Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
J Neurosci ; 43(48): 8104-8125, 2023 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-37816598

RESUMEN

In the brain, microRNAs (miRNAs) are believed to play a role in orchestrating synaptic plasticity at a higher level by acting as an additional mechanism of translational regulation, alongside the mRNA/polysome system. Despite extensive research, our understanding of the specific contribution of individual miRNA to the function of dopaminergic neurons (DAn) remains limited. By performing a dopaminergic-specific miRNA screening, we have identified miR-218 as a critical regulator of DAn activity in male and female mice. We have found that miR-218 is specifically expressed in mesencephalic DAn and is able to promote dopaminergic differentiation of embryonic stem cells and functional maturation of transdifferentiated induced DA neurons. Midbrain-specific deletion of both genes encoding for miR-218 (referred to as miR-218-1 and mir218-2) affects the expression of a cluster of synaptic-related mRNAs and alters the intrinsic excitability of DAn, as it increases instantaneous frequencies of evoked action potentials, reduces rheobase current, affects the ionic current underlying the action potential after hyperpolarization phase, and reduces dopamine efflux in response to a single electrical stimulus. Our findings provide a comprehensive understanding of the involvement of miR-218 in the dopaminergic system and highlight its role as a modulator of dopaminergic transmission.SIGNIFICANCE STATEMENT In the past decade, several miRNAs have emerged as potential regulators of synapse activity through the modulation of specific gene expression. Among these, we have identified a dopaminergic-specific miRNA, miR-218, which is able to promote dopaminergic differentiation and regulates the translation of an entire cluster of synapse related mRNAs. Deletion of miR-218 has notable effects on dopamine release and alters the intrinsic excitability of dopaminergic neurons, indicating a direct control of dopaminergic activity by miR-218.


Asunto(s)
Dopamina , MicroARNs , Ratones , Masculino , Femenino , Animales , Dopamina/metabolismo , Diferenciación Celular , Neuronas Dopaminérgicas/fisiología , MicroARNs/genética , MicroARNs/metabolismo , Neurotransmisores/metabolismo
2.
Int J Mol Sci ; 23(13)2022 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-35805964

RESUMEN

The development of midbrain dopaminergic (DA) neurons requires a fine temporal and spatial regulation of a very specific gene expression program. Here, we report that during mouse brain development, the microRNA (miR-) 204/211 is present at a high level in a subset of DA precursors expressing the transcription factor Lmx1a, an early determinant for DA-commitment, but not in more mature neurons expressing Th or Pitx3. By combining different in vitro model systems of DA differentiation, we show that the levels of Lmx1a influence the expression of miR-204/211. Using published transcriptomic data, we found a significant enrichment of miR-204/211 target genes in midbrain dopaminergic neurons where Lmx1a was selectively deleted at embryonic stages. We further demonstrated that miR-204/211 controls the timing of the DA differentiation by directly downregulating the expression of Nurr1, a late DA differentiation master gene. Thus, our data indicate the Lmx1a-miR-204/211-Nurr1 axis as a key component in the cascade of events that ultimately lead to mature midbrain dopaminergic neurons differentiation and point to miR-204/211 as the molecular switch regulating the timing of Nurr1 expression.


Asunto(s)
Neuronas Dopaminérgicas , Proteínas con Homeodominio LIM , MicroARNs , Miembro 2 del Grupo A de la Subfamilia 4 de Receptores Nucleares , Animales , Diferenciación Celular/fisiología , Dopamina/metabolismo , Neuronas Dopaminérgicas/citología , Neuronas Dopaminérgicas/metabolismo , Proteínas con Homeodominio LIM/genética , Proteínas con Homeodominio LIM/metabolismo , Mesencéfalo/metabolismo , Ratones , MicroARNs/genética , MicroARNs/metabolismo , Miembro 2 del Grupo A de la Subfamilia 4 de Receptores Nucleares/genética , Miembro 2 del Grupo A de la Subfamilia 4 de Receptores Nucleares/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
3.
Adv Funct Mater ; 30(44): 1910250, 2020 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-34566552

RESUMEN

To date, pharmaceutical progresses in central nervous system (CNS) diseases are clearly hampered by the lack of suitable disease models. Indeed, animal models do not faithfully represent human neurodegenerative processes and human in vitro 2D cell culture systems cannot recapitulate the in vivo complexity of neural systems. The search for valuable models of neurodegenerative diseases has recently been revived by the addition of 3D culture that allows to re-create the in vivo microenvironment including the interactions among different neural cell types and the surrounding extracellular matrix (ECM) components. In this review, the new challenges in the field of CNS diseases in vitro 3D modeling are discussed, focusing on the implementation of bioprinting approaches enabling positional control on the generation of the 3D microenvironments. The focus is specifically on the choice of the optimal materials to simulate the ECM brain compartment and the biofabrication technologies needed to shape the cellular components within a microenvironment that significantly represents brain biochemical and biophysical parameters.

4.
Adv Funct Mater ; 30(48): 2000893, 2020 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-34658689

RESUMEN

End-stage liver diseases are an increasing health burden, and liver transplantations are currently the only curative treatment option. Due to a lack of donor livers, alternative treatments are urgently needed. Human liver organoids are very promising for regenerative medicine; however, organoids are currently cultured in Matrigel, which is extracted from the extracellular matrix of the Engelbreth-Holm-Swarm mouse sarcoma. Matrigel is poorly defined, suffers from high batch-to-batch variability and is of xenogeneic origin, which limits the clinical application of organoids. Here, a novel hydrogel based on polyisocyanopeptides (PIC) and laminin-111 is described for human liver organoid cultures. PIC is a synthetic polymer that can form a hydrogel with thermosensitive properties, making it easy to handle and very attractive for clinical applications. Organoids in an optimized PIC hydrogel proliferate at rates comparable to those observed with Matrigel; proliferation rates are stiffness-dependent, with lower stiffnesses being optimal for organoid proliferation. Moreover, organoids can be efficiently differentiated toward a hepatocyte-like phenotype with key liver functions. This proliferation and differentiation potential maintain over at least 14 passages. The results indicate that PIC is very promising for human liver organoid culture and has the potential to be used in a variety of clinical applications including cell therapy and tissue engineering.

5.
Brain ; 142(7): 1905-1920, 2019 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-31143934

RESUMEN

Allele-specific silencing by RNA interference (ASP-siRNA) holds promise as a therapeutic strategy for downregulating a single mutant allele with minimal suppression of the corresponding wild-type allele. This approach has been effectively used to target autosomal dominant mutations and single nucleotide polymorphisms linked with aberrantly expanded trinucleotide repeats. Here, we propose ASP-siRNA as a preferable choice to target duplicated disease genes, avoiding potentially harmful excessive downregulation. As a proof-of-concept, we studied autosomal dominant adult-onset demyelinating leukodystrophy (ADLD) due to lamin B1 (LMNB1) duplication, a hereditary, progressive and fatal disorder affecting myelin in the CNS. Using a reporter system, we screened the most efficient ASP-siRNAs preferentially targeting one of the alleles at rs1051644 (average minor allele frequency: 0.45) located in the 3' untranslated region of the gene. We identified four siRNAs with a high efficacy and allele-specificity, which were tested in ADLD patient-derived fibroblasts. Three of the small interfering RNAs were highly selective for the target allele and restored both LMNB1 mRNA and protein levels close to control levels. Furthermore, small interfering RNA treatment abrogates the ADLD-specific phenotypes in fibroblasts and in two disease-relevant cellular models: murine oligodendrocytes overexpressing human LMNB1, and neurons directly reprogrammed from patients' fibroblasts. In conclusion, we demonstrated that ASP-silencing by RNA interference is a suitable and promising therapeutic option for ADLD. Moreover, our results have a broad translational value extending to several pathological conditions linked to gene-gain in copy number variations.


Asunto(s)
Alelos , Duplicación de Gen/efectos de los fármacos , Silenciador del Gen , Enfermedades Genéticas Congénitas/tratamiento farmacológico , Lamina Tipo B/metabolismo , Enfermedad de Pelizaeus-Merzbacher/tratamiento farmacológico , ARN Interferente Pequeño/uso terapéutico , Animales , Estudios de Casos y Controles , Células Cultivadas , Fibroblastos/efectos de los fármacos , Vectores Genéticos , Humanos , Lentivirus , Neuronas/metabolismo , Ratas
6.
Proc Natl Acad Sci U S A ; 113(44): E6831-E6839, 2016 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-27742791

RESUMEN

Three-dimensional organoid constructs serve as increasingly widespread in vitro models for development and disease modeling. Current approaches to recreate morphogenetic processes in vitro rely on poorly controllable and ill-defined matrices, thereby largely overlooking the contribution of biochemical and biophysical extracellular matrix (ECM) factors in promoting multicellular growth and reorganization. Here, we show how defined synthetic matrices can be used to explore the role of the ECM in the development of complex 3D neuroepithelial cysts that recapitulate key steps in early neurogenesis. We demonstrate how key ECM parameters are involved in specifying cytoskeleton-mediated symmetry-breaking events that ultimately lead to neural tube-like patterning along the dorsal-ventral (DV) axis. Such synthetic materials serve as valuable tools for studying the discrete action of extrinsic factors in organogenesis, and allow for the discovery of relationships between cytoskeletal mechanobiology and morphogenesis.

7.
Nat Mater ; 15(3): 344-52, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26752655

RESUMEN

Since the discovery of induced pluripotent stem cells (iPSCs), numerous approaches have been explored to improve the original protocol, which is based on a two-dimensional (2D) cell-culture system. Surprisingly, nothing is known about the effect of a more biologically faithful 3D environment on somatic-cell reprogramming. Here, we report a systematic analysis of how reprogramming of somatic cells occurs within engineered 3D extracellular matrices. By modulating microenvironmental stiffness, degradability and biochemical composition, we have identified a previously unknown role for biophysical effectors in the promotion of iPSC generation. We find that the physical cell confinement imposed by the 3D microenvironment boosts reprogramming through an accelerated mesenchymal-to-epithelial transition and increased epigenetic remodelling. We conclude that 3D microenvironmental signals act synergistically with reprogramming transcription factors to increase somatic plasticity.


Asunto(s)
Técnicas de Cultivo de Célula , Diferenciación Celular , Microambiente Celular , Células Epiteliales/fisiología , Células Madre Mesenquimatosas/fisiología , Células Madre Pluripotentes/fisiología , Animales , Células Epiteliales/citología , Regulación de la Expresión Génica , Humanos , Ensayo de Materiales , Células Madre Mesenquimatosas/citología , Ratones , Células Madre Pluripotentes/citología
8.
Nature ; 476(7359): 224-7, 2011 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-21725324

RESUMEN

Transplantation of dopaminergic neurons can potentially improve the clinical outcome of Parkinson's disease, a neurological disorder resulting from degeneration of mesencephalic dopaminergic neurons. In particular, transplantation of embryonic-stem-cell-derived dopaminergic neurons has been shown to be efficient in restoring motor symptoms in conditions of dopamine deficiency. However, the use of pluripotent-derived cells might lead to the development of tumours if not properly controlled. Here we identified a minimal set of three transcription factors--Mash1 (also known as Ascl1), Nurr1 (also known as Nr4a2) and Lmx1a--that are able to generate directly functional dopaminergic neurons from mouse and human fibroblasts without reverting to a progenitor cell stage. Induced dopaminergic (iDA) cells release dopamine and show spontaneous electrical activity organized in regular spikes consistent with the pacemaker activity featured by brain dopaminergic neurons. The three factors were able to elicit dopaminergic neuronal conversion in prenatal and adult fibroblasts from healthy donors and Parkinson's disease patients. Direct generation of iDA cells from somatic cells might have significant implications for understanding critical processes for neuronal development, in vitro disease modelling and cell replacement therapies.


Asunto(s)
Diferenciación Celular , Reprogramación Celular , Dopamina/metabolismo , Fibroblastos/citología , Neuronas/citología , Neuronas/metabolismo , Potenciales de Acción , Animales , Animales Recién Nacidos , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Diferenciación Celular/genética , Diferenciación Celular/fisiología , Células Cultivadas , Reprogramación Celular/genética , Reprogramación Celular/fisiología , Embrión de Mamíferos/citología , Fibroblastos/metabolismo , Perfilación de la Expresión Génica , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Humanos , Proteínas con Homeodominio LIM , Ratones , Miembro 2 del Grupo A de la Subfamilia 4 de Receptores Nucleares/genética , Miembro 2 del Grupo A de la Subfamilia 4 de Receptores Nucleares/metabolismo , Análisis de Secuencia por Matrices de Oligonucleótidos , Enfermedad de Parkinson/patología , Técnicas de Placa-Clamp , Medicina Regenerativa , Piel/citología , Factores de Transcripción
9.
J Control Release ; 361: 455-469, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37567506

RESUMEN

Natural killer (NK) cells participate in the immune system by eliminating cancer and virally infected cells through germline-encoded surface receptors. Their independence from prior activation as well as their significantly lower toxicity have placed them in the spotlight as an alternative to T cells for adoptive cell therapy (ACT). Engineering NK cells with mRNA has shown great potential in ACT by enhancing their tumor targeting and cytotoxicity. However, mRNA transfection of NK cells is challenging, as the most common delivery methods, such as electroporation, show limitations. Therefore, an alternative non-viral delivery system that enables high mRNA transfection efficiency with preservation of the cell viability would be beneficial for the development of NK cell therapies. In this study, we investigated both polymeric and lipid nanoparticle (LNP) formulations for eGFP-mRNA delivery to NK cells, based on a dimethylethanolamine and diethylethanolamine polymeric library and on different ionizable lipids, respectively. The mRNA nanoparticles based on cationic polymers showed limited internalization by NK cells and low transfection efficiency. On the other hand, mRNA-LNP formulations were optimized by tailoring the lipid composition and the microfluidic parameters, resulting in a high transfection efficiency (∼100%) and high protein expression in NK cells. In conclusion, compared to polyplexes and electroporation, the optimized LNPs show a greater transfection efficiency and higher overall eGFP expression, when tested in NK (KHYG-1) and T (Jurkat) cell lines, and cord blood-derived NK cells. Thus, LNP-based mRNA delivery represents a promising strategy to further develop novel NK cell therapies.


Asunto(s)
Nanopartículas , Neoplasias , Humanos , ARN Mensajero , Transfección , Células Asesinas Naturales , Neoplasias/metabolismo , Polímeros/metabolismo
10.
J Control Release ; 360: 212-224, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37343725

RESUMEN

Parkinson's disease (PD) is a neurodegenerative disorder characterized by degeneration of dopaminergic neurons in the substantia nigra pars compacta (SNpc) resulting in dopamine (DA) deficiency, which manifests itself in motor symptoms including tremors, rigidity and bradykinesia. Current PD treatments aim at symptom reduction through oral delivery of levodopa (L-DOPA), a precursor of DA. However, L-DOPA delivery to the brain is inefficient and increased dosages are required as the disease progresses, resulting in serious side effects like dyskinesias. To improve PD treatment efficacy and to reduce side effects, recent research focuses on the encapsulation of L-DOPA into polymeric- and lipid-based nanoparticles (NPs). These formulations can protect L-DOPA from systemic decarboxylation into DA and improve L-DOPA delivery to the central nervous system. Additionally, NPs can be modified with proteins, peptides and antibodies specifically targeting the blood-brain barrier (BBB), thereby reducing required dosages and free systemic DA. Alternative delivery approaches for NP-encapsulated L-DOPA include intravenous (IV) administration, transdermal delivery using adhesive patches and direct intranasal administration, facilitating increased therapeutic DA concentrations in the brain. This review provides an overview of the recent advances for NP-mediated L-DOPA delivery to the brain, and debates challenges and future perspectives on the field.


Asunto(s)
Nanopartículas , Enfermedad de Parkinson , Humanos , Levodopa/uso terapéutico , Enfermedad de Parkinson/metabolismo , Dopamina/metabolismo , Encéfalo/metabolismo
11.
Adv Mater ; 35(36): e2301673, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37269532

RESUMEN

In living tissues, cells express their functions following complex signals from their surrounding microenvironment. Capturing both hierarchical architectures at the micro- and macroscale, and anisotropic cell patterning remains a major challenge in bioprinting, and a bottleneck toward creating physiologically-relevant models. Addressing this limitation, a novel technique is introduced, termed Embedded Extrusion-Volumetric Printing (EmVP), converging extrusion-bioprinting and layer-less, ultra-fast volumetric bioprinting, allowing spatially pattern multiple inks/cell types. Light-responsive microgels are developed for the first time as bioresins (µResins) for light-based volumetric bioprinting, providing a microporous environment permissive for cell homing and self-organization. Tuning the mechanical and optical properties of gelatin-based microparticles enables their use as support bath for suspended extrusion printing, in which features containing high cell densities can be easily introduced. µResins can be sculpted within seconds with tomographic light projections into centimeter-scale, granular hydrogel-based, convoluted constructs. Interstitial microvoids enhanced differentiation of multiple stem/progenitor cells (vascular, mesenchymal, neural), otherwise not possible with conventional bulk hydrogels. As proof-of-concept, EmVP is applied to create complex synthetic biology-inspired intercellular communication models, where adipocyte differentiation is regulated by optogenetic-engineered pancreatic cells. Overall, EmVP offers new avenues for producing regenerative grafts with biological functionality, and for developing engineered living systems and (metabolic) disease models.


Asunto(s)
Bioimpresión , Microgeles , Ingeniería de Tejidos/métodos , Hidrogeles , Bioimpresión/métodos , Impresión Tridimensional , Andamios del Tejido
12.
Exp Cell Res ; 317(4): 464-73, 2011 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-21093432

RESUMEN

Krüppel-like factor 7 (KLF7) belongs to the large family of KLF transcription factors, which comprises at least 17 members. Within this family, KLF7 is unique since its expression is strictly restricted within the nervous system during development. We have previously shown that KLF7 is required for neuronal morphogenesis and axon guidance in selected regions of the nervous system, including hippocampus, olfactory bulbs and cortex, as well as in neuronal cell cultures. In the present work, we have furthered our analysis of the role of KLF7 in central nervous system development. By gene expression analysis during brain embryogenesis, we found significant alterations in dopaminergic neurons in Klf7 null mice. In particular, the tyrosine hydroxylase (TH) and dopamine transporter (Dat) transcripts are strongly decreased in the olfactory bulbs and ventral midbrain at birth, compared to wild-type littermates. Interestingly, Klf7-mutant mice show a dramatic reduction of TH-positive neurons in the olfactory bulbs, but no change in GABAergic or midbrain dopaminergic neurons. These observations raise the possibility that a lack of a KLF family member affects dopaminergic neuron development.


Asunto(s)
Dopamina , Desarrollo Embrionario , Factores de Transcripción de Tipo Kruppel/fisiología , Neuronas/citología , Bulbo Olfatorio/crecimiento & desarrollo , Animales , Sistema Nervioso Central/crecimiento & desarrollo , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/biosíntesis , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/genética , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Ratones , Ratones Noqueados , Bulbo Olfatorio/citología , Factores de Transcripción/fisiología , Tirosina 3-Monooxigenasa/biosíntesis , Tirosina 3-Monooxigenasa/genética
13.
Front Aging Neurosci ; 14: 1069482, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36620769

RESUMEN

Many diseases of the central nervous system are age-associated and do not directly result from genetic mutations. These include late-onset neurodegenerative diseases (NDDs), which represent a challenge for biomedical research and drug development due to the impossibility to access to viable human brain specimens. Advancements in reprogramming technologies have allowed to obtain neurons from induced pluripotent stem cells (iPSCs) or directly from somatic cells (iNs), leading to the generation of better models to understand the molecular mechanisms and design of new drugs. Nevertheless, iPSC technology faces some limitations due to reprogramming-associated cellular rejuvenation which resets the aging hallmarks of donor cells. Given the prominent role of aging for the development and manifestation of late-onset NDDs, this suggests that this approach is not the most suitable to accurately model age-related diseases. Direct neuronal reprogramming, by which a neuron is formed via direct conversion from a somatic cell without going through a pluripotent intermediate stage, allows the possibility to generate patient-derived neurons that maintain aging and epigenetic signatures of the donor. This aspect may be advantageous for investigating the role of aging in neurodegeneration and for finely dissecting underlying pathological mechanisms. Here, we will compare iPSC and iN models as regards the aging status and explore how this difference is reported to affect the phenotype of NDD in vitro models.

14.
Cell Reprogram ; 24(5): 259-270, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36137065

RESUMEN

In the last decade, direct reprogramming has emerged as a novel strategy to obtain mature and functional dopamine neurons from somatic cells. This approach could overcome issues linked to the use of human pluripotent stem cells such as ethical concerns and safety problems that can arise from the overgrowth of undifferentiated cells after transplantation. Several conversion methodologies have been developed to obtain induced DA neurons (iDANs) or induced DA neuron progenitors (iDPs). iDANs have also proved to successfully integrate in mice striatum, alleviating Parkinson's disease (PD) motor symptoms. In the next decade, human iDANs and/or iDPs could be translated to clinic to achieve a patient-tailored therapy, but current critical issues hinder this goal, such as the low conversion rate of adult human fibroblasts and the risks associated with lentiviral delivery of conversion factors. In this study, we summarize the strategies and recent improvements developed for the generation of mouse and human iDANs/iDPs. Furthermore, we discuss the more recent application of in vivo direct conversion, which may enable clinical therapies for PD by means of brain in situ delivery of dopaminergic reprogramming transcription factors.


Asunto(s)
Enfermedad de Parkinson , Células Madre Pluripotentes , Adulto , Diferenciación Celular/fisiología , Neuronas Dopaminérgicas , Humanos , Enfermedad de Parkinson/terapia , Factores de Transcripción
15.
Cells ; 11(6)2022 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-35326391

RESUMEN

Cell reprogramming is a groundbreaking technology that, in few decades, generated a new paradigm in biomedical science. To date we can use cell reprogramming to potentially generate every cell type by converting somatic cells and suitably modulating the expression of key transcription factors. This approach can be used to convert skin fibroblasts into pluripotent stem cells as well as into a variety of differentiated and medically relevant cell types, including cardiomyocytes and neural cells. The molecular mechanisms underlying such striking cell phenotypes are still largely unknown, but in the last decade it has been proven that cell reprogramming approaches are significantly influenced by non-coding RNAs. Specifically, this review will focus on the role of microRNAs in the reprogramming processes that lead to the generation of pluripotent stem cells, neurons, and cardiomyocytes. As highlighted here, non-coding RNA-forced expression can be sufficient to support some cell reprogramming processes, and, therefore, we will also discuss how these molecular determinants could be used in the future for biomedical purposes.


Asunto(s)
MicroARNs , Células Madre Pluripotentes , Diferenciación Celular/genética , Reprogramación Celular/genética , Fibroblastos/metabolismo , MicroARNs/metabolismo , Células Madre Pluripotentes/metabolismo
16.
Exp Cell Res ; 316(14): 2365-76, 2010 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-20580711

RESUMEN

Previous gene targeting studies in mice have implicated the nuclear protein Krüppel-like factor 7 (KLF7) in nervous system development while cell culture assays have documented its involvement in cell cycle regulation. By employing short hairpin RNA (shRNA)-mediated gene silencing, here we demonstrate that murine Klf7 gene expression is required for in vitro differentiation of neuroectodermal and mesodermal cells. Specifically, we show a correlation of Klf7 silencing with down-regulation of the neuronal marker microtubule-associated protein 2 (Map2) and the nerve growth factor (NGF) tyrosine kinase receptor A (TrkA) using the PC12 neuronal cell line. Similarly, KLF7 inactivation in Klf7-null mice decreases the expression of the neurogenic marker brain lipid-binding protein/fatty acid-binding protein 7 (BLBP/FABP7) in neural stem cells (NSCs). We also report that Klf7 silencing is detrimental to neuronal and cardiomyocytic differentiation of embryonic stem cells (ESCs), in addition to altering the adipogenic and osteogenic potential of mouse embryonic fibroblasts (MEFs). Finally, our results suggest that genes that are key for self-renewal of undifferentiated ESCs repress Klf7 expression in ESCs. Together with previous findings, these results provide evidence that KLF7 has a broad spectrum of regulatory functions, which reflect the discrete cellular and molecular contexts in which this transcription factor operates.


Asunto(s)
Diferenciación Celular , Regulación de la Expresión Génica , Factores de Transcripción de Tipo Kruppel/metabolismo , Mesodermo/citología , Placa Neural/citología , Neuronas/citología , Animales , Western Blotting , Células Cultivadas , Células Madre Embrionarias/citología , Femenino , Silenciador del Gen , Proteínas de Homeodominio/genética , Inmunohistoquímica , Factores de Transcripción de Tipo Kruppel/deficiencia , Factores de Transcripción de Tipo Kruppel/genética , Ratones , Ratones Noqueados , Proteína Homeótica Nanog , Factor 3 de Transcripción de Unión a Octámeros/genética , Células PC12 , Ratas , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
17.
Biology (Basel) ; 10(8)2021 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-34439972

RESUMEN

Neurological disorders are among the leading causes of death worldwide, accounting for almost all onsets of dementia in the elderly, and are known to negatively affect motor ability, mental and cognitive performance, as well as overall wellbeing and happiness. Currently, most neurological disorders go untreated due to a lack of viable treatment options. The reason for this lack of options is s poor understanding of the disorders, primarily due to research models that do not translate well into the human in vivo system. Current models for researching neurological disorders, neurodevelopment, and drug interactions in the central nervous system include in vitro monolayer cell cultures, and in vivo animal models. These models have shortcomings when it comes to translating research about disorder pathology, development, and treatment to humans. Brain organoids are three-dimensional (3D) cultures of stem cell-derived neural cells that mimic the development of the in vivo human brain with high degrees of accuracy. Researchers have started developing these miniature brains to model neurodevelopment, and neuropathology. Brain organoids have been used to model a wide range of neurological disorders, including the complex and poorly understood neurodevelopmental and neurodegenerative disorders. In this review, we discuss the brain organoid technology, placing special focus on the different brain organoid models that have been developed, discussing their strengths, weaknesses, and uses in neurological disease modeling.

18.
Biology (Basel) ; 10(9)2021 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-34571712

RESUMEN

Liver organoids are stem cell-derived 3D structures that are generated by liver differentiation signals in the presence of a supporting extracellular matrix. Liver organoids overcome low complexity grade of bidimensional culture and high costs of in vivo models thus representing a turning point for studying liver disease modeling. Liver organoids can be established from different sources as induced pluripotent stem cells (iPSCs), embryonic stem cells (ESCs), hepatoblasts and tissue-derived cells. This novel in vitro system represents an innovative tool to deeper understand the physiology and pathological mechanisms affecting the liver. In this review, we discuss the current advances in the field focusing on their application in modeling diseases, regenerative medicine and drug discovery.

19.
Methods Mol Biol ; 2352: 31-43, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34324178

RESUMEN

Astrocytes play an important role in maintaining brain homeostasis and their dysfunction is involved in a number of neurological disorders. An accessible source of astrocytes is essential to model neurological diseases and potential cell therapy approaches. Cell reprogramming techniques offer possibilities to reprogram terminally differentiated cells into other cell types. By overexpressing the three astrocytic transcription factors NFIA, NFIB, and SOX9, we showed that it is possible to directly transdifferentiate fibroblasts into functional astrocytes. These induced astrocytes (iAstrocytes) express glial fibrillary acidic protein (GFAP) and S100 calcium binding protein B (S100B), as well as other astrocytic markers. Moreover, electrophysiological properties indicate that iAstrocytes are functionally comparable to native brain astrocytes. Here we describe an optimized protocol to generate iAstrocytes starting from skin fibroblasts and this approach can be adapted for a wide range of somatic cell types.


Asunto(s)
Astrocitos/citología , Astrocitos/metabolismo , Transdiferenciación Celular/genética , Reprogramación Celular/genética , Fibroblastos/citología , Fibroblastos/metabolismo , Factores de Transcripción/genética , Animales , Calcio , Línea Celular , Células Cultivadas , Expresión Génica , Vectores Genéticos/biosíntesis , Vectores Genéticos/genética , Humanos , Lentivirus/genética , Ratones , Imagen Molecular , Factores de Transcripción NFI/genética , Factor de Transcripción SOX9/genética , Factores de Transcripción/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA