , Biomarcadores de Tumor/genética , Vacunas contra el Cáncer/inmunología , Vacunas contra el Cáncer/uso terapéutico , Terapia Combinada , Humanos , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Recurrencia Local de Neoplasia/inmunología , Neoplasias/genética , Neoplasias/inmunología , Neoplasias/patología , Microambiente Tumoral/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA