Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 129
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Arch Biochem Biophys ; 744: 109696, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37481198

RESUMEN

Novosphingobium aromaticivorans has the ability to survive in harsh environments by virtue of its suite of iron-containing oxygenases that biodegrade an astonishing array of aromatic compounds. It is also resistant to heavy metals through Atm1, an ATP-binding cassette protein that mediates active efflux of heavy metals conjugated to glutathione. However, Atm1 orthologues in higher organisms have been implicated in the intracellular transport of organic iron complexes. Our hypothesis suggests that the ability of Atm1 to remove heavy metals is related to the need for regulated iron handling in N. aromaticivorans to support high oxygenase activity. Here we provide the first data demonstrating a direct interaction between an iron-porphyrin compound (hemin) and NaAtm1. Hemin displayed considerably higher binding affinity and lower EC50 to stimulate ATP hydrolysis by Atm1 than Ag-GSH, GSSG or GSH, established substrates of the transporter. Co-incubation of NaAtm1 and hemin with Ag-GSH in ATPase assays revealed a non-competitive interaction, indicating distinct binding sites on NaAtm1 and this property was reinforced using molecular docking analysis. Our data suggests that NaAtm1 has considerable versatility in transporting organic conjugates of metals and that this versatility enables it to play roles in detoxification processes for toxic metals and in homeostasis of iron. The ability to play these distinct roles is enabled by the plasticity of the substrate binding site within the central cavity of NaAtm1.


Asunto(s)
Hemina , Metales Pesados , Simulación del Acoplamiento Molecular , Transportadoras de Casetes de Unión a ATP/metabolismo , Metales Pesados/metabolismo , Hierro/metabolismo , Proteínas de Transporte de Membrana , Adenosina Trifosfato/química , Glutatión/metabolismo
2.
Int J Mol Sci ; 23(3)2022 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-35162941

RESUMEN

The ATP-binding cassette transporter, P-glycoprotein (P-gp), has been demonstrated to facilitate the clearance of amyloid-beta (Aß) peptides, exporting the neurotoxic entity out of neurons and out of the brain via the blood-brain barrier. However, its expression and function diminish with age and in Alzheimer's disease. P-gp is known to undergo ubiquitination, a post-translational modification that results in internalisation and/or degradation of the protein. NEDD4-1 is a ubiquitin E3 ligase that has previously been shown to ubiquitinate P-gp and reduce its cell surface expression. However, whether this effect translates into altered P-gp activity remains to be determined. siRNA was used to knockdown the expression of Nedd4 in CHO-APP cells. Western blot analysis confirmed that absence of Nedd4 was associated with increased P-gp protein expression. This was accompanied by increased transport activity, as shown by export of the P-gp substrate calcein-AM, as well as enhanced secretion of Aß peptides, as shown by ELISA. These results implicate Nedd4 in the regulation of P-gp, and highlight a potential approach for restoring or augmenting P-gp expression and function to facilitate Aß clearance from the brain.


Asunto(s)
Precursor de Proteína beta-Amiloide/metabolismo , Clonación Molecular/métodos , Ubiquitina-Proteína Ligasas Nedd4/genética , Subfamilia B de Transportador de Casetes de Unión a ATP/metabolismo , Precursor de Proteína beta-Amiloide/genética , Animales , Transporte Biológico , Células CHO , Cricetulus , Fluoresceínas/metabolismo , Regulación de la Expresión Génica , Técnicas de Silenciamiento del Gen , Humanos , Ubiquitina-Proteína Ligasas Nedd4/metabolismo , Ubiquitinación
3.
Int J Mol Sci ; 23(23)2022 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-36498995

RESUMEN

Maintenance of the tightly regulated homeostatic environment of the brain is facilitated by the blood-brain barrier (BBB). P-glycoprotein (P-gp), an ATP-binding cassette transporter, is expressed on the luminal surface of the endothelial cells in the BBB, and actively exports a wide variety of substrates to limit exposure of the vulnerable brain environment to waste buildup and neurotoxic compounds. Downregulation of P-gp expression and activity at the BBB have been reported with ageing and in neurodegenerative diseases. Upregulation of P-gp at the BBB contributes to poor therapeutic outcomes due to altered pharmacokinetics of CNS-acting drugs. The regulation of P-gp is highly complex, but unravelling the mechanisms involved may help the development of novel and nuanced strategies to modulate P-gp expression for therapeutic benefit. This review summarises the current understanding of P-gp regulation in the brain, encompassing the transcriptional, post-transcriptional and post-translational mechanisms that have been identified to affect P-gp expression and transport activity.


Asunto(s)
Miembro 1 de la Subfamilia B de Casetes de Unión a ATP , Células Endoteliales , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/genética , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/metabolismo , Células Endoteliales/metabolismo , Subfamilia B de Transportador de Casetes de Unión a ATP/metabolismo , Encéfalo/metabolismo , Barrera Hematoencefálica/metabolismo , Fármacos del Sistema Nervioso Central
4.
J Struct Biol ; 211(1): 107513, 2020 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-32339763

RESUMEN

The drug efflux pump P-glycoprotein (P-gp) displays a complex transport mechanism involving multiple drug binding sites and two centres for nucleotide hydrolysis. Elucidating the molecular mechanism of transport remains elusive and the availability of P-gp structures in distinct natural and ligand trapped conformations will accelerate our understanding. The present investigation sought to provide biochemical data to validate specific features of these structures; with particular focus on the transmembrane domain that provides the transport conduit. Hence our focus was on transmembrane helices six and twelve (TM6/TM12), which are believed to participate in drug binding, as they line the central transport conduit and provide a direct link to the catalytic centres. A series of P-gp mutants were generated with a single cysteine in both TM6 and TM12 to facilitate measurement of inter-helical distances using cross-linking and DEER strategies. Experimental results were compared to published structures per se and those refined by MD simulations. This analysis revealed that the refined inward-facing murine structure (4M1M) of P-gp provides a good representation of the proximity, topography and relative motions of TM6 and TM12 in reconstituted human P-gp.


Asunto(s)
Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/ultraestructura , Membrana Celular/ultraestructura , Lípidos de la Membrana/química , Conformación Proteica , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/química , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/genética , Animales , Sitios de Unión/genética , Membrana Celular/química , Membrana Celular/genética , Espectroscopía de Resonancia por Spin del Electrón , Humanos , Hidrólisis , Lípidos de la Membrana/genética , Ratones , Simulación de Dinámica Molecular , Nucleótidos/química , Nucleótidos/genética
5.
Int J Mol Sci ; 22(1)2020 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-33383667

RESUMEN

Defective clearance mechanisms lead to the accumulation of amyloid-beta (Aß) peptides in the Alzheimer's brain. Though predominantly generated in neurons, little is known about how these hydrophobic, aggregation-prone, and tightly membrane-associated peptides exit into the extracellular space where they deposit and propagate neurotoxicity. The ability for P-glycoprotein (P-gp), an ATP-binding cassette (ABC) transporter, to export Aß across the blood-brain barrier (BBB) has previously been reported. However, controversies surrounding the P-gp-Aß interaction persist. Here, molecular data affirm that both Aß40 and Aß42 peptide isoforms directly interact with and are substrates of P-gp. This was reinforced ex vivo by the inhibition of Aß42 transport in brain capillaries from P-gp-knockout mice. Moreover, we explored whether P-gp could exert the same role in neurons. Comparison between non-neuronal CHO-APP and human neuroblastoma SK-N-SH cells revealed that P-gp is expressed and active in both cell types. Inhibiting P-gp activity using verapamil and nicardipine impaired Aß40 and Aß42 secretion from both cell types, as determined by ELISA. Collectively, these findings implicate P-gp in Aß export from neurons, as well as across the BBB endothelium, and suggest that restoring or enhancing P-gp function could be a viable therapeutic approach for removing excess Aß out of the brain in Alzheimer's disease.


Asunto(s)
Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/metabolismo , Barrera Hematoencefálica/metabolismo , Neuronas/metabolismo , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/genética , Enfermedad de Alzheimer/etiología , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Animales , Encéfalo/metabolismo , Células CHO , Capilares/metabolismo , Línea Celular Tumoral , Supervivencia Celular , Cricetulus , Expresión Génica , Humanos , Fragmentos de Péptidos/metabolismo , Unión Proteica , Transporte de Proteínas
6.
Drug Metab Dispos ; 47(2): 164-172, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30478158

RESUMEN

The antitussive agent noscapine has been shown to inhibit the proliferation of cancer cells by disruption of tubulin dynamic. However, the efficacy of several anticancer drugs that inhibit tublin dynamics (vinca alkaloids and taxanes) is reduced by the multidrug resistance phenotype. These compounds are substrates for P-glycoprotein (P-gp)-mediated extrusion from cells. Consequently, the antiproliferative activity of noscapine and a series of derivatives was measured in drug-sensitive and drug-resistant cells that overexpress P-gp. None of the noscapine derivatives displayed lower potency in cells overexpressing P-gp, thereby suggesting a lack of interaction with this pump. However, the cellular efflux of a fluorescent substrate by P-gp was potently inhibited by noscapine and most derivatives. Further investigation with purified, reconstituted P-gp demonstrated that inhibition of P-gp function was due to direct interaction of noscapine derivatives with the transporter. Moreover, coadministration of vinblastine with two of the noscapine derivatives displayed synergistic inhibition of proliferation, even in P-gp-expressing resistant cell lines. Therefore, noscapine derivatives offer a dual benefit of overcoming the significant impact of P-gp in conferring multidrug resistance and synergy with tubulin-disrupting anticancer drugs.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Resistencia a Múltiples Medicamentos/efectos de los fármacos , Resistencia a Antineoplásicos/efectos de los fármacos , Neoplasias/tratamiento farmacológico , Noscapina/farmacología , Subfamilia B de Transportador de Casetes de Unión a ATP/aislamiento & purificación , Subfamilia B de Transportador de Casetes de Unión a ATP/metabolismo , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Células MCF-7 , Neoplasias/patología , Noscapina/análogos & derivados , Papaver/química , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Moduladores de Tubulina/farmacología , Moduladores de Tubulina/uso terapéutico , Vinblastina/farmacología
7.
Methods ; 147: 126-141, 2018 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-29454861

RESUMEN

Membrane proteins are notoriously difficult to investigate in isolation. The focus of this chapter is the key step following extraction and purification of membrane proteins; namely reconstitution. The process of reconstitution re-inserts proteins into a lipid bilayer that partly resembles their native environment. This native environment is vital to the stability of membrane proteins, ensuring that they undergo vital conformational transitions and maintain optimal interaction with their substrates. Reconstitution may take many forms and these have been classified into two broad categories. Symmetric systems enable unfettered access to both sides of a bilayer. Compartment containing systems contain a lumen and are ideally suited to measurement of transport processes. The investigator is encouraged to ascertain what aspects of protein function will be undertaken and to apply the most advantageous reconstitution system or systems. It is important to note that the process of reconstitution is not subject to defined protocols and requires empirical optimisation to specific targets.


Asunto(s)
Proteínas de la Membrana/aislamiento & purificación , Proteínas de la Membrana/fisiología , Detergentes/química , Membrana Dobles de Lípidos/química , Maleatos/química , Micelas , Poliestirenos/química
8.
Proc Natl Acad Sci U S A ; 113(45): 12685-12690, 2016 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-27791145

RESUMEN

The prehistoric colonization of islands in Remote Oceania that began ∼3400 B.P. represents what was arguably the most expansive and ambitious maritime dispersal of humans across any of the world's seas or oceans. Though archaeological evidence has provided a relatively clear picture of when many of the major island groups were colonized, there is still considerable debate as to where these settlers originated from and their strategies/trajectories used to reach habitable land that other datasets (genetic, linguistic) are also still trying to resolve. To address these issues, we have harnessed the power of high-resolution climatic and oceanographic datasets in multiple seafaring simulation platforms to examine major pulses of colonization in the region. Our analysis, which takes into consideration currents, land distribution, wind periodicity, the influence of El Niño Southern Oscillation (ENSO) events, and "shortest-hop" trajectories, demonstrate that (i) seasonal and semiannual climatic changes were highly influential in structuring ancient Pacific voyaging; (ii) western Micronesia was likely settled from somewhere around the Maluku (Molucca) Islands; (iii) Samoa was the most probable staging area for the colonization of East Polynesia; and (iv) although there are major differences in success rates depending on time of year and the occurrence of ENSO events, settlement of Hawai'i and New Zealand is possible from the Marquesas or Society Islands, the same being the case for settlement of Easter Island from Mangareva or the Marquesas.

9.
J Cell Biochem ; 117(8): 1890-901, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-26755257

RESUMEN

Solid tumors contend with, and adapt to, a hostile micro-environment that includes limited availability of nutrient fuels and oxygen. The presence of hypoxia (O2 <5%) stabilizes the transcription factor Hif1 and results in numerous cellular adaptations including increased flux of glucose through glycolysis. Increasingly, more sophisticated analysis of tumor oxygenation has revealed large gradients of oxygen tension and significant regions under severe hypoxia (O2 ∼0.1%). The present investigation has demonstrated a significant increase in the glycolytic flux rate when tumor spheroids were exposed to 0.1% O2 . The severe hypoxia was associated with uniform pimonidazole adduct formation and elevated levels of Hif1α and c-Myc. This resulted in elevated expression of GLUT and MCT transporters, in addition to increased activity of PFK1 in comparison to that observed in normoxia. However, the protein expression and enzymatic capacity of HK2, G6PDH, PK, and LDH were all reduced by severe hypoxia. Clearly, the effects of exposure to severe hypoxia lead to a significantly abridged Hif1 response, yet one still able to elevate glycolytic flux and prevent loss of intermediates to anabolism. J. Cell. Biochem. 117: 1890-1901, 2016. © 2016 Wiley Periodicals, Inc.


Asunto(s)
Adenocarcinoma/enzimología , Neoplasias del Colon/enzimología , Regulación Enzimológica de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Glucólisis , Hipoxia de la Célula , Línea Celular Tumoral , Humanos
10.
Biochim Biophys Acta ; 1838(1 Pt B): 134-47, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24036079

RESUMEN

ATP Binding Cassette (ABC) transporters play prominent roles in numerous cellular processes and many have been implicated in human diseases. Unfortunately, detailed mechanistic information on the majority of ABC transporters has not yet been elucidated. The slow rate of progress of molecular and high resolution structural studies may be attributed to the difficulty in the investigation of integral membrane proteins. These difficulties include the expression of functional, non-aggregated protein in heterologous systems. Furthermore, the extraction of membrane proteins from source material remains a major bottle-neck in the process since there are relatively few guidelines for selection of an appropriate detergent to achieve optimal extraction. Whilst affinity tag strategies have simplified the purification of membrane proteins; many challenges remain. For example, the chromatographic process and associated steps can rapidly lead to functional inactivation, random aggregation, or even precipitation of the target protein. Furthermore, optimisation of high yield and purity, does not guarantee successful structure determination. Based on this series of potential issues, any investigation into structure-function of membrane proteins requires a systematic evaluation of preparation quality. In particular, the evaluation should focus on function, homogeneity and mono-dispersity. The present investigation provides a detailed assessment of the quality of purified ATP Binding Cassette (ABC) transporters; namely ABCB1 (P-gp) and ABCA4 (ABCR). A number of suggestions are provided to facilitate the production of functional, homogeneous and mono-disperse preparations using the insect cell expression system. Finally, the ABCA4 samples have been used to provide structural insights into this essential photo-receptor cell protein.


Asunto(s)
Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/química , Transportadoras de Casetes de Unión a ATP/química , Baculoviridae/genética , Lípidos de la Membrana/química , Células Sf9/virología , Subfamilia B de Transportador de Casetes de Unión a ATP , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/genética , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/aislamiento & purificación , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/metabolismo , Transportadoras de Casetes de Unión a ATP/genética , Transportadoras de Casetes de Unión a ATP/aislamiento & purificación , Transportadoras de Casetes de Unión a ATP/metabolismo , Animales , Baculoviridae/metabolismo , Colorimetría , Expresión Génica , Humanos , Microscopía Electrónica , Modelos Moleculares , Estabilidad Proteica , Estructura Cuaternaria de Proteína , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Temperatura
11.
Biochem Soc Trans ; 43(5): 995-1002, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26517914

RESUMEN

It is almost 40 years since the drug efflux pump P-glycoprotein (permeability glycoprotein or P-gp) was shown to confer multi-drug resistance in cancer cells. This protein has been one of the most extensively investigated transport proteins due to its intriguing mechanism and its affect in oncology. P-gp is known to interact with over 300 compounds and the ability to achieve this has not yet been revealed. Following the binding of substrate and nucleotide, a complex series of conformational changes in the membrane and cytosolic domains translocates substrate across the membrane. Despite over 30 years of biochemical investigation, the availability of structural data and a plethora of chemical tools to modulate its function, the molecular mechanism remains a mystery. In addition, overcoming its activity in resistant cancer cells has not been achieved in the clinic, thereby garnering some degree of pessimism in the field. This review highlights the progress that has been achieved in understanding this complex protein and the value of undertaking molecular studies.


Asunto(s)
Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/metabolismo , Adenosina Trifosfato/metabolismo , Resistencia a Múltiples Medicamentos , Preparaciones Farmacéuticas/metabolismo , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/química , Transporte Biológico , Cristalografía por Rayos X , Resistencia a Antineoplásicos , Humanos , Neoplasias/metabolismo , Neoplasias/patología , Unión Proteica
12.
Drug Metab Dispos ; 42(4): 623-31, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24492893

RESUMEN

P-glycoprotein (P-gp) is a key player in the multidrug-resistant phenotype in cancer. The protein confers resistance by mediating the ATP-dependent efflux of an astonishing array of anticancer drugs. Its broad specificity has been the subject of numerous attempts to inhibit the protein and restore the efficacy of anticancer drugs. The general strategy has been to develop compounds that either compete with anticancer drugs for transport or act as direct inhibitors of P-gp. Despite considerable in vitro success, there are no compounds currently available to "block" P-gp-mediated resistance in the clinic. The failure may be attributed to toxicity, adverse drug interaction, and numerous pharmacokinetic issues. This review provides a description of several alternative approaches to overcome the activity of P-gp in drug-resistant cells. These include 1) drugs that specifically target resistant cells, 2) novel nanotechnologies to provide high-dose, targeted delivery of anticancer drugs, 3) compounds that interfere with nongenomic transfer of resistance, and 4) approaches to reduce the expression of P-gp within tumors. Such approaches have been developed through the pursuit of greater understanding of resistance mediators such as P-gp, and they show considerable potential for further application.


Asunto(s)
Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/antagonistas & inhibidores , Antineoplásicos/farmacocinética , Resistencia a Múltiples Medicamentos , Resistencia a Antineoplásicos , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/genética , Animales , Antineoplásicos/administración & dosificación , Antineoplásicos/uso terapéutico , Transporte Biológico , Sistemas de Liberación de Medicamentos , Resistencia a Múltiples Medicamentos/efectos de los fármacos , Resistencia a Antineoplásicos/efectos de los fármacos , Humanos , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Especificidad por Sustrato
13.
Drug Resist Updat ; 15(1-2): 98-105, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22483810

RESUMEN

While chemotherapy remains the most effective treatment for disseminated tumors, acquired or intrinsic drug resistance accounts for approximately 90% of treatment failure. Multidrug resistance (MDR), the simultaneous resistance to drugs that differ both structurally and mechanistically, often results from drug efflux pumps in the cell membrane that reduce intracellular drug levels to less than therapeutic concentrations. Expression of the MDR transporter P-glycoprotein (P-gp, MDR1, ABCB1) has been shown to correlate with overall poor chemotherapy response and prognosis. This review will focus on collateral sensitivity (CS), the ability of compounds to kill MDR cells selectively over the parental cells from which they were derived. Insights into CS may offer an alternative strategy for the clinical resolution of MDR, as highly selective and potent CS agents may lead to drugs that are effective at MDR cell killing and tumor resensitization. Four main mechanistic hypotheses for CS will be reviewed, followed by a discussion on quantitative and experimental evaluation of CS.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/antagonistas & inhibidores , Antineoplásicos/uso terapéutico , Resistencia a Múltiples Medicamentos/efectos de los fármacos , Resistencia a Antineoplásicos/efectos de los fármacos , Neoplasias/tratamiento farmacológico , Transportadoras de Casetes de Unión a ATP/genética , Transportadoras de Casetes de Unión a ATP/metabolismo , Transporte Biológico/efectos de los fármacos , Bloqueadores de los Canales de Calcio/uso terapéutico , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Metabolismo Energético/efectos de los fármacos , Humanos , Neoplasias/metabolismo , Neoplasias/patología , Pronóstico , Isoformas de Proteínas/antagonistas & inhibidores , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Verapamilo/uso terapéutico
14.
Biochim Biophys Acta Biomembr ; 1864(10): 184005, 2022 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-35863425

RESUMEN

A mechanistic understanding of how P-glycoprotein (Pgp) is able to bind and transport its astonishing range of substrates remains elusive. Pharmacological data demonstrated the presence of at least four distinct binding sites, but their locations have not been fully elucidated. The combination of biochemical and structural data suggests that initial binding may occur in the central cavity or at the lipid-protein interface. Our objective was to define the binding sites for two transported substrates of Pgp; the anticancer drug vinblastine and the fluorescent probe rhodamine 123. A series of mutations was generated in positions proximal to previously defined drug-interacting residues on Pgp. The protein was purified and reconstituted into styrene-maleic acid lipid particles (SMALPs) to measure the apparent drug binding constant or into liposomes for assessment of drug-stimulated ATP hydrolysis. The biochemical data were reconciled with structural models of Pgp using molecular docking. The data indicated that the binding of rhodamine 123 occurred predominantly within the central cavity of Pgp. In contrast, the significantly more hydrophobic vinblastine bound to both the lipid-protein interface and within the central cavity. The data suggest that the initial interaction of vinca alkaloids with Pgp occurs at the lipid interface followed by internalisation into the central cavity, which also provides the transport conduit. This model is supported by recent structural observations with Pgp and early biophysical and cross-linking approaches. Moreover, the proposed model illustrates that the broad substrate profile for Pgp is underpinned by a combination of multiple initial interaction sites and an accommodating transport conduit.


Asunto(s)
Miembro 1 de la Subfamilia B de Casetes de Unión a ATP , Antineoplásicos , Subfamilia B de Transportador de Casetes de Unión a ATP , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/metabolismo , Lípidos , Simulación del Acoplamiento Molecular , Rodamina 123/metabolismo , Vinblastina/farmacología
15.
Cancer Drug Resist ; 4(2): 503-511, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35582026

RESUMEN

Cancer cells are highly proliferative, invasive, metastatic and initiate angiogenesis. These activities demand plentiful energy and bountiful stores of anabolic precursors, a situation that puts significant strain on metabolic pathways and necessitates juggling of finite resources. However, the location and erratic structural organisation of tumours means they reside in a nutrient-poor environment. The glycolytic phenotype has evolved in cancer cells to provide a suitable balance between bioenergetic and biosynthetic pathways. Does this adopted strategy also support the overexpression of an ATP-dependent transporter (P-glycoprotein) to maintain resistance against chemotherapy? This article highlights the metabolic adaptations used by cancer cells to maintain both a glycolytic phenotype and sustain the activity of P-glycoprotein. We argue that these cells negotiate an energy precipice to achieve these adaptations. Finally, we advocate the use of compounds that place resistant cells expressing P-glycoprotein under further metabolic strain and how uncoupling protein-2 may provide an ideal target for them.

16.
Biochim Biophys Acta Gen Subj ; 1865(8): 129915, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33965440

RESUMEN

BACKGROUND: P-glycoprotein (P-gp) is a prevalent resistance mediator and it requires considerable cellular energy to ensure ATP dependent efflux of anticancer drugs. The glycolytic pathway generates the majority of catabolic energy in cancer cells; however, the high rates of P-gp activity places added strain on its inherently limited capacity to generate ATP. This is particularly relevant for compounds such as verapamil that are believed to trap P-gp in a futile transport process that requires continuing ATP consumption. Ultimately, this leads to cell death and the hypersensitivity of resistant cells to verapamil is termed collateral sensitivity. RESULTS: We show that the addition of verapamil to resistant cells produces a prominent reduction in ATP levels that supports the idea of disrupted energy homeostasis. Even in the absence of verapamil, P-gp expressing cells display near maximal rates of glycolysis and oxidative phosphorylation, which prevents an adequate response to the demand for ATP to sustain transport activity. Moreover, the near perpetually maximal rate of oxidative phosphorylation in the presence of verapamil resulted in elevated levels of reactive oxygen species that affect cell survival and underscore collateral sensitivity. CONCLUSIONS: Our results demonstrate that the strained metabolic profiles of P-gp expressing resistant cancer cells can be overwhelmed by additional ATP demands. GENERAL SIGNIFICANCE: Consequently, collateral sensitising drugs may overcome the resistant phenotype by exploiting, rather than inhibiting, the energy demanding activity of pumps such as P-gp.


Asunto(s)
Adenosina Trifosfato/metabolismo , Antineoplásicos/farmacología , Neoplasias de la Mama/tratamiento farmacológico , Resistencia a Múltiples Medicamentos , Resistencia a Antineoplásicos , Fosforilación Oxidativa , Subfamilia B de Transportador de Casetes de Unión a ATP/genética , Subfamilia B de Transportador de Casetes de Unión a ATP/metabolismo , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Femenino , Humanos , Especies Reactivas de Oxígeno/metabolismo
17.
Int J Biochem Cell Biol ; 133: 105935, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33529714

RESUMEN

Solid tumours modify their metabolic strategy to ensure sufficient biomass and energy to maintain a high rate of proliferation. However, solid tumours are characterised by a high proportion of quiescent cells and little is known about their metabolic profile. A tumour spheroid model with DLD1 cells was used to investigate the influence of a quiescent state on the cellular utilisation of glucose and glutamine. Quiescent DLD1 spheroids displayed increased depletion of both nutrients from the bathing medium compared to their proliferative counterparts and displayed highly active overall metabolism. A combination of biochemical and metabolomics approaches demonstrated that glucose utilisation resulted in an increased production of the 3-carbon intermediates lactate and alanine in quiescent spheroids. In addition, glutamine metabolism was directed to anabolic pathways; including the "reverse TCA cycle" to produce citrate for fatty-acid synthesis. These adaptations in DLD1 spheroids may propose a metabolic altruism of quiescent regions in solid tumours to provide biosynthetic intermediates required to sustain tumour growth, angiogenesis and metastasis.


Asunto(s)
Proliferación Celular , Neoplasias del Colon/patología , Metabolismo Energético , Glucosa/metabolismo , Glutamina/metabolismo , Esferoides Celulares/patología , Microambiente Tumoral , Neoplasias del Colon/metabolismo , Glucólisis , Humanos , Esferoides Celulares/metabolismo , Células Tumorales Cultivadas
18.
Biochim Biophys Acta Gen Subj ; 1865(1): 129769, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33141061

RESUMEN

BACKGROUND: Oxysterols, which are derivatives of cholesterol produced by enzymic or non-enzymic pathways, are potent regulators of cellular lipid homeostasis. Sterol homeostasis in the brain is an important area of interest with regards to neurodegenerative conditions like Alzheimer's disease (AD). Brain cells including neurons and astrocytes express sterol transporters belonging to the ABC transporter family of proteins, including ABCA1, ABCG1 and ABCG4, and these transporters are considered of interest as therapeutic targets. Although regulation of ABCA1 and ABCG1 is well established, regulation of ABCG4 is still controversial, in particular whether the transporter is an Liver X receptor (LXR) target. ABCG4 is thought to transport cholesterol, oxysterols and cholesterol synthesis intermediates, and was recently found on the blood brain barrier (BBB), implicated in amyloid-beta export. In this study, we investigate the regulation of ABCG4 by oxysterols, cholesterol-synthesis intermediates and cholesterol itself. METHODS: ABC transporter expression was measured in neuroblastoma and gliablastoma cell lines and cells overexpressing ABCG4 in response to synthetic LXR ligands, oxysterols and cholesterol-synthesis intermediates. RESULTS: In contrast to previous reports, ABCG4 expression was induced by a synthetic LXR ligand in U87-MG astrocytes but not in neuroblastoma and BBB endothelial cell lines. In addition, ABCG4 protein was stabilized by cholesterol as was previously shown for ABCG1. ABCG4 protein was furthermore stabilized by cholesterol-synthesis intermediates, desmosterol, lathosterol and lanosterol. CONCLUSIONS: These results identify new aspects of the post-translational control of ABCG4 that warrant further exploration into the role of this transporter in the maintenance of sterol homeostasis in the brain.


Asunto(s)
Transportador de Casetes de Unión a ATP, Subfamilia G/genética , Receptores X del Hígado/metabolismo , Esteroles/metabolismo , Animales , Astrocitos/metabolismo , Células CHO , Línea Celular , Colesterol/metabolismo , Cricetulus , Regulación de la Expresión Génica , Humanos , Ligandos , ARN Mensajero/metabolismo , Regulación hacia Arriba
19.
Curr Eye Res ; 46(5): 638-647, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-32938252

RESUMEN

PURPOSE: S. epidermidis is an ocular pathogen and a leading cause of keratitis. It produces hemolysins and at least 3 proteases. The purpose of the present study is to compare the secretion of hemolysins and proteases between 28 ocular isolates and one non-ocular strain and to determine their relationship to ocular virulence in selected strains using a rabbit model of infection. MATERIALS AND METHODS: Culture supernatants were compared for protease production and hemolysis. Selected strains were injected into rabbit corneas and their virulence and pathology recorded. The major protease activity in a virulent strain was identified and the gene was cloned and expressed as a recombinant protein. The corneal toxicity of this protease was determined. Antibodies to the native protease were generated and tested for neutralizing activity in vivo and in vitro. The corneal pathology of the S. epidermidis protease was compared to the pathology of S. aureus V8 protease. RESULTS: Strains that exhibited the least protease activity in vitro caused significantly less ocular pathology in vivo (p ≤ 0.003). Strains that were hemolytic and secreted a major protease had numerically higher SLE scores. This protease was identified as the serine protease Esp. The recombinant Esp protease caused extensive pathology when injected into the corneal stroma (7.62 ± 0.33). Antibody generated against native Esp did not neutralize the activity of the protease in vivo or in vitro. The antibody reacted with Esp proteases secreted by other S. epidermidis strains. S. epidermidis Esp protease and its homologue in S. aureus caused similar ocular pathology when injected in the rabbit corneal stroma. CONCLUSION: Hemolysins and proteases seem to be important in corneal pathology caused by S. epidermidis infections. The Esp protease mediates significant corneal damage. S. epidermidis Esp and S. aureus V8 protease caused similar and extensive edema in rabbit corneas.


Asunto(s)
Sustancia Propia/microbiología , Úlcera de la Córnea/microbiología , Infecciones Estafilocócicas/microbiología , Staphylococcus epidermidis/genética , Staphylococcus epidermidis/patogenicidad , Animales , Técnicas de Tipificación Bacteriana , Western Blotting , Recuento de Colonia Microbiana , Sustancia Propia/efectos de los fármacos , Úlcera de la Córnea/patología , Modelos Animales de Enfermedad , Proteínas Hemolisinas/genética , Proteínas Hemolisinas/toxicidad , Espectrometría de Masas , Fenotipo , Conejos , Serina Endopeptidasas/toxicidad , Serina Proteasas/genética , Serina Proteasas/toxicidad , Infecciones Estafilocócicas/patología , Staphylococcus epidermidis/enzimología , Virulencia
20.
ChemMedChem ; 16(18): 2882-2894, 2021 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-34159741

RESUMEN

Since the revelation of noscapine's weak anti-mitotic activity, extensive research has been conducted over the past two decades, with the goal of discovering noscapine derivatives with improved potency. To date, noscapine has been explored at the 1, 7, 6', and 9'-positions, though the 1,3-benzodioxole motif in the noscapine scaffold that remains unexplored. The present investigation describes the design, synthesis and pharmacological evaluation of noscapine analogues consisting of modifications to the 1,3-benzodioxole moiety. This includes expansion of the dioxolane ring and inclusion of metabolically robust deuterium and fluorine atoms. Favourable structural modifications were subsequently incorporated into multi-functionalised noscapine derivatives that also possessed modifications previously shown to promote anti-proliferative activity in the 1-, 6'- and 9'-positions. Our research efforts afforded the deuterated noscapine derivative 14 e and the dioxino-containing analogue 20 as potent cytotoxic agents with EC50 values of 1.50 and 0.73 µM, respectively, against breast cancer (MCF-7) cells. Compound 20 also exhibited EC50 values of <2 µM against melanoma, non-small cell lung carcinoma, and cancers of the brain, kidney and breast in an NCI screen. Furthermore, compounds 14 e and 20 inhibit tubulin polymerisation and are not vulnerable to the overexpression of resistance conferring P-gp efflux pumps in drug-resistant breast cancer cells (NCIADR/RES ). We also conducted X-ray crystallography studies that yielded the high-resolution structure of 14 e bound to tubulin. Our structural analysis revealed the key interactions between this noscapinoid and tubulin and will assist with the future design of noscapine derivatives with improved properties.


Asunto(s)
Antineoplásicos/farmacología , Dioxoles/farmacología , Moduladores de Tubulina/farmacología , Tubulina (Proteína)/metabolismo , Antineoplásicos/síntesis química , Antineoplásicos/química , Proliferación Celular/efectos de los fármacos , Dioxoles/síntesis química , Dioxoles/química , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Estructura Molecular , Polimerizacion/efectos de los fármacos , Relación Estructura-Actividad , Moduladores de Tubulina/síntesis química , Moduladores de Tubulina/química , Células Tumorales Cultivadas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA