Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 156
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Mol Ther ; 32(3): 766-782, 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38273656

RESUMEN

Idiopathic pulmonary fibrosis (IPF) is a chronic lethal disease in the absence of demonstrated efficacy for preventing progression. Although macrophage-mediated alveolitis is determined to participate in myofibrotic transition during disease development, the paradigm of continuous macrophage polarization is still under-explored due to lack of proper animal models. Here, by integrating 2.5 U/kg intratracheal Bleomycin administration and 10 Gy thorax irradiation at day 7, we generated a murine model with continuous alveolitis-mediated fibrosis, which mimics most of the clinical features of our involved IPF patients. In combination with data from scRNA-seq of patients and a murine IPF model, a decisive role of CCL2/CCR2 axis in driving M1 macrophage polarization was revealed, and M1 macrophage was further confirmed to boost alveolitis in leading myofibroblast activation. Multiple sticky-end tetrahedral framework nucleic acids conjunct with quadruple ccr2-siRNA (FNA-siCCR2) was synthesized in targeting M1 macrophages. FNA-siCCR2 successfully blocked macrophage accumulation in pulmonary parenchyma of the IPF murine model, thus preventing myofibroblast activation and leading to the disease remitting. Overall, our studies lay the groundwork to develop a novel IPF murine model, reveal M1 macrophages as potential therapeutic targets, and establish new treatment strategy by using FNA-siCCR2, which are highly relevant to clinical scenarios and translational research in the field of IPF.


Asunto(s)
Fibrosis Pulmonar Idiopática , Macrófagos , Humanos , Ratones , Animales , Modelos Animales de Enfermedad , Fibrosis Pulmonar Idiopática/inducido químicamente , Fibrosis Pulmonar Idiopática/genética , Fibrosis , ADN , Bleomicina
2.
Pediatr Radiol ; 54(4): 646-652, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38472490

RESUMEN

Hand-wrist radiography is the most common and accurate method for evaluating children's bone age. To reduce the scattered radiation of radiosensitive organs in bone age assessment, we designed a small X-ray instrument with radioprotection function by adding metal enclosure for X-ray shielding. We used a phantom operator to compare the scattered radiation doses received by sensitive organs under three different protection scenarios (proposed instrument, radiation personal protective equipment, no protection). The proposed instrument showed greater reduction in the mean dose of a single exposure compared with radiation personal protective equipment especially on the left side which was proximal to the X-ray machine (≥80.0% in eye and thyroid, ≥99.9% in breast and gonad). The proposed instrument provides a new pathway towards more convenient and efficient radioprotection.


Asunto(s)
Protección Radiológica , Niño , Humanos , Dosis de Radiación , Rayos X , Radiografía , Protección Radiológica/métodos , Fluoroscopía , Fantasmas de Imagen
3.
Small ; 19(41): e2302326, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37317020

RESUMEN

Osteonecrosis of the femoral head (ONFH) is recognized as a common refractory orthopedic disease that causes severe pain and poor quality of life in patients. Puerarin (Pue), a natural isoflavone glycoside, can promote osteogenesis and inhibit apoptosis of bone mesenchymal stem cells (BMSCs), demonstrating its great potential in the treatment of osteonecrosis. However, its low aqueous solubility, fast degradation in vivo, and inadequate bioavailability, limit its clinical application and therapeutic efficacy. Tetrahedral framework nucleic acids (tFNAs) are promising novel DNA nanomaterials in drug delivery. In this study, tFNAs as Pue carriers is used and synthesized a tFNA/Pue complex (TPC) that exhibited better stability, biocompatibility, and tissue utilization than free Pue. A dexamethasone (DEX)-treated BMSC model in vitro and a methylprednisolone (MPS)-induced ONFH model in vivo is also established, to explore the regulatory effects of TPC on osteogenesis and apoptosis of BMSCs. This findings showed that TPC can restore osteogenesis dysfunction and attenuated BMSC apoptosis induced by high-dose glucocorticoids (GCs) through the hedgehog and Akt/Bcl-2 pathways, contributing to the prevention of GC-induced ONFH in rats. Thus, TPC is a promising drug for the treatment of ONFH and other osteogenesis-related diseases.


Asunto(s)
Necrosis de la Cabeza Femoral , Isoflavonas , Ácidos Nucleicos , Humanos , Ratas , Animales , Cabeza Femoral , Ácidos Nucleicos/farmacología , Calidad de Vida , Necrosis de la Cabeza Femoral/tratamiento farmacológico , Necrosis de la Cabeza Femoral/inducido químicamente , Necrosis de la Cabeza Femoral/prevención & control , Ratas Sprague-Dawley , Isoflavonas/efectos adversos , Osteogénesis
4.
Clin Oral Implants Res ; 34(12): 1373-1384, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37771049

RESUMEN

OBJECTIVES: To radiographically evaluate the stability of the bone substitute augmented outside the buccal bony arch contour in the maxillary esthetic zone. MATERIALS AND METHODS: Patients who missed a single anterior tooth and received simultaneous GBR in implant surgery were included. The contralateral homonymous area of the implant site was horizontally mirrored as the individual bone arch contour. According to the relative position of the postoperative buccal grafts and bone arch contour at the implant shoulder, 62 patients were allocated into the outside-contour (OC) and inside-contour (IC) groups. Cone-beam computed tomography was performed before surgery, after implant insertion, before re-entry surgery, and at follow-up. The profilometric changes of the buccal bone plate were analyzed via the bone distance to the mirrored bony contour. RESULTS: At the implant shoulder, the bone distance in the OC group was higher than that in the IC group, with statistically significant differences at re-entry surgery and follow-up. However, the bone grafts outside the bone arch contour were reduced into the contour after remodeling and showed more bone resorption than the IC group. At other vertical levels below the implant shoulder, bony grafting of overcontour 1-2 mm range was favorable to regenerate stable bone plates reaching the individual contour at follow-up. CONCLUSIONS: The overaugmented bone outside the buccal bone arch contour tended to remodel into the original contour, which indicates that the anterior bone arch contour is worthy of careful observation for deciding buccolingual implant position and bone augmentation width.


Asunto(s)
Aumento de la Cresta Alveolar , Implantes Dentales de Diente Único , Implantes Dentales , Humanos , Implantación Dental Endoósea/métodos , Estudios Retrospectivos , Maxilar/diagnóstico por imagen , Maxilar/cirugía , Aumento de la Cresta Alveolar/métodos , Resultado del Tratamiento , Regeneración Ósea
5.
Mol Biol Rep ; 49(4): 2619-2627, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35028853

RESUMEN

BACKGROUND: Recent evidence suggested that histone deacetylase inhibitor (HDACi) could inhibit dendritic cell (DC) maturation. However, the mechanism is unclear. Here, we aimed to study whether Trichostatin A (TSA), the most widely studied HDACi, inhibits the maturation of DCs by down-regulating NF-κB (p65) pathway. METHODS AND RESULTS: Mouse bone marrow-derived DCs were cultured. Lipopolysaccharide (LPS) was applied as stimulation for maturation. Triptolide (TTL) was applied as p65 inhibitor. Microphotography and flow cytometry showed that TSA and p65 inhibitor separately inhibited the maturation of DCs stimulated by LPS from the aspects of cell morphology and cell phenotype. Mixed lymphocyte reaction test and ELISA showed that TSA and p65 inhibitor synergistically inhibited the proliferation of T lymphocytes stimulated by DCs, reduced the secretion of pro-inflammatory cytokine IL-12 and elevated the secretion of anti-inflammatory cytokine IL-10. Western blot and RT-qPCR showed that TSA down-regulated the expression of phosphorylated IκBα, phosphorylated-p65, Ikkß and Ikkγ, suggesting TSA down-regulates NF-κB (p65) pathway. CONCLUSIONS: TSA inhibits DC maturation through down-regulating NF-κB (p65) pathway.


Asunto(s)
Ácidos Hidroxámicos , FN-kappa B , Animales , Células Dendríticas/metabolismo , Ácidos Hidroxámicos/farmacología , Lipopolisacáridos/metabolismo , Lipopolisacáridos/farmacología , Ratones , FN-kappa B/metabolismo
6.
Nano Lett ; 21(10): 4437-4446, 2021 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-33955221

RESUMEN

A failure in immune tolerance leads to autoimmune destruction of insulin-producing ß-cells, leading to type 1 diabetes (T1D). Inhibiting autoreactive T cells and inducing regulatory T cells (Tregs) to re-establish immune tolerance are promising approaches to prevent the onset of T1D. Here, we investigated the ability of tetrahedral framework nucleic acids (tFNAs) to induce immune tolerance and prevent T1D in nonobese diabetic (NOD) mice. In prediabetic NOD mice, tFNAs treatment led to maintenance of normoglycemia and reduced incidence of diabetes. Moreover, the tFNAs (250 nM) treatment preserved the mass and function of ß-cells, increased the frequency of Tregs, and suppressed autoreactive T cells, leading to immune tolerance. Collectively, our results demonstrate that tFNAs treatment aids glycemic control, provides ß-cell protection, and prevents the onset of T1D in NOD mice by immunomodulation. These results highlight the potential of tFNAs for the prevention of autoimmune T1D.


Asunto(s)
Diabetes Mellitus Tipo 1 , Ácidos Nucleicos , Animales , Diabetes Mellitus Tipo 1/tratamiento farmacológico , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/prevención & control , Tolerancia Inmunológica , Ratones , Ratones Endogámicos NOD , Linfocitos T Reguladores
7.
Small ; 17(47): e2104359, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34716653

RESUMEN

MicroRNAs (miRs) play an important role in regulating gene expression. Limited by their instabilities, miR therapeutics require delivery vehicles. Tetrahedral framework nucleic acids (tFNAs) are potentially applicable to drug delivery because they prominently penetrate tissue and are taken up by cells. However, tFNA-based miR delivery strategies have failed to separate the miRs after they enter cells, affecting miR efficiency. In this study, an RNase H-responsive sequence is applied to connect a sticky-end tFNA (stFNA) and miR-2861, which is a model miR, to target the expression of histone deacetylase 5 (HDAC5) in bone marrow mesenchymal stem cells. The resultant bioswitchable nanocomposite (stFNA-miR) enables efficient miR-2861 unloading and deployment after intracellular delivery, thereby inhibiting the expression of HDAC5 and promoting osteogenic differentiation. stFNA-miR also facilitated ideal bone repair via topical injection. In conclusion, a versatile miR delivery strategy is offered for various biomedical applications that necessitate modulation of gene expression.


Asunto(s)
Células Madre Mesenquimatosas , MicroARNs , Ácidos Nucleicos , Regeneración Ósea , Diferenciación Celular , Osteogénesis
8.
Anal Chem ; 92(8): 6121-6127, 2020 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-32227890

RESUMEN

Bladder cancer is a complex and highly prevalent disease associated with substantial morbidity and mortality rates. Detection and surveillance of biomarkers for bladder cancer are particularly critical in clinical diagnosis and prognostic monitoring. The current detection methods are limited to low sensitivity, low throughput, and high operational cost. In this paper, we present a multiplexed detection strategy for microRNA (miRNA) related to bladder cancer by utilizing photonic crystal (PhC) barcodes. PhC barcodes have characteristic reflective peaks generated by periodic orderly porous nanostructures, providing an ideal choice for encoding element. Besides, owing to the larger surface area provided by the structure, PhC barcodes is an effective platform for probes ligation and miRNAs detection. Compared with the planar microarrays, PhC barcodes avoid the problem of steric hindrance, making it express more efficient reaction and higher detection sensitivity. By introducing hybridization chain reaction (HCR), the detection efficiency of this strategy is greatly improved, making the rapid, accurate, high sensitivity quantification of miRNAs possible. The results indicated that the multiplexed detection strategy based on PhC barcodes can be applied to the clinical analysis of tumor markers.


Asunto(s)
Biomarcadores de Tumor/análisis , Técnicas Biosensibles , MicroARNs/análisis , Hibridación de Ácido Nucleico , Fotones , Neoplasias de la Vejiga Urinaria/diagnóstico , Humanos , Tamaño de la Partícula , Propiedades de Superficie
9.
Cell Mol Neurobiol ; 40(3): 395-405, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31605284

RESUMEN

Visually guided regulation is a sophisticated and active process, whereby sensory input helps to shape ocular development. Here, we sought to investigate the potential involvement of SorCS1, an important protein in synaptic transmission in neuron, in retinal development. A form-deprivation (FD) rat model was established. Ocular variations induced by FD were examined, including changes to eye axial length and retinal thickness. Scotopic electroretinogram (ERG) was used to examine retinal function. RD-PCR assays were screened for differentially expressed genes in FD rat eyes. Immunofluorescence staining identified the expression pattern and localization of SorCS1 in rat retina, with or without FD treatment. Additionally, primary retinal neural cells were cultured and incubated with or without a light-dark cycle, and western blot and real-time PCR assays were used to examine the expression of SorCS1. Retinal neural cells were treated with recombinant SorCS1 (h-SorCS1) coated with beads in serum-free conditions to test for effects on cellular physiology and expression of neurotransmitters involved in visual development. To monitor cell viability, a CCK8 assay was employed. Our data demonstrated that FD led to ocular axial elongation and retinal thinning. ERG tests showed FD impaired electrophysiological function in rat. An age-related expression pattern of SorCS1 was observed in the rat retina, and SorCS1 was significantly up-regulated in the FD rat retina. In addition, in vitro evidence suggested a strong correlation between light exposure and SorCS1 expression. Furthermore, treatment of retinal neural cells with h-SorCS1-beads promoted cell viability, neurite outgrowth, and up-regulation of inhibitory neurotransmitter expression, which implies that over-expression of SorCS1 may cause abnormal retinal development. Our findings suggest that SorCS1 is involved in the physiological processes of light/visually guided ocular growth.


Asunto(s)
Anomalías del Ojo/fisiopatología , Oftalmopatías/fisiopatología , Ojo/crecimiento & desarrollo , Receptores de Superficie Celular/genética , Retina/metabolismo , Animales , Animales Recién Nacidos , Células Cultivadas , Modelos Animales de Enfermedad , Ojo/patología , Oftalmopatías/congénito , Oftalmopatías/genética , Oftalmopatías/metabolismo , Enucleación del Ojo , Humanos , Ratas , Ratas Sprague-Dawley , Receptores de Superficie Celular/metabolismo , Retina/crecimiento & desarrollo , Retina/patología , Retina/fisiopatología , Transmisión Sináptica/genética , Regulación hacia Arriba , Percepción Visual/fisiología
10.
Nanomedicine ; 25: 102167, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32006685

RESUMEN

The application of photodynamic therapy (PDT) is of ever-increasing importance in the treatment of malignant tumors; however, there are several major constraints that make it impossible to achieve optimal therapeutic effects. Our objective is to develop a novel photosensitizing drug for skin cancer. In the experiment, we fabricated four-arm-poly ethylene glycol modified amino-rich graphite phase carbon nitride nanosheets (AGCN-PEG), which have good stability in physiological solution and show selective accumulation in tumor cells. Under hypoxic conditions, the AGCN-PEG induced PDT can effectively inhibit growth on A431 human epidermoid carcinoma cells in vivo and in vitro. What's more, after being combined with TMPyP4, the therapeutic effect of AGCN-PEG was greatly improved.


Asunto(s)
Nanoestructuras/química , Neoplasias/terapia , Fotoquimioterapia , Fármacos Fotosensibilizantes/farmacología , Línea Celular Tumoral , Grafito/química , Humanos , Neoplasias/patología , Nitrilos/química , Nitrilos/farmacología , Fármacos Fotosensibilizantes/síntesis química , Fármacos Fotosensibilizantes/química , Polietilenglicoles/química , Polietilenglicoles/farmacología , Especies Reactivas de Oxígeno/química , Hipoxia Tumoral/efectos de los fármacos
11.
Sichuan Da Xue Xue Bao Yi Xue Ban ; 51(6): 783-789, 2020 Nov.
Artículo en Zh | MEDLINE | ID: mdl-33236601

RESUMEN

OBJECTIVE: To investigate the influence of the protamine sulfate on endocytosis and intracellular stability of tetrahedral framework nucleic acid (tFNA). METHODS: Articular cartilage cells were collected from 3-day-old C57BL mice. Cells at passage 1-2 were used in the experiments. 4 single-strand DNAs (S1 was marked by Cy5) were utilized to synthesize tFNAs via annealing process and ultrafiltration for purification. High-performance capillary electrophoresis (HPCE) was used to verify synthesis of tFNAs and transmission electron microscope was used to photo morphological characteristics. The 1 mg/mL protamine sulfate solution was slowly dropped into newly synthesized tFNAs (N/P=5/1). Then, Zeta potential was detected. Cells were treated with 100 nmol/L tFNAs with protamine sulfate in Dulbecco's Modified Eagle's medium (DMEM) (Exp.1), 100 nmol/L tFNAs in DMEM (Exp.2), and DMEM (Control), respectively. Flow cytometry was used to quantitatively detect intracellular Cy5 fluorescence after 6 h and 12 h treatments. Immunofluorescence staining was used to qualitatively observe internalized Cy5 fluorescence after 12 h treatment by laser confocal microscope. Lysosome of living cells were stained with lysosome probe. Colocalization between lysosome and tFNAs was observed by laser confocal microscope. RESULTS: After incubating protamine sulfate, negative potential was transformed into positive one ( (-1.567±0.163) mV to (4.700±0.484) mV). The fluorescence intensity of tFNAs in the Exp.1 group was higher than that of the Exp.2 group in 6 h and 12 h ( P<0.05). This was consistent with the results of immunofluorescence staining after 12 h. Colocalization of Cy5 fluorescence and lysosome in the Exp.1 group was more rare than that in the Exp.2 group at 6 h and 12 h. Furthermore, a large amount of Cy5 fluorescence was still seen in the Exp.1 group at 12 h, while Cy5 fluorescence of the Exp.2 group was less. CONCLUSION: Protamine sulfate can effectively enhance endocytosis, and to some extent it can achieve lysosome escape of tFNAs.


Asunto(s)
Endocitosis , Nanoestructuras , Animales , ADN , Lisosomas , Ratones , Ratones Endogámicos C57BL , Protaminas/farmacología
12.
Small ; 15(31): e1901907, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31192537

RESUMEN

Poor post-traumatic wound healing can affect the normal function of damaged tissues and organs. For example, poor healing of corneal epithelial injuries may lead to permanent visual impairment. It is of great importance to find a therapeutic way to promote wound closure. Tetrahedral framework nucleic acids (tFNAs) are new promising nanomaterials, which can affect the biological behavior of cells. In the experiment, corneal wound healing is used as an example to explore the effect of tFNAs on wound healing. Results show that the proliferation and migration of human corneal epithelial cells are enhanced by exposure to tFNAs in vitro, possibly relevant to the activation of P38 and ERK1/2 signaling pathway. An animal model of corneal alkali burn is established to further identify the facilitation effect of tFNAs on corneal wound healing in vivo. Clinical evaluations and histological analyses show that tFNAs can improve the corneal transparency and accelerate the re-epithelialization of wounds. Both in vitro and in vivo experiments show that tFNAs can play a positive role in corneal epithelial wound healing.


Asunto(s)
Epitelio Corneal/patología , Ácidos Nucleicos/farmacología , Cicatrización de Heridas/efectos de los fármacos , Álcalis , Animales , Quemaduras/patología , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Células Epiteliales/efectos de los fármacos , Células Epiteliales/enzimología , Células Epiteliales/patología , Epitelio Corneal/efectos de los fármacos , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Humanos , Masculino , Ácidos Nucleicos/ultraestructura , Fosforilación/efectos de los fármacos , Conejos , Regulación hacia Arriba/efectos de los fármacos , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
13.
Nanomedicine ; 21: 102061, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31344499

RESUMEN

Targeted DNA nanoparticles have been identified as one of the most promising nanocarriers in anti-glioma drug delivery. We established a multifunctional nanosystem for targeted glioma therapy. Tetrahedral framework nucleic acid (tFNA), entering U87MG cells and bEnd.3 cells, was chosen to deliver two aptamers, GMT8 and Gint4.T, and paclitaxel. GMT8 and Gint4.T, which specifically bind with U87MG cells and with PDGFRß, were linked with tFNA, to form Gint4.T-tFNA-GMT8 (GTG). GTG was efficiently internalized by U87MG and bEnd.3 cells and penetrated an in-vitro blood-brain-barrier model. GTG loaded with paclitaxel (GPC) had potentiated anti-glioma efficacy. It inhibited the proliferation, migration, and invasion of U87MG cells, and enhanced apoptosis induction in these cells. The expression of apoptosis-related proteins was significantly changed after treatment with GPC, confirming apoptosis induction. Our study demonstrated that the combination of GTG and paclitaxel has great potential for glioma treatment and tFNA shows great promise for use in drug delivery.


Asunto(s)
Aptámeros de Nucleótidos , Barrera Hematoencefálica , Neoplasias Encefálicas , Glioblastoma , Nanoconjugados , Paclitaxel , Animales , Aptámeros de Nucleótidos/química , Aptámeros de Nucleótidos/farmacocinética , Aptámeros de Nucleótidos/farmacología , Barrera Hematoencefálica/metabolismo , Barrera Hematoencefálica/patología , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patología , Línea Celular Tumoral , Glioblastoma/tratamiento farmacológico , Glioblastoma/metabolismo , Glioblastoma/patología , Humanos , Nanoconjugados/química , Nanoconjugados/uso terapéutico , Paclitaxel/química , Paclitaxel/farmacocinética , Paclitaxel/farmacología , Ratas
14.
J Oral Maxillofac Surg ; 77(6): 1293-1304, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30742792

RESUMEN

PURPOSE: With the development of imaging technology and computer-assisted surgery in oral and maxillofacial surgery, digital technology is widely used in vascularized bone flap grafts for mandibular reconstruction. The aim of this study was to use digital technology throughout the treatment process to show that digital techniques can provide a reliable and accurate match between the mandible and the iliac crest flap to achieve functional reconstruction of mandibular segment defects. MATERIALS AND METHODS: Twenty patients underwent 3-dimensional (3D) computed tomography (CT), mirroring technology, 3D model prototyping, and CT angiography (CTA) for treatment planning. Individual preformed reconstruction plates were fabricated and iliac crest flaps were designed preoperatively. After complete resection of the mandibular lesion, the iliac crest flap was shaped to reconstruct the mandibular defects. RESULTS: During follow-up (range, 12 to 36 months), the facial shape, facial symmetry, and mouth opening of all patients recovered well. The 3D CT reconstruction also was evaluated for height, width, length, and bone healing of the iliac crest flap. Postoperative examination showed ideal bone union between the iliac crest flap and the mandible at 6 months. Nine patients received implant-supported fixed dentures to restore dentition. After follow-up, all patients were satisfied with their facial esthetics and function. The new mandible provided a suitable 3D position for implant-supported fixed partial dentures. CONCLUSION: Use of digital techniques throughout the course of treatment improves the predictability and convenience of functional mandibular reconstruction. Individual preformed reconstruction plates and CTA effectively guaranteed the accuracy of iliac flap preparation.


Asunto(s)
Colgajos Tisulares Libres , Neoplasias Mandibulares , Reconstrucción Mandibular , Procedimientos de Cirugía Plástica , Angiografía , Trasplante Óseo , Angiografía por Tomografía Computarizada , Estética Dental , Humanos , Ilion , Mandíbula , Reconstrucción Mandibular/métodos , Tomografía Computarizada por Rayos X
15.
Biochim Biophys Acta Mol Cell Res ; 1864(10): 1799-1808, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28732675

RESUMEN

Cells sense and respond to the biophysical properties of their surrounding environment by interacting with the extracellular matrix (ECM). Therefore, the optimization of these cell-matrix interactions is critical in tissue engineering. The vascular system is adapted to specific functions in diverse tissues and organs. Appropriate arterial-venous differentiation is vital for the establishment of functional vasculature in angiogenesis. Here, we have developed a polydimethylsiloxane (PDMS)-based substrate capable of simulating the physiologically relevant stiffness of both venous (7kPa) and arterial (128kPa) tissues. This substrate was utilized to investigate the effects of changes in substrate stiffness on the differentiation of endothelial progenitor cells (EPCs). As EPCs derived from mouse bone marrow were cultured on substrates of increasing stiffness, the mRNA and protein levels of the specific arterial endothelial cell marker ephrinB2 were found to increase, while the expression of the venous marker EphB4 decreased. Further experiments were performed to identify the mechanotransduction pathway involved in this process. The results indicated that substrate stiffness regulates the arterial and venous differentiation of EPCs via the Ras/Mek pathway. This work shows that modification of substrate stiffness may represent a method for regulating arterial-venous differentiation for the fulfilment of diverse functions of the vasculature.


Asunto(s)
Diferenciación Celular/genética , Células Progenitoras Endoteliales/metabolismo , Efrina-B2/genética , Matriz Extracelular/metabolismo , Receptor EphB4/genética , Animales , Arterias/crecimiento & desarrollo , Arterias/metabolismo , Fenómenos Biofísicos/genética , Células de la Médula Ósea/citología , Células de la Médula Ósea/metabolismo , Dimetilpolisiloxanos/química , Dimetilpolisiloxanos/metabolismo , Matriz Extracelular/genética , Regulación de la Expresión Génica , Mecanotransducción Celular/genética , Ratones , ARN Mensajero/genética , Especificidad por Sustrato , Ingeniería de Tejidos , Rigidez Vascular/genética , Rigidez Vascular/fisiología , Venas/crecimiento & desarrollo , Venas/metabolismo
16.
J Cell Physiol ; 233(4): 3418-3428, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-28926111

RESUMEN

Cells reside in a complex microenvironment (niche) in which the biochemical and biophysical properties of the extracellular matrix profoundly affect cell behavior. Extracellular stiffness, one important bio-mechanical characteristic of the cell niche, is important in regulating cell proliferation, migration, and lineage specification. However, the mechanism by which mechanical signals guide osteogenic and adipogenic commitment of stem cells remains difficult to dissect. To explore this question, we generated a range of polydimethylsiloxane-based matrices with differing degrees of stiffness that mimicked the stiffness seen in natural tissues and examined adipose stem cell morphology, spreading, vinculin expression, and differentiation along the osteogenic and adipogenic pathways. Rigid matrices allowed broader cell spreading, faster growth rate and stronger expression of vinculin in adipose-derived stem cells. In the presence of inductive culture media, stiffness-dependent osteogenesis and adipogenesis of the adipose stem cells indicated that there was a combinatorial effect of biophysical and biochemical cues; no such lineage specification was observed in normal media. Osteogenic differentiation behavior showed a correlation with matrix rigidity, as well as with elevated expression of RhoA, ROCK-1/-2, and related proteins in the Wnt/ß-catenin pathway. The result provides a comprehensive understanding of how stem cells respond to the surrounding microenvironment and points to the fact that matrix stiffness is a critical element in biomaterial design and this will be an important advance in stem cell-based tissue engineering.


Asunto(s)
Adipocitos/citología , Adipogénesis/fisiología , Diferenciación Celular/fisiología , Osteogénesis/fisiología , Células Madre/citología , Adipocitos/metabolismo , Tejido Adiposo/citología , Animales , Microambiente Celular/fisiología , Matriz Extracelular/metabolismo , Células Madre Mesenquimatosas/metabolismo , Ratas , Ingeniería de Tejidos/métodos , Vía de Señalización Wnt/fisiología
17.
Exp Cell Res ; 352(1): 157-163, 2017 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-28189640

RESUMEN

OBJECTIVES: This study aimed to investigate the expression changes of LOX (lysyl oxidase) family genes, VEGFA, and VEGFB under hypoxic conditions in a co-culture system of ASCs (adipose-derived stromal cells) and ECs (endothelial cells). MATERIALS AND METHODS: ASCs and ECs were co-cultured under hypoxic and normal oxygen conditions in a 1:1 ratio, and the formation of vessel-like was detected at 7 days. The transwell co-culture system was used and cell lysates were collected at 7 days after co-culture in hypoxic and normal oxygen condition. Semi-quantitative PCR was performed to quantify the mRNA expression of VEGFA, VEGFB, and the LOX genes (LOX, LOXL-1, LOXL-2, LOXL-3, and LOXL-4). Expression changes were determined by densitomery. RESULTS: Enhanced angiogenesis was detected in the co-culture of ASCs and ECs under hypoxic conditions. Among the genes screened, VEGFA, VEGFB, LOXL-1, and LOXL-3 in ECs, both mono-cultured and co-cultured, were significantly enhanced after culturing under hypoxic conditions. In ASCs, VEGFB, LOXL-1, and LOXL-3 were upregulated. CONCLUSIONS: Contact co-culture between ASCs and ECs promotes angiogenesis under hypoxia. LOXL-1 and LOXL-3 expressions were increased in both ASCs and ECs and might play important roles in the enhanced angiogenesis promoted by hypoxia.


Asunto(s)
Tejido Adiposo/metabolismo , Endotelio Vascular/metabolismo , Hipoxia , Lipooxigenasas/genética , Neovascularización Fisiológica/fisiología , Células del Estroma/metabolismo , Tejido Adiposo/citología , Técnicas de Cultivo de Célula , Células Cultivadas , Técnicas de Cocultivo , Endotelio Vascular/citología , Técnica del Anticuerpo Fluorescente , Humanos , Lipooxigenasas/metabolismo , ARN Mensajero/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Células del Estroma/citología
18.
J Nanosci Nanotechnol ; 18(5): 3134-3140, 2018 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-29442812

RESUMEN

Graphene, a novel carbon-based material, has been widely used as osteogenic agent for the potential effect on the promotion of osteoblast proliferation. Tea polyphenol-reduced graphene oxide (TPG) is a simple and environmental-friendly raw material to obtain graphene. In this study, TPG was deposited on the Ti substrate to promote the bone regeneration. We prepared a honeycomb-like structure by acid and alkali pretreatment and immobilized the TPG layer (Ti-TPG) on the surface via electrochemical deposition. Scanning electron microscopy (SEM), atomic force microscopy (AFM) and X-ray diffraction (XRD) were used to identify the immobilization of TPG on the titanium (Ti) successfully. Furthermore, the biological response of the Ti-TPG surface to rat osteoblast was evaluated. We also studied the cell adhesion, proliferation and expression of ossification genes on the sample. The results revealed that Ti-TPG had an advantage over Ti alloys in modulating cellular activity and Ti-TPG may be a promising coating for biological materials.


Asunto(s)
Grafito , Nanocompuestos , Osteoblastos/efectos de los fármacos , Té/química , Titanio , Animales , Proliferación Celular , Microscopía Electrónica de Rastreo , Óxidos , Propiedades de Superficie
19.
Nanomedicine ; 14(4): 1227-1236, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29458214

RESUMEN

Dental pulp stem cells (DPSCs) derived from the human dental pulp tissue have multiple differentiation capabilities, such as osteo/odontogenic differentiation. Therefore, DPSCs are deemed as ideal stem cell sources for tissue regeneration. As new nanomaterials based on DNA, tetrahedral DNA nanostructures (TDNs) have tremendous potential for biomedical applications. Here, the authors aimed to explore the part played by TDNs in proliferation and osteo/odontogenic differentiation of DPSCs, and attempted to investigate if these cellular responses could be driven by activating the canonical Notch signaling pathway. Upon exposure to TDNs, proliferation and osteo/odontogenic differentiation of DPSCs were dramatically enhanced, accompanied by up regulation of Notch signaling. In general, our study suggested that TDNs can significantly promote proliferation and osteo/odontogenic differentiation of DPSCs, and this remarkable discovery can be applied in tissue engineering and regenerative medicine to develop a significant and novel method for bone and dental tissue regeneration.


Asunto(s)
Pulpa Dental/citología , Nanoestructuras/química , Células Madre/citología , Ingeniería de Tejidos/métodos , Adolescente , Adulto , Western Blotting , Diferenciación Celular/fisiología , Proliferación Celular/genética , Proliferación Celular/fisiología , Células Cultivadas , Femenino , Citometría de Flujo , Humanos , Masculino , Odontogénesis/genética , Odontogénesis/fisiología , Transducción de Señal/genética , Transducción de Señal/fisiología , Adulto Joven
20.
J Cell Physiol ; 232(6): 1548-1558, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-27861873

RESUMEN

This study aimed to investigate the role of Notch signaling pathway for angiogenesis in a three-dimensional (3D) collagen gel model with co-culture of adipose-derived stromal cells (ASCs) and endothelial cells (ECs). A 3D collagen gel model was established in vitro by implanting both ASCs from green fluorescent protein-labeled mouse and ECs from red fluorescent protein-labeled mouse, and the phenomena of angiogenesis with Notch signaling inducer Jagged1, inhibitor DAPT and PBS, respectively were observed by confocal laser scanning microscopy. Semi-quantitative PCR and immunofluorescent staining were conducted to detect expressions of angiogenesis-related genes and proteins. Angiogenesis in the co-culture gels was promoted by Jagged1 treatment while attenuated by DAPT treatment, compared to control group. In co-culture system of ASCs and ECs, the gene expressions of VEGFA, VEGFB, Notch1, Notch2, Hes1, Hey1, VEGFR1,and the protein expression of VEGFA, VEGFB, Notch1, Hes1, Hey1 were increased by Jagged1 treatment and decreased by DAPT treatment in ECs. And the result of VEGFR3 was the opposite. However, the same results did not appear completely in ASCs. These results revealed the VEGFA/B-Notch1/2-Hes1/Hey1- VEGFR1/3 signal axis played an important role in angiogenesis when ASCs and ECs were co-cultured in a 3D collagen gel model. J. Cell. Physiol. 232: 1548-1558, 2017. © 2016 Wiley Periodicals, Inc.


Asunto(s)
Células Endoteliales/metabolismo , Modelos Biológicos , Neovascularización Fisiológica , Receptores Notch/metabolismo , Transducción de Señal , Animales , Animales Recién Nacidos , Técnicas de Cocultivo , Colágeno/metabolismo , Regulación hacia Abajo , Femenino , Técnica del Anticuerpo Fluorescente , Geles , Proteína Jagged-1/metabolismo , Ratones , Ratas , Factor A de Crecimiento Endotelial Vascular/metabolismo , Receptor 1 de Factores de Crecimiento Endotelial Vascular/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA