RESUMEN
PURPOSE OF REVIEW: Experimental preclinical models of recovery of consciousness (ROC) and anesthesia emergence are crucial for understanding the neuronal circuits restoring arousal during coma emergence. Such models can also potentially help to better understand how events during coma emergence facilitate or hinder recovery from brain injury. Here we provide an overview of current methods used to assess ROC/level of arousal in animal models. This exposes the need for objective approaches to calibrate arousal levels. We outline how correlation of measured behaviors and their reestablishment at multiple stages with cellular, local and broader neuronal networks, gives a fuller understanding of ROC. RECENT FINDINGS: Animals emerging from diverse coma-like states share a dynamic process of cortical and behavioral recovery that reveals distinct states consistently sequenced from low-to-high arousal level and trackable in nonhuman primates and rodents. Neuronal activity modulation of layer V-pyramidal neurons and neuronal aggregates within the brainstem and thalamic nuclei play critical roles at specific stages to promote restoration of a conscious state. SUMMARY: A comprehensive, graded calibration of cortical, physiological, and behavioral changes in animal models is undoubtedly needed to establish an integrative framework. This approach reveals the contribution of local and systemic neuronal circuits to the underlying mechanisms for recovering consciousness.
Asunto(s)
Nivel de Alerta/fisiología , Trastornos de la Conciencia/patología , Trastornos de la Conciencia/rehabilitación , Modelos Animales de Enfermedad , Animales , Tronco Encefálico/patología , Tronco Encefálico/fisiopatología , Calibración/normas , Estado de Conciencia/fisiología , Humanos , Primates , Recuperación de la Función/fisiología , RoedoresRESUMEN
Many types of data have suggested that neurons in the nucleus gigantocellularis (NGC) in the medullary reticular formation are critically important for CNS arousal and behavioral responsiveness. To extend this topic to a developmental framework, whole-cell patch-recorded characteristics of NGC neurons in brainstem slices and measures of arousal-dependent locomotion of postnatal day 3 (P3) to P6 mouse pups were measured and compared. These neuronal characteristics developed in an orderly, statistically significant monotonic manner over the course of P3-P6: (1) proportion of neurons capable of firing action potential (AP) trains, (2) AP amplitude, (3) AP threshold, (4) amplitude of inward and outward currents, (5) amplitude of negative peak currents, and (6) steady state currents (in I-V plot). These measurements reflect the maturation of sodium and certain potassium channels. Similarly, all measures of locomotion, latency to first movement, total locomotion duration, net locomotion distance, and total quiescence time also developed monotonically over P3-P6. Most importantly, electrophysiological and behavioral measures were significantly correlated. Interestingly, the behavioral measures were not correlated with frequency of excitatory postsynaptic currents or the proportion of neurons showing these currents, responses to a battery of neurotransmitter agents, or rapid activating potassium currents (including IA). Considering the results here in the context of a large body of literature on NGC, we hypothesize that the developmental increase in NGC neuronal excitability participates in causing the increased behavioral responsivity during the postnatal period from P3 to P6.
Asunto(s)
Conducta Animal/fisiología , Sistema Nervioso Central/metabolismo , Neuronas/fisiología , Canales de Potasio/metabolismo , Animales , Nivel de Alerta/fisiología , Fenómenos Electrofisiológicos , Ratones Endogámicos C57BL , Técnicas de Placa-Clamp/métodosRESUMEN
Multiple studies have shown that blast injury is followed by sleep disruption linked to functional sequelae. It is well established that improving sleep ameliorates such functional deficits. However, little is known about longitudinal brain activity changes after blast injury. In addition, the effects of directly modulating the sleep/wake cycle on learning task performance after blast injury remain unclear. We hypothesized that modulation of the sleep phase cycle in our injured mice would improve post-injury task performance. Here, we have demonstrated that excessive sleep electroencephalographic (EEG) patterns are accompanied by prominent motor and cognitive impairment during acute stage after secondary blast injury (SBI) in a mouse model. Over time we observed a transition to more moderate and prolonged sleep/wake cycle disturbances, including changes in theta and alpha power. However, persistent disruptions of the non-rapid eye movement (NREM) spindle amplitude and intra-spindle frequency were associated with lasting motor and cognitive deficits. We, therefore, modulated the sleep phase of injured mice using subcutaneous (SC) dexmedetomidine (Dex), a common, clinically used sedative. Dex acutely improved intra-spindle frequency, theta and alpha power, and motor task execution in chronically injured mice. Moreover, dexmedetomidine ameliorated cognitive deficits a week after injection. Our results suggest that SC Dex might potentially improve impaired motor and cognitive behavior during daily tasks in patients that are chronically impaired by blast-induced injuries.