Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 614(7946): 136-143, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36470303

RESUMEN

The process of cancer immunosurveillance is a mechanism of tumour suppression that can protect the host from cancer development throughout its lifetime1,2. However, it is unknown whether the effectiveness of cancer immunosurveillance fluctuates over a single day. Here we demonstrate that the initial time of day of tumour engraftment dictates the ensuing tumour size across mouse cancer models. Using immunodeficient mice as well as mice lacking lineage-specific circadian functions, we show that dendritic cells (DCs) and CD8+ T cells exert circadian anti-tumour functions that control melanoma volume. Specifically, we find that rhythmic trafficking of DCs to the tumour draining lymph node governs a circadian response of tumour-antigen-specific CD8+ T cells that is dependent on the circadian expression of the co-stimulatory molecule CD80. As a consequence, cancer immunotherapy is more effective when synchronized with DC functions, shows circadian outcomes in mice and suggests similar effects in humans. These data demonstrate that the circadian rhythms of anti-tumour immune components are not only critical for controlling tumour size but can also be of therapeutic relevance.


Asunto(s)
Linfocitos T CD8-positivos , Ritmo Circadiano , Células Dendríticas , Melanoma , Animales , Humanos , Ratones , Linfocitos T CD8-positivos/inmunología , Células Dendríticas/inmunología , Inmunoterapia/métodos , Melanoma/inmunología , Melanoma/patología , Melanoma/terapia , Ratones Endogámicos C57BL , Antígeno B7-1 , Antígenos de Neoplasias/inmunología , Ganglios Linfáticos , Ritmo Circadiano/inmunología
2.
Nature ; 583(7817): 620-624, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32669709

RESUMEN

Approximately 75% of all breast cancers express the oestrogen and/or progesterone receptors. Endocrine therapy is usually effective in these hormone-receptor-positive tumours, but primary and acquired resistance limits its long-term benefit1,2. Here we show that in mouse models of hormone-receptor-positive breast cancer, periodic fasting or a fasting-mimicking diet3-5 enhances the activity of the endocrine therapeutics tamoxifen and fulvestrant by lowering circulating IGF1, insulin and leptin and by inhibiting AKT-mTOR signalling via upregulation of EGR1 and PTEN. When fulvestrant is combined with palbociclib (a cyclin-dependent kinase 4/6 inhibitor), adding periodic cycles of a fasting-mimicking diet promotes long-lasting tumour regression and reverts acquired resistance to drug treatment. Moreover, both fasting and a fasting-mimicking diet prevent tamoxifen-induced endometrial hyperplasia. In patients with hormone-receptor-positive breast cancer receiving oestrogen therapy, cycles of a fasting-mimicking diet cause metabolic changes analogous to those observed in mice, including reduced levels of insulin, leptin and IGF1, with the last two remaining low for extended periods. In mice, these long-lasting effects are associated with long-term anti-cancer activity. These results support further clinical studies of a fasting-mimicking diet as an adjuvant to oestrogen therapy in hormone-receptor-positive breast cancer.


Asunto(s)
Neoplasias de la Mama/dietoterapia , Neoplasias de la Mama/tratamiento farmacológico , Dietoterapia/métodos , Ayuno/fisiología , Fulvestrant/uso terapéutico , Animales , Factores Biológicos/sangre , Neoplasias de la Mama/patología , Dieta Saludable/métodos , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Resistencia a Antineoplásicos/efectos de los fármacos , Proteína 1 de la Respuesta de Crecimiento Precoz/metabolismo , Femenino , Fulvestrant/administración & dosificación , Humanos , Insulina/sangre , Factor I del Crecimiento Similar a la Insulina/metabolismo , Leptina/sangre , Células MCF-7 , Ratones Endogámicos NOD , Ratones SCID , Fosfohidrolasa PTEN/metabolismo , Piperazinas/administración & dosificación , Piperazinas/uso terapéutico , Piridinas/administración & dosificación , Piridinas/uso terapéutico , Receptores de Estrógenos , Receptores de Progesterona , Tamoxifeno/efectos adversos , Tamoxifeno/uso terapéutico , Ensayos Antitumor por Modelo de Xenoinjerto
3.
Int J Mol Sci ; 25(4)2024 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-38396769

RESUMEN

The addiction of tumors to elevated nicotinamide adenine dinucleotide (NAD+) levels is a hallmark of cancer metabolism. Obstructing NAD+ biosynthesis in tumors is a new and promising antineoplastic strategy. Inhibitors developed against nicotinamide phosphoribosyltransferase (NAMPT), the main enzyme in NAD+ production from nicotinamide, elicited robust anticancer activity in preclinical models but not in patients, implying that other NAD+-biosynthetic pathways are also active in tumors and provide sufficient NAD+ amounts despite NAMPT obstruction. Recent studies show that NAD+ biosynthesis through the so-called "Preiss-Handler (PH) pathway", which utilizes nicotinate as a precursor, actively operates in many tumors and accounts for tumor resistance to NAMPT inhibitors. The PH pathway consists of three sequential enzymatic steps that are catalyzed by nicotinate phosphoribosyltransferase (NAPRT), nicotinamide mononucleotide adenylyltransferases (NMNATs), and NAD+ synthetase (NADSYN1). Here, we focus on these enzymes as emerging targets in cancer drug discovery, summarizing their reported inhibitors and describing their current or potential exploitation as anticancer agents. Finally, we also focus on additional NAD+-producing enzymes acting in alternative NAD+-producing routes that could also be relevant in tumors and thus become viable targets for drug discovery.


Asunto(s)
Antineoplásicos , Neoplasias , Niacina , Humanos , NAD/metabolismo , Nicotinamida Fosforribosiltransferasa/metabolismo , Neoplasias/tratamiento farmacológico , Niacinamida/farmacología , Niacinamida/uso terapéutico , Niacinamida/metabolismo , Citocinas/metabolismo , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico
4.
Eur J Clin Invest ; 51(4): e13445, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33131066

RESUMEN

BACKGROUND: The primary aim of the study was determining the validation of the modified 19-item Frailty Index (mFI-19), based on the standard procedure for creating a frailty index scoring in the accumulation deficit theory of Rockwood and comparing it with the gold standard comprehensive geriatric assessment (CGA) in old age patients with hip fracture. As a secondary aim, we compared prognostic accuracies of mFI-19 and CGA in predicting long-term mortality after surgery. MATERIALS AND METHODS: A total of 364 older patients with hip fractures, each a candidate for surgery, were consecutively enrolled. All were subjected to CGA and mFI-19 at baseline and time to death (years from hip surgery) were collected prospectively. RESULTS: Mean patient age was 86.5 (SD: 5.65) years. The most common clinical phenotype (77%) was frail. Both CGA and mFI-19 performed similarly in predicting long-term mortality (Harrell's C-index: 0.66 and 0.68, respectively). CONCLUSIONS: The mFI-19 was validated, compared to the gold standard CGA, based on a systematic process for creating a frailty index in relation to the accumulation deficit. This is one of few prospective studies addressing long-term mortality in older adults with hip fractures, invoking a methodologically robust frailty screening assessment.


Asunto(s)
Fragilidad/diagnóstico , Evaluación Geriátrica , Fracturas de Cadera/terapia , Mortalidad , Anciano , Anciano de 80 o más Años , Femenino , Fragilidad/complicaciones , Fracturas de Cadera/complicaciones , Humanos , Masculino , Pronóstico , Estudios Prospectivos , Tasa de Supervivencia
6.
FASEB J ; 33(3): 3704-3717, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30514106

RESUMEN

Nicotinamide phosphoribosyltransferase (NAMPT) is the rate-limiting enzyme in the NAD+ salvage pathway from nicotinamide. By controlling the biosynthesis of NAD+, NAMPT regulates the activity of NAD+-converting enzymes, such as CD38, poly-ADP-ribose polymerases, and sirtuins (SIRTs). SIRT6 is involved in the regulation of a wide number of metabolic processes. In this study, we investigated the ability of SIRT6 to regulate intracellular NAMPT activity and NAD(P)(H) levels. BxPC-3 cells and MCF-7 cells were engineered to overexpress a catalytically active or a catalytically inactive SIRT6 form or were engineered to silence endogenous SIRT6 expression. In SIRT6-overexpressing cells, NAD(H) levels were up-regulated, as a consequence of NAMPT activation. By immunopurification and incubation with recombinant SIRT6, NAMPT was found to be a direct substrate of SIRT6 deacetylation, with a mechanism that up-regulates NAMPT enzymatic activity. Extracellular NAMPT release was enhanced in SIRT6-silenced cells. Also glucose-6-phosphate dehydrogenase activity and NADPH levels were increased in SIRT6-overexpressing cells. Accordingly, increased SIRT6 levels reduced cancer cell susceptibility to H2O2-induced oxidative stress and to doxorubicin. Our data demonstrate that SIRT6 affects intracellular NAMPT activity, boosts NAD(P)(H) levels, and protects against oxidative stress. The use of SIRT6 inhibitors, together with agents inducing oxidative stress, may represent a promising treatment strategy in cancer.-Sociali, G., Grozio, A., Caffa, I., Schuster, S., Becherini, P., Damonte, P., Sturla, L., Fresia, C., Passalacqua, M., Mazzola, F., Raffaelli, N., Garten, A., Kiess, W., Cea, M., Nencioni, A., Bruzzone, S. SIRT6 deacetylase activity regulates NAMPT activity and NAD(P)(H) pools in cancer cells.


Asunto(s)
Citocinas/metabolismo , NADP/metabolismo , Neoplasias/metabolismo , Nicotinamida Fosforribosiltransferasa/metabolismo , Sirtuinas/metabolismo , Línea Celular , Línea Celular Tumoral , Doxorrubicina/farmacología , Glucosafosfato Deshidrogenasa/metabolismo , Células HEK293 , Células Hep G2 , Humanos , Peróxido de Hidrógeno/farmacología , Células MCF-7 , Neoplasias/tratamiento farmacológico , Estrés Oxidativo/efectos de los fármacos , Estrés Oxidativo/fisiología , Poli(ADP-Ribosa) Polimerasas/metabolismo , Regulación hacia Arriba/efectos de los fármacos , Regulación hacia Arriba/fisiología
7.
Mol Divers ; 24(3): 655-671, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31240519

RESUMEN

Sirtuin 6 (SIRT6) is an NAD+-dependent deacetylase regulating important functions: modulators of its enzymatic activity have been considered as possible therapeutic agents. Besides the deacetylase activity, SIRT6 also has NAD+-dependent deacylase activity, whereby it regulates the secretion of cytokines and proteins. We identified novel SIRT6 modulators with a lysine-based structure: compound 1 enhances SIRT6 deacylase while inhibiting the deacetylase activity. As expected based on the biological effects of SIRT6 deacetylase activity, compound 1 increased histone 3 lysine 9 acetylation and the activity of glycolytic enzymes. Moreover, the fact that compound 1 enhanced SIRT6 deacylase activity was accompanied by an increased TNF-α release. In conclusion, new SIRT6 modulators with a lysine-like structure were identified, with differential effects on specific SIRT6 activities. The novel SIRT6 modulator concomitantly inhibits deacetylase and enhances deacylase activity.


Asunto(s)
Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Lisina/química , Lisina/farmacología , Sirtuinas/antagonistas & inhibidores , Bibliotecas de Moléculas Pequeñas/química , Bibliotecas de Moléculas Pequeñas/farmacología , Diseño de Fármacos , Sirtuinas/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo
8.
FASEB J ; 31(7): 3138-3149, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28386046

RESUMEN

Sirtuin 6 (SIRT6) is a sirtuin family member involved in a wide range of physiologic and disease processes, including cancer and glucose homeostasis. Based on the roles played by SIRT6 in different organs, including its ability to repress the expression of glucose transporters and glycolytic enzymes, inhibiting SIRT6 has been proposed as an approach for treating type 2 diabetes mellitus (T2DM). However, so far, the lack of small-molecule Sirt6 inhibitors has hampered the conduct of in vivo studies to assess the viability of this strategy. We took advantage of a recently identified SIRT6 inhibitor, compound 1, to study the effect of pharmacological Sirt6 inhibition in a mouse model of T2DM (i.e., in high-fat-diet-fed animals). The administration of the Sirt6 inhibitor for 10 d was well tolerated and improved oral glucose tolerance, it increased the expression of the glucose transporters GLUT1 and -4 in the muscle and enhanced the activity of the glycolytic pathway. Sirt6 inhibition also resulted in reduced insulin, triglycerides, and cholesterol levels in plasma. This study represents the first in vivo study of a SIRT6 inhibitor and provides the proof-of-concept that targeting SIRT6 may be a viable strategy for improving glycemic control in T2DM.-Sociali, G., Magnone, M., Ravera, S., Damonte, P., Vigliarolo, T., Von Holtey, M., Vellone, V. G., Millo, E., Caffa, I., Cea, M., Parenti, M. D., Del Rio, A., Murone, M., Mostoslavsky, R., Grozio, A., Nencioni, A., Bruzzone S. Pharmacological Sirt6 inhibition improves glucose tolerance in a type 2 diabetes mouse model.


Asunto(s)
Intolerancia a la Glucosa/metabolismo , Quinazolinonas/farmacología , Sirtuinas/antagonistas & inhibidores , Animales , Glucemia , Supervivencia Celular/efectos de los fármacos , Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Dieta Alta en Grasa , Intolerancia a la Glucosa/genética , Células Hep G2 , Humanos , Insulina/sangre , Masculino , Ratones , Ratones Endogámicos C57BL , Quinazolinonas/química , Sulfonamidas
9.
Bioorg Med Chem Lett ; 26(13): 3192-3194, 2016 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-27161804

RESUMEN

The most frequently used treatment for hormone receptor positive breast cancer in post-menopausal women are aromatase inhibitors. In order to develop new aromatase inhibitors, we designed and synthesized new imidazolylmethylpiperidine sulfonamides using the structure of the previously identified aromatase inhibitor SYN 20028567 as starting lead. By this approach, three new aromatase inhibitors with IC50 values that are similar to that of letrozole and SYN 20028567 were identified.


Asunto(s)
Inhibidores de la Aromatasa/farmacología , Aromatasa/metabolismo , Piperidinas/farmacología , Sulfonamidas/farmacología , Inhibidores de la Aromatasa/síntesis química , Inhibidores de la Aromatasa/química , Relación Dosis-Respuesta a Droga , Humanos , Estructura Molecular , Piperidinas/síntesis química , Piperidinas/química , Relación Estructura-Actividad , Sulfonamidas/síntesis química , Sulfonamidas/química
10.
J Biol Chem ; 289(49): 34189-204, 2014 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-25331943

RESUMEN

Boosting NAD(+) biosynthesis with NAD(+) intermediates has been proposed as a strategy for preventing and treating age-associated diseases, including cancer. However, concerns in this area were raised by observations that nicotinamide phosphoribosyltransferase (NAMPT), a key enzyme in mammalian NAD(+) biosynthesis, is frequently up-regulated in human malignancies, including breast cancer, suggesting possible protumorigenic effects for this protein. We addressed this issue by studying NAMPT expression and function in human breast cancer in vivo and in vitro. Our data indicate that high NAMPT levels are associated with aggressive pathological and molecular features, such as estrogen receptor negativity as well as HER2-enriched and basal-like PAM50 phenotypes. Consistent with these findings, we found that NAMPT overexpression in mammary epithelial cells induced epithelial-to-mesenchymal transition, a morphological and functional switch that confers cancer cells an increased metastatic potential. However, importantly, NAMPT-induced epithelial-to-mesenchymal transition was found to be independent of NAMPT enzymatic activity and of the NAMPT product nicotinamide mononucleotide. Instead, it was mediated by secreted NAMPT through its ability to activate the TGFß signaling pathway via increased TGFß1 production. These findings have implications for the design of therapeutic strategies exploiting NAD(+) biosynthesis via NAMPT in aging and cancer and also suggest the potential of anticancer agents designed to specifically neutralize extracellular NAMPT. Notably, because high levels of circulating NAMPT are found in obese and diabetic patients, our data could also explain the increased predisposition to cancer of these subjects.


Asunto(s)
Neoplasias de la Mama/genética , Citocinas/genética , Transición Epitelial-Mesenquimal/genética , Regulación Neoplásica de la Expresión Génica , Proteínas de Neoplasias/genética , Nicotinamida Fosforribosiltransferasa/genética , Factor de Crecimiento Transformador beta1/genética , Animales , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Línea Celular Tumoral , Proliferación Celular , Citocinas/antagonistas & inhibidores , Citocinas/metabolismo , Femenino , Humanos , NAD/metabolismo , Proteínas de Neoplasias/antagonistas & inhibidores , Proteínas de Neoplasias/metabolismo , Estadificación de Neoplasias , Nicotinamida Fosforribosiltransferasa/antagonistas & inhibidores , Nicotinamida Fosforribosiltransferasa/metabolismo , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Receptor ErbB-2/genética , Receptor ErbB-2/metabolismo , Receptores de Estrógenos/deficiencia , Receptores de Estrógenos/genética , Transducción de Señal , Factor de Crecimiento Transformador beta1/metabolismo
11.
BMC Cancer ; 15: 855, 2015 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-26542945

RESUMEN

BACKGROUND: Nicotinamide phosphoribosyltransferase (NAMPT), the rate-limiting enzyme in NAD(+) biosynthesis from nicotinamide, is one of the major factors regulating cancer cells metabolism and is considered a promising target for treating cancer. The prototypical NAMPT inhibitor FK866 effectively lowers NAD(+) levels in cancer cells, reducing the activity of NAD(+)-dependent enzymes, lowering intracellular ATP, and promoting cell death. RESULTS: We show that FK866 induces a translational arrest in leukemia cells through inhibition of MTOR/4EBP1 signaling and of the initiation factors EIF4E and EIF2A. Specifically, treatment with FK866 is shown to induce 5'AMP-activated protein kinase (AMPK) activation, which, together with EIF2A phosphorylation, is responsible for the inhibition of protein synthesis. Notably, such an effect was also observed in patients' derived primary leukemia cells including T-cell Acute Lymphoblastic Leukemia. Jurkat cells in which AMPK or LKB1 expression was silenced or in which a non-phosphorylatable EIF2A mutant was ectopically expressed showed enhanced sensitivity to the NAMPT inhibitor, confirming a key role for the LKB1-AMPK-EIF2A axis in cell fate determination in response to energetic stress via NAD(+) depletion. CONCLUSIONS: We identified EIF2A phosphorylation as a novel early molecular event occurring in response to NAMPT inhibition and mediating protein synthesis arrest. In addition, our data suggest that tumors exhibiting an impaired LBK1- AMPK- EIF2A response may be especially susceptible to NAMPT inhibitors and thus become an elective indication for this type of agents.


Asunto(s)
Citocinas/antagonistas & inhibidores , Factor 2 Eucariótico de Iniciación/metabolismo , Leucemia/genética , Leucemia/metabolismo , Nicotinamida Fosforribosiltransferasa/antagonistas & inhibidores , Biosíntesis de Proteínas , Estrés Fisiológico/efectos de los fármacos , Proteínas Quinasas Activadas por AMP/metabolismo , Acrilamidas/farmacología , Adenosina Trifosfato/metabolismo , Apoptosis/efectos de los fármacos , Caspasas/metabolismo , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Resistencia a Antineoplásicos , Factor 4E Eucariótico de Iniciación/metabolismo , Humanos , Células Jurkat , NAD/metabolismo , Fosforilación , Piperidinas/farmacología , Transducción de Señal/efectos de los fármacos , Serina-Treonina Quinasas TOR/metabolismo , Transcripción Genética
12.
J Biol Chem ; 288(36): 25938-25949, 2013 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-23880765

RESUMEN

NAD(+) is mainly synthesized in human cells via the "salvage" pathways starting from nicotinamide, nicotinic acid, or nicotinamide riboside (NR). The inhibition with FK866 of the enzyme nicotinamide phosphoribosyltransferase (NAMPT), catalyzing the first reaction in the "salvage" pathway from nicotinamide, showed potent antitumor activity in several preclinical models of solid and hematologic cancers. In the clinical studies performed with FK866, however, no tumor remission was observed. Here we demonstrate that low micromolar concentrations of extracellular NAD(+) or NAD(+) precursors, nicotinamide mononucleotide (NMN) and NR, can reverse the FK866-induced cell death, this representing a plausible explanation for the failure of NAMPT inhibition as an anti-cancer therapy. NMN is a substrate of both ectoenzymes CD38 and CD73, with generation of NAM and NR, respectively. In this study, we investigated the roles of CD38 and CD73 in providing ectocellular NAD(+) precursors for NAD(+) biosynthesis and in modulating cell susceptibility to FK866. By specifically silencing or overexpressing CD38 and CD73, we demonstrated that endogenous CD73 enables, whereas CD38 impairs, the conversion of extracellular NMN to NR as a precursor for intracellular NAD(+) biosynthesis in human cells. Moreover, cell viability in FK866-treated cells supplemented with extracellular NMN was strongly reduced in tumor cells, upon pharmacological inhibition or specific down-regulation of CD73. Thus, our study suggests that genetic or pharmacologic interventions interfering with CD73 activity may prove useful to increase cancer cell sensitivity to NAMPT inhibitors.


Asunto(s)
5'-Nucleotidasa/biosíntesis , Acrilamidas/farmacología , Citocinas/antagonistas & inhibidores , NAD/biosíntesis , Proteínas de Neoplasias/antagonistas & inhibidores , Proteínas de Neoplasias/metabolismo , Neoplasias/tratamiento farmacológico , Nicotinamida Fosforribosiltransferasa/antagonistas & inhibidores , Piperidinas/farmacología , 5'-Nucleotidasa/genética , ADP-Ribosil Ciclasa 1/biosíntesis , ADP-Ribosil Ciclasa 1/genética , Muerte Celular/efectos de los fármacos , Línea Celular Tumoral , Citocinas/genética , Citocinas/metabolismo , Regulación hacia Abajo/efectos de los fármacos , Regulación hacia Abajo/genética , Proteínas Ligadas a GPI/biosíntesis , Proteínas Ligadas a GPI/genética , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Regulación Enzimológica de la Expresión Génica/genética , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/genética , Silenciador del Gen , Humanos , Glicoproteínas de Membrana/biosíntesis , Glicoproteínas de Membrana/genética , NAD/genética , Proteínas de Neoplasias/genética , Neoplasias/enzimología , Neoplasias/genética , Mononucleótido de Nicotinamida/biosíntesis , Mononucleótido de Nicotinamida/genética , Nicotinamida Fosforribosiltransferasa/genética , Nicotinamida Fosforribosiltransferasa/metabolismo
13.
Med Chem ; 2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38333979

RESUMEN

BACKGROUND: During the past two decades, many nicotinamide phosphoribosyltransferase (NAMPT) inhibitors were prepared and tested because this enzyme is overexpressed in pancreatic cancer. Although FK866 is a well-known, strong NAMPT inhibitor, it suffers severe drawbacks. OBJECTIVE: Our work aimed to synthesize efficient NAMPT inhibitors featuring better pharmacokinetic properties than the pyridine-containing FK866. To this aim, the new anticancer agents were based on benzene, pyridazine, or benzothiazole moieties as a cap group instead of the pyridine unit found in FK866 and other NAMPT inhibitors. METHODS: The new compounds, prepared exploiting standard heterocycle chemistry and coupling reactions (e.g., formation of amides, ureas, and cyanoguanidines, copper-mediated azide-alkyne cycloaddition), have been fully characterized using NMR and HRMS analyses. Their activity has been evaluated using cytotoxicity and intracellular NAD depletion assays in the human pancreatic cancer cell line MiaPaCa-2. RESULTS: Among the 14 products obtained, compound 28, bearing a pyridazine unit as the cap group and a thiophene moiety as the tail group, showed 6.7 nanomolar inhibition activity in the intracellular NAD depletion assay and 43 nanomolar inhibition in the MiaPaCa-2 cells cytotoxicity assay, comparable to that observed for FK866. CONCLUSION: The positive results observed for some newly synthesized molecules, particularly those carrying a thiophene unit as a tail group, indicate that they could act as in vivo anti-pancreatic cancer agents.

14.
J Biol Chem ; 287(49): 40924-37, 2012 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-23086953

RESUMEN

Cytokine secretion by cancer cells contributes to cancer-induced symptoms and angiogenesis. Studies show that the sirtuin SIRT6 promotes inflammation by enhancing TNF expression. Here, we aimed to determine whether SIRT6 is involved in conferring an inflammatory phenotype to cancer cells and to define the mechanisms linking SIRT6 to inflammation. We show that SIRT6 enhances the expression of pro-inflammatory cyto-/chemokines, such as IL8 and TNF, and promotes cell migration in pancreatic cancer cells by enhancing Ca(2+) responses. Via its enzymatic activity, SIRT6 increases the intracellular levels of ADP-ribose, an activator of the Ca(2+) channel TRPM2. In turn, TRPM2 and Ca(2+) are shown to be involved in SIRT6-induced TNF and IL8 expression. SIRT6 increases the nuclear levels of the Ca(2+)-dependent transcription factor, nuclear factor of activated T cells (NFAT), and cyclosporin A, a calcineurin inhibitor that reduces NFAT activity, reduces TNF and IL8 expression in SIRT6-overexpressing cells. These results implicate a role for SIRT6 in the synthesis of Ca(2+)-mobilizing second messengers, in the regulation of Ca(2+)-dependent transcription factors, and in the expression of pro-inflammatory, pro-angiogenic, and chemotactic cytokines. SIRT6 inhibition may help combat cancer-induced inflammation, angiogenesis, and metastasis.


Asunto(s)
Calcio/metabolismo , Regulación Enzimológica de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Histona Desacetilasas/metabolismo , NAD/metabolismo , Neoplasias Pancreáticas/metabolismo , Sirtuinas/metabolismo , Animales , Línea Celular Tumoral , Movimiento Celular , Citocinas/metabolismo , Humanos , Inflamación , Interleucina-8/metabolismo , Ratones , FN-kappa B/metabolismo , ARN Interferente Pequeño/metabolismo , Retroviridae/metabolismo , Transducción de Señal , Factor de Necrosis Tumoral alfa/metabolismo
15.
Pharmaceutics ; 15(5)2023 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-37242714

RESUMEN

The nicotinamide phosphoribosyltransferase (NAMPT) is considered a very promising therapeutic target because it is overexpressed in pancreatic cancer. Although many inhibitors have been prepared and tested, clinical trials have shown that NAMPT inhibition may result in severe haematological toxicity. Therefore, the development of conceptually new inhibitors is an important and challenging task. We synthesized ten ß-d-iminoribofuranosides bearing various heterocycle-based chains carbon-linked to the anomeric position starting from non-carbohydrate derivatives. They were then submitted to NAMPT inhibition assays, as well as to pancreatic tumor cells viability and intracellular NAD+ depletion evaluation. The biological activity of the compounds was compared to that of the corresponding analogues lacking the carbohydrate unit to assess, for the first time, the contribution of the iminosugar moiety to the properties of these potential antitumor agents.

16.
Eur J Med Chem ; 250: 115170, 2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36787658

RESUMEN

Cancer cells are highly dependent on Nicotinamide phosphoribosyltransferase (NAMPT) activity for proliferation, therefore NAMPT represents an interesting target for the development of anti-cancer drugs. Several compounds, such as FK866 and CHS828, were identified as potent NAMPT inhibitors with strong anti-cancer activity, although none of them reached the late stages of clinical trials. We present herein the preparation of three libraries of new inhibitors containing (pyridin-3-yl)triazole, (pyridin-3-yl)thiourea and (pyridin-3/4-yl)cyanoguanidine as cap/connecting unit and a furyl group at the tail position of the compound. Antiproliferative activity in vitro was evaluated on a panel of solid and haematological cancer cell lines and most of the synthesized compounds showed nanomolar or sub-nanomolar cytotoxic activity in MiaPaCa-2 (pancreatic cancer), ML2 (acute myeloid leukemia), JRKT (acute lymphobalistic leukemia), NMLW (Burkitt lymphoma), RPMI8226 (multiple myeloma) and NB4 (acute myeloid leukemia), with lower IC50 values than those reported for FK866. Notably, compounds 35a, 39a and 47 showed cytotoxic activity against ML2 with IC50 = 18, 46 and 49 pM, and IC50 towards MiaPaCa-2 of 0.005, 0.455 and 2.81 nM, respectively. Moreover, their role on the NAD+ synthetic pathway was demonstrated by the NAMPT inhibition assay. Finally, the intracellular NAD+ depletion was confirmed in vitro to induced ROS accumulation that cause a time-dependent mitochondrial membrane depolarization, leading to ATP loss and cell death.


Asunto(s)
Antineoplásicos , Neoplasias Hematológicas , Leucemia , Humanos , Nicotinamida Fosforribosiltransferasa/metabolismo , NAD/metabolismo , Línea Celular Tumoral , Citocinas/metabolismo , Antineoplásicos/farmacología , Leucemia/metabolismo , Relación Estructura-Actividad , Neoplasias Hematológicas/tratamiento farmacológico , Inhibidores Enzimáticos/farmacología
17.
Neoplasia ; 41: 100903, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37148658

RESUMEN

Nicotinamide phosphoribosyltransferase (NAMPT) is a key metabolic enzyme in NAD+ synthesis pathways and is found upregulated in several tumors, depicting NAD(H) lowering agents, like the NAMPT inhibitor FK866, as an appealing approach for anticancer therapy. Like other small molecules, FK866 triggers chemoresistance, observed in several cancer cellular models, which can prevent its clinical application. The molecular mechanisms sustaining the acquired of resistance to FK866 were studied in a model of triple negative breast cancer (MDA-MB-231 parental - PAR), exposed to increasing concentrations of the small molecule (MDA-MB-231 resistant - RES). RES cells are not sensitive to verapamil or cyclosporin A, excluding a potential role of increased efflux pumps activity as a mechanism of resistance. Similarly, the silencing of the enzyme Nicotinamide Riboside Kinase 1 (NMRK1) in RES cells does not increase FK866 toxicity, excluding this pathway as a compensatory mechanism of NAD+ production. Instead, Seahorse metabolic analysis revealed an increased mitochondrial spare respiratory capacity in RES cells. These cells presented a higher mitochondrial mass compared to the FK866-sensitive counterparts, as well as an increased consumption of pyruvate and succinate for energy production. Interestingly, co-treatment of PAR cells with FK866 and the mitochondrial pyruvate carrier (MPC) inhibitors UK5099 or rosiglitazone, as well as with the transient silencing of MPC2 but not of MPC1, induces a FK866-resistant phenotype. Taken together, these results unravel novel mechanisms of cell plasticity to counteract FK866 toxicity, that, besides the previously described LDHA dependency, rely on mitochondrial rewiring at functional and energetic levels.


Asunto(s)
NAD , Neoplasias de la Mama Triple Negativas , Humanos , NAD/metabolismo , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/genética , Citocinas/metabolismo , Nicotinamida Fosforribosiltransferasa/genética , Nicotinamida Fosforribosiltransferasa/metabolismo , Mitocondrias/metabolismo , Línea Celular Tumoral , Fosfotransferasas (Aceptor de Grupo Alcohol)
18.
Nat Commun ; 14(1): 6951, 2023 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-37907500

RESUMEN

Identifying oncological applications for drugs that are already approved for other medical indications is considered a possible solution for the increasing costs of cancer treatment. Under the hypothesis that nutritional stress through fasting might enhance the antitumour properties of at least some non-oncological agents, by screening drug libraries, we find that cholesterol biosynthesis inhibitors (CBIs), including simvastatin, have increased activity against cancers of different histology under fasting conditions. We show fasting's ability to increase CBIs' antitumour effects to depend on the reduction in circulating insulin, insulin-like growth factor-1 and leptin, which blunts the expression of enzymes from the cholesterol biosynthesis pathway and enhances cholesterol efflux from cancer cells. Ultimately, low cholesterol levels through combined fasting and CBIs reduce AKT and STAT3 activity, oxidative phosphorylation and energy stores in the tumour. Our results support further studies of CBIs in combination with fasting-based dietary regimens in cancer treatment and highlight the value of fasting for drug repurposing in oncology.


Asunto(s)
Ayuno , Simvastatina , Simvastatina/farmacología , Simvastatina/uso terapéutico , Dieta , Insulina , Colesterol
19.
Pharmaceuticals (Basel) ; 15(7)2022 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-35890147

RESUMEN

Depriving cancer cells of sufficient NAD levels, mainly through interfering with their NAD-producing capacity, has been conceived as a promising anti-cancer strategy. Numerous inhibitors of the NAD-producing enzyme, nicotinamide phosphoribosyltransferase (NAMPT), have been developed over the past two decades. However, their limited anti-cancer activity in clinical trials raised the possibility that cancer cells may also exploit alternative NAD-producing enzymes. Recent studies show the relevance of nicotinic acid phosphoribosyltransferase (NAPRT), the rate-limiting enzyme of the Preiss-Handler NAD-production pathway for a large group of human cancers. We demonstrated that the NAPRT inhibitor 2-hydroxynicotinic acid (2-HNA) cooperates with the NAMPT inhibitor FK866 in killing NAPRT-proficient cancer cells that were otherwise insensitive to FK866 alone. Despite this emerging relevance of NAPRT as a potential target in cancer therapy, very few NAPRT inhibitors exist. Starting from a high-throughput virtual screening approach, we were able to identify and annotate two additional chemical scaffolds that function as NAPRT inhibitors. These compounds show comparable anti-cancer activity to 2-HNA and improved predicted aqueous solubility, in addition to demonstrating favorable drug-like profiles.

20.
Pharmaceuticals (Basel) ; 15(7)2022 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-35890155

RESUMEN

NAPRT, the rate-limiting enzyme of the Preiss-Handler NAD biosynthetic pathway, has emerged as a key biomarker for the clinical success of NAMPT inhibitors in cancer treatment. Previous studies found that high protein levels of NAPRT conferred resistance to NAMPT inhibition in several tumor types whereas the simultaneous blockade of NAMPT and NAPRT results in marked anti-tumor effects. While research has mainly focused on NAMPT inhibitors, the few available NAPRT inhibitors (NAPRTi) have a low affinity for the enzyme and have been scarcely characterized. In this work, a collection of diverse compounds was screened in silico against the NAPRT structure, and the selected hits were tested through cell-based assays in the NAPRT-proficient OVCAR-5 ovarian cell line and on the recombinant hNAPRT. We found different chemotypes that efficiently inhibit the enzyme in the micromolar range concentration and for which direct engagement with the target was verified by differential scanning fluorimetry. Of note, the therapeutic potential of these compounds was evidenced by a synergistic interaction between the NAMPT inhibitor FK866 and the new NAPRTi in terms of decreasing OVCAR-5 intracellular NAD levels and cell viability. For example, compound IM29 can potentiate the effect of FK866 of more than two-fold in reducing intracellular NAD levels. These results pave the way for the development of a new generation of human NAPRTi with anticancer activity.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA