Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Opt Express ; 28(9): 13352-13367, 2020 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-32403812

RESUMEN

To improve the color-conversion efficiency based on a quantum-well (QW) light-emitting diode (LED), a more energy-saving strategy is needed to increase the energy transfer efficiency from the electrical input power of the LED into the emission of over-coated color-converter, not just from LED emission into converted light. In this regard, the efficiency of energy transfer of any mechanism from LED QW into the color-converter is an important issue. By overlaying blue-emitting QW structures and GaN templates with both deposited metal nanoparticles (DMNPs) and color-converting quantum dot (QD) linked synthesized metal nanoparticles (SMNPs) of different localized surface plasmon (LSP) resonance wavelengths for producing multiple surface plasmon (SP) coupling mechanisms with the QW and QD, we study the enhancement variations of their internal quantum efficiencies and photoluminescence decay times. By comparing the QD emission efficiencies between the samples with and without QW, one can observe the advantageous effect of QW coupling with LSP resonances on QD emission efficiency. Also, with the LSP resonance wavelengths of both DMNPs and SMNPs close to the QW emission wavelength for producing strong SP coupling with the QW and hence QD absorption, a higher QD emission or color-conversion efficiency can be obtained.

2.
Nanotechnology ; 31(9): 095201, 2020 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-31731282

RESUMEN

With two different residual surfactants, four different metal nanoparticles (NPs), including two Au NPs and two Ag NPs are synthesized for linking with red-emitting CdZnSeS/ZnS colloidal quantum dots (QDs) to enhance QD emission efficiency. Those metal NPs are first connected with amino polyethylene glycol thiol of different molecular weights to avoid aggregation and make them positively charged. They can attract negatively charged QDs for inducing surface plasmon (SP) coupling such that either QD absorption or emission and hence overall color conversion efficiency can be enhanced. The enhancement of QD emission efficiency is evaluated through the comparison of time-resolved photoluminescence behaviors under different QD linkage conditions. Such results are confirmed by the measurement of the emission quantum efficiency of QD. It is found that by linking QDs onto Ag NPs, the QD emission efficiency is more enhanced, when compared with Au NPs. Also, depending on the synthesis process, the residual surfactant of citrate leads to a relatively large increment in QD emission efficiency, when compared to the surfactant of cetrimonium chloride. A more enhanced QD emission efficiency is caused by a higher QD linkage capability and a stronger SP coupling effect.

3.
Opt Lett ; 44(23): 5691-5694, 2019 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-31774755

RESUMEN

Four surface-modified and, hence, positively charged metal nanoparticles (NPs) of different localized surface plasmon (LSP) resonance wavelengths are synthesized for linking with negatively charged, red-emitting colloidal CdZnSeS/ZnS quantum dots (QDs) on the top surface of a blue-emitting InGaN/GaN quantum well (QW) light-emitting diode (LED) through electro-static force. The metal NP-QD linkage leads to a short distance between them for producing their strong surface plasmon (SP) coupling, such that QD absorption and emission can be enhanced. Meanwhile, the small p-GaN thickness in the LED results in strong SP coupling between the LSP resonance of metal NP and the QWs of the LED, leading to enhanced QW emission and, hence, stronger QD excitation. All those factors together result in the increase of the color conversion efficiency of the QD.

4.
Nanotechnology ; 30(2): 025101, 2019 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-30378566

RESUMEN

For tumor treatment, compared with gold nanoparticles (NPs) of other geometries, a porous gold NP (PGNP) has the advantages of stronger localized surface plasmon resonance (LSPR) due to the pore nanostructures and a larger surface area to link with more drug or photosensitizer (PS) molecules for more effective delivery into cancer cells. Different from the chemical synthesis methods, in this paper we demonstrate the fabrication procedures of PGNP based on shaped Au/Ag deposition on a Si substrate and elucidate the advantageous features. PGNPs fabricated under different conditions, including different deposited Au/Ag content ratios and different alloying annealing temperatures, are compared for optimizing the fabrication condition in terms of LSPR wavelength, PS linkage capability, and cancer cell damage efficiency. It is found that within the feasible fabrication parameter ranges, the Au/Ag content ratio of 3:7 and alloying annealing temperature at 600 °C are the optimized conditions. In comparing with widely used gold NPs of other geometries, PGNP fabricated under the optimized conditions can be used for achieving a significantly higher linked PS molecule number per unit gold weight.


Asunto(s)
Oro/química , Nanopartículas del Metal/química , Neoplasias/patología , Muerte Celular , Línea Celular Tumoral , Humanos , Nanopartículas del Metal/ultraestructura , Porosidad , Compuestos de Silicona/química , Dióxido de Silicio/química , Plata/química
5.
Nanotechnology ; 29(23): 235101, 2018 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-29570098

RESUMEN

We first illustrate the faster decrease of the photothermal (PT) effect with the delay time of laser treatment, in which the illumination of a 1064 nm laser effectively excites the localized surface plasmon (LSP) resonance of cell-up-taken gold nanoring (NRI) linked with a photosensitizer (PS), when compared with the photodynamic (PD) effect produced by the illumination of a 660 nm laser for effective PS excitation. The measurement results of the metal contents of Au NRI and PS based on inductively coupled plasma mass spectroscopy and the PS fluorescence intensity based on flow cytometry show that the linkage of NRI and PS is rapidly broken for releasing PS through the effect of glutathione in lysosome after cell uptake. Meanwhile, NRI escapes from a cell with a high rate such that the PT effect decays fast while the released PS can stay inside a cell longer for producing a prolonged PD effect. The effective delivery of PS through the linkage with Au NRI for cell uptake and the advantageous effect of LSP resonance at a PS absorption wavelength on the PD process are also demonstrated.


Asunto(s)
Exocitosis/efectos de los fármacos , Oro/química , Hipertermia Inducida , Nanopartículas del Metal/química , Fotoquimioterapia , Fármacos Fotosensibilizantes/farmacología , Línea Celular Tumoral , Endocitosis/efectos de los fármacos , Fluorescencia , Humanos , Rayos Láser , Espectrofotometría Atómica , Resonancia por Plasmón de Superficie
6.
Molecules ; 23(12)2018 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-30513670

RESUMEN

The methods of cell perforation and preheating are used for increasing cell uptake efficiencies of gold nanorings (NRIs), which have the localized surface plasmon resonance wavelength around 1064 nm, and photosensitizer, AlPcS, and hence enhancing the cell damage efficiency through the photothermal (PT) and photodynamic (PD) effects. The perforation and preheating effects are generated by illuminating a defocused 1064-nm femtosecond (fs) laser and a defocused 1064-nm continuous (cw) laser, respectively. Cell damage is produced by illuminating cell samples with a focused 1064-nm cw laser through the PT effect, a focused 1064-nm fs laser through both PT and PD effects, and a focused 660-nm cw laser through the PD effect. Under various conditions with and without cell wash before laser illumination, through either perforation or preheating process, cell uptake and hence cell damage efficiencies can be enhanced. Under our experimental conditions, perforation can be more effective at enhancing cell uptake and damage when compared with preheating.


Asunto(s)
Oro/química , Hipertermia Inducida , Nanopartículas del Metal/química , Neoplasias/patología , Fármacos Fotosensibilizantes/farmacología , Fototerapia , Línea Celular Tumoral , Fluorescencia , Humanos , Resonancia por Plasmón de Superficie
7.
Nanotechnology ; 28(27): 275101, 2017 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-28557805

RESUMEN

The different death pathways of cancer cells under the conditions of the photothermal (PT), effect, photodynamic (PD) effect, and their combination are evaluated. By incubating cells with Au nanoring (NRI) either linked with the photosensitizer, AlPcS, or not, the illumination of a visible continuous laser for exciting the photosensitizer or an infrared femtosecond laser for exciting the localized surface plasmon resonance of Au NRI, leads to various PT and PD conditions for study. Three different staining dyes are used for identifying the cell areas of different damage conditions at different temporal points of observation. The cell death pathways and apoptotic evolution speeds under different cell treatment conditions are evaluated based on the calibration of the threshold laser fluences for causing early-apoptosis (EA) and necrosis (NE) or late-apoptosis (LA). It is found that with the PT effect only, strong cell NE is generated and the transition from EA into LA is faster than that caused by the PD effect when the EA stage is reached within 0.5 h after laser illumination. By combining the PT and PD effects, in the first few hours, the transition speed becomes lower, compared to the case of the PT effect only, when both Au NRIs internalized into cells and adsorbed on cell membrane exist. When the Au NRIs on cell membrane is removed, in the first few hours, the transition speed becomes higher, compared to the case of the PD effect only.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA