Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
2.
J Virol ; 93(16)2019 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-31167906

RESUMEN

The -2/-1 programmed ribosomal frameshifting (-2/-1 PRF) mechanism in porcine reproductive and respiratory syndrome virus (PRRSV) leads to the translation of two additional viral proteins, nonstructural protein 2TF (nsp2TF) and nsp2N. This -2/-1 PRF mechanism is transactivated by a viral protein, nsp1ß, and cellular poly(rC) binding proteins (PCBPs). Critical elements for -2/-1 PRF, including a slippery sequence and a downstream C-rich motif, were also identified in 11 simarteriviruses. However, the slippery sequences (XXXUCUCU instead of XXXUUUUU) in seven simarteriviruses can only facilitate -2 PRF to generate nsp2TF. The nsp1ß of simian hemorrhagic fever virus (SHFV) was identified as a key factor that transactivates both -2 and -1 PRF, and the universally conserved Tyr111 and Arg114 in nsp1ß are essential for this activity. In vitro translation experiments demonstrated the involvement of PCBPs in simarterivirus -2/-1 PRF. Using SHFV reverse genetics, we confirmed critical roles of nsp1ß, slippery sequence, and C-rich motif in -2/-1 PRF in SHFV-infected cells. Attenuated virus growth ability was observed in SHFV mutants with impaired expression of nsp2TF and nsp2N. Comparative genomic sequence analysis showed that key elements of -2/-1 PRF are highly conserved in all known arteriviruses except equine arteritis virus (EAV) and wobbly possum disease virus (WPDV). Furthermore, -2/-1 PRF with SHFV PRF signal RNA can be stimulated by heterotypic nsp1ßs of all non-EAV arteriviruses tested. Taken together, these data suggest that -2/-1 PRF is an evolutionarily conserved mechanism employed in non-EAV/-WPDV arteriviruses for the expression of additional viral proteins that are important for viral replication.IMPORTANCE Simarteriviruses are a group of arteriviruses infecting nonhuman primates, and a number of new species have been established in recent years. Although these arteriviruses are widely distributed among African nonhuman primates of different species, and some of them cause lethal hemorrhagic fever disease, this group of viruses has been undercharacterized. Since wild nonhuman primates are historically important sources or reservoirs of human pathogens, there is concern that simarteriviruses may be preemergent zoonotic pathogens. Thus, molecular characterization of simarteriviruses is becoming a priority in arterivirology. In this study, we demonstrated that an evolutionarily conserved ribosomal frameshifting mechanism is used by simarteriviruses and other distantly related arteriviruses for the expression of additional viral proteins. This mechanism is unprecedented in eukaryotic systems. Given the crucial role of ribosome function in all living systems, the potential impact of the in-depth characterization of this novel mechanism reaches beyond the field of virology.


Asunto(s)
Evolución Biológica , Sistema de Lectura Ribosómico , Virus del Síndrome Respiratorio y Reproductivo Porcino/genética , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Animales , Arterivirus/genética , Línea Celular , Expresión Génica , Modelos Moleculares , Conformación Proteica , Relación Estructura-Actividad , Proteínas no Estructurales Virales/química , Proteínas no Estructurales Virales/genética , Proteínas no Estructurales Virales/metabolismo , Replicación Viral
3.
PLoS Pathog ; 14(2): e1006892, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29462184

RESUMEN

Several mammalian arenaviruses (mammarenaviruses) cause hemorrhagic fevers in humans and pose serious public health concerns in their endemic regions. Additionally, mounting evidence indicates that the worldwide-distributed, prototypic mammarenavirus, lymphocytic choriomeningitis virus (LCMV), is a neglected human pathogen of clinical significance. Concerns about human-pathogenic mammarenaviruses are exacerbated by of the lack of licensed vaccines, and current anti-mammarenavirus therapy is limited to off-label use of ribavirin that is only partially effective. Detailed understanding of virus/host-cell interactions may facilitate the development of novel anti-mammarenavirus strategies by targeting components of the host-cell machinery that are required for efficient virus multiplication. Here we document the generation of a recombinant LCMV encoding a nucleoprotein (NP) containing an affinity tag (rLCMV/Strep-NP) and its use to capture the NP-interactome in infected cells. Our proteomic approach combined with genetics and pharmacological validation assays identified ATPase Na+/K+ transporting subunit alpha 1 (ATP1A1) and prohibitin (PHB) as pro-viral factors. Cell-based assays revealed that ATP1A1 and PHB are involved in different steps of the virus life cycle. Accordingly, we observed a synergistic inhibitory effect on LCMV multiplication with a combination of ATP1A1 and PHB inhibitors. We show that ATP1A1 inhibitors suppress multiplication of Lassa virus and Candid#1, a live-attenuated vaccine strain of Junín virus, suggesting that the requirement of ATP1A1 in virus multiplication is conserved among genetically distantly related mammarenaviruses. Our findings suggest that clinically approved inhibitors of ATP1A1, like digoxin, could be repurposed to treat infections by mammarenaviruses pathogenic for humans.


Asunto(s)
Coriomeningitis Linfocítica/metabolismo , Virus de la Coriomeningitis Linfocítica/metabolismo , Nucleoproteínas/metabolismo , Mapas de Interacción de Proteínas , Proteoma/análisis , Proteínas Represoras/fisiología , ATPasa Intercambiadora de Sodio-Potasio/fisiología , Células A549 , Animales , Arenaviridae/fisiología , Células Cultivadas , Chlorocebus aethiops , Cricetinae , Células HEK293 , Interacciones Huésped-Patógeno , Humanos , Coriomeningitis Linfocítica/virología , Virus de la Coriomeningitis Linfocítica/fisiología , Ratones , Prohibitinas , Unión Proteica , Proteínas Represoras/metabolismo , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Células Vero
4.
J Infect Dis ; 219(11): 1818-1822, 2019 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-30517671

RESUMEN

Lassa fever (LF) survivors develop various clinical manifestations including polyserositis, myalgia, epididymitis, and hearing loss weeks to months after recovery from acute infection. We demonstrate a systemic lymphoplasmacytic and histiocytic arteritis and periarteritis in guinea pigs more than 2 months after recovery from acute Lassa virus (LASV) infection. LASV was detected in the arterial tunica media smooth muscle cells by immunohistochemistry, in situ hybridization, and transmission electron microscopy. Our results suggest that the sequelae of LASV infection may be due to virus persistence resulting in systemic vascular damage. These findings shed light on the pathogenesis of LASV sequelae in convalescent human survivors.


Asunto(s)
Fiebre de Lassa/virología , Virus Lassa/inmunología , Animales , Convalecencia , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Femenino , Cobayas , Humanos , Inmunohistoquímica , Inflamación , Fiebre de Lassa/patología , Masculino
5.
J Virol ; 91(4)2017 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-27974564

RESUMEN

Simian arteriviruses are a diverse clade of viruses infecting captive and wild nonhuman primates. We recently reported that Kibale red colobus virus 1 (KRCV-1) causes a mild and self-limiting disease in experimentally infected crab-eating macaques, while simian hemorrhagic fever virus (SHFV) causes lethal viral hemorrhagic fever. Here we characterize how these viruses evolved during replication in cell culture and in experimentally infected macaques. During passage in cell culture, 68 substitutions that were localized in open reading frames (ORFs) likely associated with host cell entry and exit became fixed in the KRCV-1 genome. However, we did not detect any strong signatures of selection during replication in macaques. We uncovered patterns of evolution that were distinct from those observed in surveys of wild red colobus monkeys, suggesting that these species may exert different adaptive challenges for KRCV-1. During SHFV infection, we detected signatures of selection on ORF 5a and on a small subset of sites in the genome. Overall, our data suggest that patterns of evolution differ markedly among simian arteriviruses and among host species. IMPORTANCE: Certain RNA viruses can cross species barriers and cause disease in new hosts. Simian arteriviruses are a diverse group of related viruses that infect captive and wild nonhuman primates, with associated disease severity ranging from apparently asymptomatic infections to severe, viral hemorrhagic fevers. We infected nonhuman primate cell cultures and then crab-eating macaques with either simian hemorrhagic fever virus (SHFV) or Kibale red colobus virus 1 (KRCV-1) and assessed within-host viral evolution. We found that KRCV-1 quickly acquired a large number of substitutions in its genome during replication in cell culture but that evolution in macaques was limited. In contrast, we detected selection focused on SHFV ORFs 5a and 5, which encode putative membrane proteins. These patterns suggest that in addition to diverse pathogenic phenotypes, these viruses may also exhibit distinct patterns of within-host evolution both in vitro and in vivo.


Asunto(s)
Infecciones por Arterivirus/veterinaria , Arterivirus/fisiología , Evolución Biológica , Interacciones Huésped-Patógeno , Enfermedades de los Monos/virología , Animales , Interacciones Huésped-Patógeno/genética , Macaca fascicularis , Enfermedades de los Monos/genética , Sistemas de Lectura Abierta , Polimorfismo de Nucleótido Simple , ARN Viral , Selección Genética , Internalización del Virus , Replicación Viral
6.
PLoS Pathog ; 12(3): e1005466, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-27031835

RESUMEN

Little is known about the repertoire of cellular factors involved in the replication of pathogenic alphaviruses. To uncover molecular regulators of alphavirus infection, and to identify candidate drug targets, we performed a high-content imaging-based siRNA screen. We revealed an actin-remodeling pathway involving Rac1, PIP5K1- α, and Arp3, as essential for infection by pathogenic alphaviruses. Infection causes cellular actin rearrangements into large bundles of actin filaments termed actin foci. Actin foci are generated late in infection concomitantly with alphavirus envelope (E2) expression and are dependent on the activities of Rac1 and Arp3. E2 associates with actin in alphavirus-infected cells and co-localizes with Rac1-PIP5K1-α along actin filaments in the context of actin foci. Finally, Rac1, Arp3, and actin polymerization inhibitors interfere with E2 trafficking from the trans-Golgi network to the cell surface, suggesting a plausible model in which transport of E2 to the cell surface is mediated via Rac1- and Arp3-dependent actin remodeling.


Asunto(s)
Infecciones por Alphavirus/genética , Alphavirus/genética , Movimiento Celular/genética , ARN Interferente Pequeño/genética , Actinas/metabolismo , Alphavirus/metabolismo , Infecciones por Alphavirus/metabolismo , Movimiento Celular/fisiología , Replicación del ADN/genética , Humanos , Transporte de Proteínas/genética , Red trans-Golgi/genética , Red trans-Golgi/metabolismo
7.
Curr Top Microbiol Immunol ; 411: 421-445, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28918537

RESUMEN

Reverse genetics systems are used for the generation of recombinant viruses. For filoviruses, this technology has been available for more than 15 years and has been used to investigate questions regarding the molecular biology, pathogenicity, and host adaptation determinants of these viruses. Further, reporter-expressing, recombinant viruses are increasingly used as tools for screening for and characterization of candidate medical countermeasures. Thus, reverse genetics systems represent powerful research tools. Here we provide an overview of available reverse genetics systems for the generation of recombinant filoviruses, potential applications, and the achievements that have been made using these systems.


Asunto(s)
Filoviridae/genética , Filoviridae/fisiología , Genética Inversa , Filoviridae/patogenicidad , Genoma Viral/genética , Virulencia/genética
8.
Arch Virol ; 163(8): 2283-2294, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-29637429

RESUMEN

In 2018, the order Mononegavirales was expanded by inclusion of 1 new genus and 12 novel species. This article presents the updated taxonomy of the order Mononegavirales as now accepted by the International Committee on Taxonomy of Viruses (ICTV) and summarizes additional taxonomic proposals that may affect the order in the near future.


Asunto(s)
Mononegavirales/clasificación , Animales , Humanos , Mononegavirales/genética , Mononegavirales/aislamiento & purificación , Infecciones por Mononegavirales/veterinaria , Infecciones por Mononegavirales/virología , Filogenia
9.
J Virol ; 89(1): 844-56, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25355889

RESUMEN

UNLABELLED: Simian hemorrhagic fever virus (SHFV) causes a severe and almost uniformly fatal viral hemorrhagic fever in Asian macaques but is thought to be nonpathogenic for humans. To date, the SHFV life cycle is almost completely uncharacterized on the molecular level. Here, we describe the first steps of the SHFV life cycle. Our experiments indicate that SHFV enters target cells by low-pH-dependent endocytosis. Dynamin inhibitors, chlorpromazine, methyl-ß-cyclodextrin, chloroquine, and concanamycin A dramatically reduced SHFV entry efficiency, whereas the macropinocytosis inhibitors EIPA, blebbistatin, and wortmannin and the caveolin-mediated endocytosis inhibitors nystatin and filipin III had no effect. Furthermore, overexpression and knockout study and electron microscopy results indicate that SHFV entry occurs by a dynamin-dependent clathrin-mediated endocytosis-like pathway. Experiments utilizing latrunculin B, cytochalasin B, and cytochalasin D indicate that SHFV does not hijack the actin polymerization pathway. Treatment of target cells with proteases (proteinase K, papain, α-chymotrypsin, and trypsin) abrogated entry, indicating that the SHFV cell surface receptor is a protein. Phospholipases A2 and D had no effect on SHFV entry. Finally, treatment of cells with antibodies targeting CD163, a cell surface molecule identified as an entry factor for the SHFV-related porcine reproductive and respiratory syndrome virus, diminished SHFV replication, identifying CD163 as an important SHFV entry component. IMPORTANCE: Simian hemorrhagic fever virus (SHFV) causes highly lethal disease in Asian macaques resembling human illness caused by Ebola or Lassa virus. However, little is known about SHFV's ecology and molecular biology and the mechanism by which it causes disease. The results of this study shed light on how SHFV enters its target cells. Using electron microscopy and inhibitors for various cellular pathways, we demonstrate that SHFV invades cells by low-pH-dependent, actin-independent endocytosis, likely with the help of a cellular surface protein.


Asunto(s)
Antígenos CD/metabolismo , Antígenos de Diferenciación Mielomonocítica/metabolismo , Arterivirus/fisiología , Endocitosis , Interacciones Huésped-Patógeno , Receptores de Superficie Celular/metabolismo , Receptores Virales/metabolismo , Internalización del Virus , Animales , Línea Celular , Chlorocebus aethiops
10.
J Virol ; 88(21): 12572-85, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25142579

RESUMEN

UNLABELLED: The recent identification of highly divergent influenza A viruses in bats revealed a new, geographically dispersed viral reservoir. To investigate the molecular mechanisms of host-restricted viral tropism and the potential for transmission of viruses between humans and bats, we exposed a panel of cell lines from bats of diverse species to a prototypical human-origin influenza A virus. All of the tested bat cell lines were susceptible to influenza A virus infection. Experimental evolution of human and avian-like viruses in bat cells resulted in efficient replication and created highly cytopathic variants. Deep sequencing of adapted human influenza A virus revealed a mutation in the PA polymerase subunit not previously described, M285K. Recombinant virus with the PA M285K mutation completely phenocopied the adapted virus. Adaptation of an avian virus-like virus resulted in the canonical PB2 E627K mutation that is required for efficient replication in other mammals. None of the adaptive mutations occurred in the gene for viral hemagglutinin, a gene that frequently acquires changes to recognize host-specific variations in sialic acid receptors. We showed that human influenza A virus uses canonical sialic acid receptors to infect bat cells, even though bat influenza A viruses do not appear to use these receptors for virus entry. Our results demonstrate that bats are unique hosts that select for both a novel mutation and a well-known adaptive mutation in the viral polymerase to support replication. IMPORTANCE: Bats constitute well-known reservoirs for viruses that may be transferred into human populations, sometimes with fatal consequences. Influenza A viruses have recently been identified in bats, dramatically expanding the known host range of this virus. Here we investigated the replication of human influenza A virus in bat cell lines and the barriers that the virus faces in this new host. Human influenza A and B viruses infected cells from geographically and evolutionarily diverse New and Old World bats. Viruses mutated during infections in bat cells, resulting in increased replication and cytopathic effects. These mutations were mapped to the viral polymerase and shown to be solely responsible for adaptation to bat cells. Our data suggest that replication of human influenza A viruses in a nonnative host drives the evolution of new variants and may be an important source of genetic diversity.


Asunto(s)
Adaptación Biológica , Virus de la Influenza A/enzimología , Virus de la Influenza A/genética , ARN Polimerasa Dependiente del ARN/metabolismo , Proteínas Virales/metabolismo , Animales , Línea Celular , Quirópteros , Efecto Citopatogénico Viral , Análisis Mutacional de ADN , Secuenciación de Nucleótidos de Alto Rendimiento , Virus de la Influenza A/fisiología , Mutación Missense , ARN Polimerasa Dependiente del ARN/genética , Proteínas Virales/genética , Replicación Viral
11.
J Virol ; 87(24): 13930-5, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24109228

RESUMEN

Ocozocoautla de Espinosa virus (OCEV) is a novel, uncultured arenavirus. We found that the OCEV glycoprotein mediates entry into grivet and bat cells through transferrin receptor 1 (TfR1) binding but that OCEV glycoprotein precursor (GPC)-pseudotyped retroviruses poorly entered 53 human cancer cell lines. Interestingly, OCEV and Tacaribe virus could use bat, but not human, TfR1. Replacing three human TfR1 amino acids with their bat ortholog counterparts transformed human TfR1 into an efficient OCEV and Tacaribe virus receptor.


Asunto(s)
Infecciones por Arenaviridae/metabolismo , Infecciones por Arenaviridae/veterinaria , Arenavirus del Nuevo Mundo/fisiología , Quirópteros/metabolismo , Chlorocebus aethiops/metabolismo , Receptores de Transferrina/metabolismo , Receptores Virales/metabolismo , Internalización del Virus , Secuencia de Aminoácidos , Animales , Antígenos CD/genética , Antígenos CD/metabolismo , Infecciones por Arenaviridae/genética , Infecciones por Arenaviridae/virología , Arenavirus del Nuevo Mundo/genética , Línea Celular , Quirópteros/genética , Quirópteros/virología , Chlorocebus aethiops/genética , Chlorocebus aethiops/virología , Humanos , Datos de Secuencia Molecular , Receptores de Transferrina/genética , Receptores Virales/genética , Alineación de Secuencia , Proteínas del Envoltorio Viral/genética , Proteínas del Envoltorio Viral/metabolismo
12.
Arch Virol ; 159(5): 1229-37, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24190508

RESUMEN

Specific alterations (mutations, deletions, insertions) of virus genomes are crucial for the functional characterization of their regulatory elements and their expression products, as well as a prerequisite for the creation of attenuated viruses that could serve as vaccine candidates. Virus genome tailoring can be performed either by using traditionally cloned genomes as starting materials, followed by site-directed mutagenesis, or by de novo synthesis of modified virus genomes or parts thereof. A systematic nomenclature for such recombinant viruses is necessary to set them apart from wild-type and laboratory-adapted viruses, and to improve communication and collaborations among researchers who may want to use recombinant viruses or create novel viruses based on them. A large group of filovirus experts has recently proposed nomenclatures for natural and laboratory animal-adapted filoviruses that aim to simplify the retrieval of sequence data from electronic databases. Here, this work is extended to include nomenclature for filoviruses obtained in the laboratory via reverse genetics systems. The previously developed template for natural filovirus genetic variant naming, (/)///-, is retained, but we propose to adapt the type of information added to each field for cDNA clone-derived filoviruses. For instance, the full-length designation of an Ebola virus Kikwit variant rescued from a plasmid developed at the US Centers for Disease Control and Prevention could be akin to "Ebola virus H.sapiens-rec/COD/1995/Kikwit-abc1" (with the suffix "rec" identifying the recombinant nature of the virus and "abc1" being a placeholder for any meaningful isolate designator). Such a full-length designation should be used in databases and the methods section of publications. Shortened designations (such as "EBOV H.sap/COD/95/Kik-abc1") and abbreviations (such as "EBOV/Kik-abc1") could be used in the remainder of the text, depending on how critical it is to convey information contained in the full-length name. "EBOV" would suffice if only one EBOV strain/variant/isolate is addressed.


Asunto(s)
Filoviridae/clasificación , Filoviridae/genética , Virus Reordenados/clasificación , Virus Reordenados/genética , Genoma Viral
13.
Sci Transl Med ; 16(753): eado2817, 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38924429

RESUMEN

The evolution of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has resulted in variants that can escape neutralization by therapeutic antibodies. Here, we describe AZD3152, a SARS-CoV-2-neutralizing monoclonal antibody designed to provide improved potency and coverage against emerging variants. AZD3152 binds to the back left shoulder of the SARS-CoV-2 spike protein receptor binding domain and prevents interaction with the human angiotensin-converting enzyme 2 receptor. AZD3152 potently neutralized a broad panel of pseudovirus variants, including the currently dominant Omicron variant JN.1 but has reduced potency against XBB subvariants containing F456L. In vitro studies confirmed F456L resistance and additionally identified T415I and K458E as escape mutations. In a Syrian hamster challenge model, prophylactic administration of AZD3152 protected hamsters from weight loss and inflammation-related lung pathologies and reduced lung viral load. In the phase 1 sentinel safety cohort of the ongoing SUPERNOVA study (ClinicalTrials.gov: NCT05648110), a single 600-mg intramuscular injection of AZD5156 (containing 300 mg each of AZD3152 and cilgavimab) was well tolerated in adults through day 91. Observed serum concentrations of AZD3152 through day 91 were similar to those observed with cilgavimab and consistent with predictions for AZD7442, a SARS-CoV-2-neutralizing antibody combination of cilgavimab and tixagevimab, in a population pharmacokinetic model. On the basis of its pharmacokinetic characteristics, AZD3152 is predicted to provide durable protection against symptomatic coronavirus disease 2019 caused by susceptible SARS-CoV-2 variants, such as JN.1, in humans.


Asunto(s)
Anticuerpos Neutralizantes , COVID-19 , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , Animales , SARS-CoV-2/efectos de los fármacos , Humanos , COVID-19/virología , Anticuerpos Neutralizantes/inmunología , Glicoproteína de la Espiga del Coronavirus/metabolismo , Cricetinae , Tratamiento Farmacológico de COVID-19 , Anticuerpos Monoclonales Humanizados/farmacología , Anticuerpos Monoclonales Humanizados/uso terapéutico , Anticuerpos Monoclonales Humanizados/farmacocinética , Mesocricetus , Femenino , Masculino , Adulto , Anticuerpos Antivirales/inmunología , Mutación/genética , Anticuerpos Monoclonales , Enzima Convertidora de Angiotensina 2/metabolismo , Carga Viral/efectos de los fármacos
14.
Arch Virol ; 158(10): 2209-26, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23636404

RESUMEN

Nyamanini virus (NYMV) and Midway virus (MIDWV) are unclassified tick-borne agents that infect land birds and seabirds, respectively. The recent molecular characterization of both viruses confirmed their already known close serological relationship and revealed them to be nonsegmented, single- and negative-stranded RNA viruses that are clearly related to, but quite distinct from, members of the order Mononegavirales (bornaviruses, filoviruses, paramyxoviruses, and rhabdoviruses). A third agent, soybean cyst nematode virus 1 (SbCNV-1, previously named soybean cyst nematode nyavirus), was recently found to be an additional member of this new virus group. Here, we review the current knowledge about all three viruses and propose classifying them as members of a new mononegaviral family, Nyamiviridae.


Asunto(s)
Enfermedades de las Aves/virología , Nematodos/virología , Virus ARN/clasificación , Virus ARN/genética , Animales , Aves , Filogenia , Técnicas de Cultivo de Tejidos , Cultivo de Virus , Replicación Viral
15.
Methods Mol Biol ; 2682: 233-244, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37610586

RESUMEN

Enzyme-linked Immunosorbent assays or ELISAs are a versatile method for detecting various immunological ligands of interest. As the name suggests, ELISAs rely on the interaction between a ligand and an antibody to produce results. In the study of infectious disease, ELISAs are commonly used to determine if a pathogen-specific immune response has occurred in a host organism. These assays can be performed in serosurveys as part of epidemiological investigations during, or following, an infectious disease outbreak. In the research environment, ELISAs are used to quantify the humoral immune response following infection or vaccination of a host organism. Data from these assays can be used to determine the type of immune response elicited (e.g. IgG1 vs IgG2) and the robustness of the response. Here, we describe ELISAs that were developed for the study of either hamsters or non-human primates vaccinated against Nipah virus infection, or infected with Nipah virus. The ELISAs described include assays for both IgG and IgM in the hamster and non-human primate models for Nipah virus-induced disease. An assay was also developed for the detection of IgA in bronchoalveolar lavage from non-human primates.


Asunto(s)
Bioensayo , Inmunoglobulina G , Animales , Cricetinae , Ensayo de Inmunoadsorción Enzimática , Lavado Broncoalveolar , Primates
16.
JCI Insight ; 7(1)2022 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-34807849

RESUMEN

Sangivamycin is a nucleoside analog that is well tolerated by humans and broadly active against phylogenetically distinct viruses, including arenaviruses, filoviruses, and orthopoxviruses. Here, we show that sangivamycin is a potent antiviral against multiple variants of replicative severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) with half-maximal inhibitory concentration in the nanomolar range in several cell types. Sangivamycin suppressed SARS-CoV-2 replication with greater efficacy than remdesivir (another broad-spectrum nucleoside analog). When we investigated sangivamycin's potential for clinical administration, pharmacokinetic; absorption, distribution, metabolism, and excretion (ADME); and toxicity properties were found to be favorable. When tested in combination with remdesivir, efficacy was additive rather than competitive against SARS-CoV-2. The proven safety in humans, long half-life, potent antiviral activity (compared to remdesivir), and combinatorial potential suggest that sangivamycin is likely to be efficacious alone or in combination therapy to suppress viremia in patients. Sangivamycin may also have the ability to help combat drug-resistant or vaccine-escaping SARS-CoV-2 variants since it is antivirally active against several tested variants. Our results support the pursuit of sangivamycin for further preclinical and clinical development as a potential coronavirus disease 2019 therapeutic.


Asunto(s)
Antivirales , Nucleósidos de Pirimidina , SARS-CoV-2/efectos de los fármacos , Animales , Antivirales/farmacocinética , Antivirales/farmacología , Antivirales/toxicidad , COVID-19/virología , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Chlorocebus aethiops , Femenino , Humanos , Masculino , Ratones , Nucleósidos de Pirimidina/farmacocinética , Nucleósidos de Pirimidina/farmacología , Nucleósidos de Pirimidina/toxicidad , Células Vero
17.
PLoS One ; 16(1): e0245024, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33411835

RESUMEN

Ebola virus (EBOV), a member of the mononegaviral family Filoviridae, causes severe disease associated with high lethality in humans. Despite enormous progress in development of EBOV medical countermeasures, no anti-EBOV treatment has been approved. We designed an immunotoxin in which a single-chain variable region fragment of the EBOV glycoprotein-specific monoclonal antibody 6D8 was fused to the effector domains of Pseudomonas aeruginosa exotoxin A (PE38). This immunotoxin, 6D8-PE38, bound specifically to cells expressing EBOV glycoproteins. Importantly, 6D8-PE38 targeted EBOV-infected cells, as evidenced by inhibition of infectious EBOV production from infected cells, including primary human macrophages. The data presented here provide a proof of concept for immunotoxin-based targeted killing of infected cells as a potential antiviral intervention for Ebola virus disease.


Asunto(s)
Ebolavirus/efectos de los fármacos , Glicoproteínas/inmunología , Inmunotoxinas/farmacología , Replicación Viral/efectos de los fármacos , Línea Celular Tumoral , Ebolavirus/inmunología , Humanos , Proteínas del Envoltorio Viral/inmunología
18.
Viruses ; 13(5)2021 05 12.
Artículo en Inglés | MEDLINE | ID: mdl-34065987

RESUMEN

As the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic expanded, it was clear that effective testing for the presence of neutralizing antibodies in the blood of convalescent patients would be critical for development of plasma-based therapeutic approaches. To address the need for a high-quality neutralization assay against SARS-CoV-2, a previously established fluorescence reduction neutralization assay (FRNA) against Middle East respiratory syndrome coronavirus (MERS-CoV) was modified and optimized. The SARS-CoV-2 FRNA provides a quantitative assessment of a large number of infected cells through use of a high-content imaging system. Because of this approach, and the fact that it does not involve subjective interpretation, this assay is more efficient and more accurate than other neutralization assays. In addition, the ability to set robust acceptance criteria for individual plates and specific test wells provided further rigor to this assay. Such agile adaptability avails use with multiple virus variants. By February 2021, the SARS-CoV-2 FRNA had been used to screen over 5000 samples, including acute and convalescent plasma or serum samples and therapeutic antibody treatments, for SARS-CoV-2 neutralizing titers.


Asunto(s)
Anticuerpos Neutralizantes/análisis , COVID-19/inmunología , Pruebas de Neutralización/métodos , Animales , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/sangre , COVID-19/metabolismo , COVID-19/terapia , Chlorocebus aethiops , Ensayo de Inmunoadsorción Enzimática/métodos , Humanos , Inmunización Pasiva , Inmunoglobulina G/sangre , Pandemias , SARS-CoV-2/inmunología , SARS-CoV-2/patogenicidad , Glicoproteína de la Espiga del Coronavirus/inmunología , Células Vero , Sueroterapia para COVID-19
19.
bioRxiv ; 2021 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-33688658

RESUMEN

As the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic was expanding, it was clear that effective testing for the presence of neutralizing antibodies in the blood of convalescent patients would be critical for development of plasma-based therapeutic approaches. To address the need for a high-quality neutralization assay against SARS-CoV-2, a previously established fluorescence reduction neutralization assay (FRNA) against Middle East respiratory syndrome coronavirus (MERS-CoV) was modified and optimized. The SARS-CoV-2 FRNA provides a quantitative assessment of a large number of infected cells through use of a high-content imaging system. Because of this approach, and the fact that it does not involve subjective interpretation, this assay is more efficient and more accurate than other neutralization assays. In addition, the ability to set robust acceptance criteria for individual plates and specific test wells provided further rigor to this assay. Such agile adaptability avails use with multiple virus variants. By February 2021, the SARS-CoV-2 FRNA had been used to screen over 5,000 samples, including acute and convalescent plasma or serum samples and therapeutic antibody treatments, for SARS-CoV-2 neutralizing titers.

20.
Viruses ; 13(4)2021 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-33917085

RESUMEN

Simian hemorrhagic fever virus (SHFV) causes acute, lethal disease in macaques. We developed a single-plasmid cDNA-launch infectious clone of SHFV (rSHFV) and modified the clone to rescue an enhanced green fluorescent protein-expressing rSHFV-eGFP that can be used for rapid and quantitative detection of infection. SHFV has a narrow cell tropism in vitro, with only the grivet MA-104 cell line and a few other grivet cell lines being susceptible to virion entry and permissive to infection. Using rSHFV-eGFP, we demonstrate that one cricetid rodent cell line and three ape cell lines also fully support SHFV replication, whereas 55 human cell lines, 11 bat cell lines, and three rodent cells do not. Interestingly, some human and other mammalian cell lines apparently resistant to SHFV infection are permissive after transfection with the rSHFV-eGFP cDNA-launch plasmid. To further demonstrate the investigative potential of the infectious clone system, we introduced stop codons into eight viral open reading frames (ORFs). This approach suggested that at least one ORF, ORF 2b', is dispensable for SHFV in vitro replication. Our proof-of-principle experiments indicated that rSHFV-eGFP is a useful tool for illuminating the understudied molecular biology of SHFV.


Asunto(s)
Arterivirus/genética , ADN Complementario/genética , Proteínas Fluorescentes Verdes/genética , Sistemas de Lectura Abierta , ARN Viral/genética , Recombinación Genética , Replicación Viral/genética , Animales , Arterivirus/fisiología , Línea Celular , Quirópteros , Hominidae , Humanos , Plásmidos/genética , Prueba de Estudio Conceptual , Roedores
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA