Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 94
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 598(7882): 652-656, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34646009

RESUMEN

Humans are considered as the main host for Mycobacterium leprae1, the aetiological agent of leprosy, but spillover has occurred to other mammals that are now maintenance hosts, such as nine-banded armadillos and red squirrels2,3. Although naturally acquired leprosy has also been described in captive nonhuman primates4-7, the exact origins of infection remain unclear. Here we describe leprosy-like lesions in two wild populations of western chimpanzees (Pan troglodytes verus) in Cantanhez National Park, Guinea-Bissau and Taï National Park, Côte d'Ivoire, West Africa. Longitudinal monitoring of both populations revealed the progression of disease symptoms compatible with advanced leprosy. Screening of faecal and necropsy samples confirmed the presence of M. leprae as the causative agent at each site and phylogenomic comparisons with other strains from humans and other animals show that the chimpanzee strains belong to different and rare genotypes (4N/O and 2F). These findings suggest that M. leprae may be circulating in more wild animals than suspected, either as a result of exposure to humans or other unknown environmental sources.


Asunto(s)
Lepra/veterinaria , Pan troglodytes/microbiología , Animales , Autopsia/veterinaria , Côte d'Ivoire , Heces/microbiología , Genotipo , Guinea Bissau , Humanos , Lepra/microbiología , Mycobacterium leprae/genética , Mycobacterium leprae/aislamiento & purificación , Filogenia
2.
Nature ; 597(7877): 539-543, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34526718

RESUMEN

Seven years after the declaration of the first epidemic of Ebola virus disease in Guinea, the country faced a new outbreak-between 14 February and 19 June 2021-near the epicentre of the previous epidemic1,2. Here we use next-generation sequencing to generate complete or near-complete genomes of Zaire ebolavirus from samples obtained from 12 different patients. These genomes form a well-supported phylogenetic cluster with genomes from the previous outbreak, which indicates that the new outbreak was not the result of a new spillover event from an animal reservoir. The 2021 lineage shows considerably lower divergence than would be expected during sustained human-to-human transmission, which suggests a persistent infection with reduced replication or a period of latency. The resurgence of Zaire ebolavirus from humans five years after the end of the previous outbreak of Ebola virus disease reinforces the need for long-term medical and social care for patients who survive the disease, to reduce the risk of re-emergence and to prevent further stigmatization.


Asunto(s)
Brotes de Enfermedades , Ebolavirus/genética , Ebolavirus/aislamiento & purificación , Fiebre Hemorrágica Ebola/epidemiología , Fiebre Hemorrágica Ebola/virología , Modelos Biológicos , Animales , República Democrática del Congo/epidemiología , Brotes de Enfermedades/estadística & datos numéricos , Ebolavirus/clasificación , Femenino , Guinea/epidemiología , Fiebre Hemorrágica Ebola/transmisión , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Masculino , Infección Persistente/virología , Filogenia , Sobrevivientes , Factores de Tiempo , Zoonosis Virales/transmisión , Zoonosis Virales/virología
3.
Emerg Infect Dis ; 30(4): 816-818, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38526306

RESUMEN

We used pathogen genomics to test orangutan specimens from a museum in Bonn, Germany, to identify the origin of the animals and the circumstances of their death. We found monkeypox virus genomes in the samples and determined that they represent cases from a 1965 outbreak at Rotterdam Zoo in Rotterdam, the Netherlands.


Asunto(s)
Monkeypox virus , Museos , Animales , Genómica , Brotes de Enfermedades , Alemania/epidemiología
4.
J Clin Microbiol ; 62(3): e0111123, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38407068

RESUMEN

Respiratory syncytial virus (RSV) is a leading cause of acute lower respiratory tract infections causing significant morbidity and mortality among children and the elderly; two RSV vaccines and a monoclonal antibody have recently been approved. Thus, there is an increasing need for a detailed and continuous genomic surveillance of RSV circulating in resource-rich and resource-limited settings worldwide. However, robust, cost-effective methods for whole genome sequencing of RSV from clinical samples that are amenable to high-throughput are still scarce. We developed Next-RSV-SEQ, an experimental and computational pipeline to generate whole genome sequences of historic and current RSV genotypes by in-solution hybridization capture-based next generation sequencing. We optimized this workflow by automating library preparation and pooling libraries prior to enrichment in order to reduce hands-on time and cost, thereby augmenting scalability. Next-RSV-SEQ yielded near-complete to complete genome sequences for 98% of specimens with Cp values ≤31, at median on-target reads >93%, and mean coverage depths between ~1,000 and >5,000, depending on viral load. Whole genomes were successfully recovered from samples with viral loads as low as 230 copies per microliter RNA. We demonstrate that the method can be expanded to other respiratory viruses like parainfluenza virus and human metapneumovirus. Next-RSV-SEQ produces high-quality RSV genomes directly from culture isolates and, more importantly, clinical specimens of all genotypes in circulation. It is cost-efficient, scalable, and can be extended to other respiratory viruses, thereby opening new perspectives for a future effective and broad genomic surveillance of respiratory viruses. IMPORTANCE: Respiratory syncytial virus (RSV) is a leading cause of severe acute respiratory tract infections in children and the elderly, and its prevention has become an increasing priority. Recently, vaccines and a long-acting monoclonal antibody to protect effectively against severe disease have been approved for the first time. Hence, there is an urgent need for genomic surveillance of RSV at the global scale to monitor virus evolution, especially with an eye toward immune evasion. However, robust, cost-effective methods for RSV whole genome sequencing that are suitable for high-throughput of clinical samples are currently scarce. Therefore, we have developed Next-RSV-SEQ, an experimental and computational pipeline that produces reliably high-quality RSV genomes directly from clinical specimens and isolates.


Asunto(s)
Infecciones por Virus Sincitial Respiratorio , Virus Sincitial Respiratorio Humano , Infecciones del Sistema Respiratorio , Niño , Humanos , Anciano , Virus Sincitial Respiratorio Humano/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Secuenciación Completa del Genoma , Anticuerpos Monoclonales
5.
Int J Med Microbiol ; 314: 151607, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38367508

RESUMEN

Measles is a highly contagious airborne viral disease. It can lead to serious complications and death and is preventable by vaccination. The live-attenuated measles vaccine (LAMV) derived from a measles virus (MV) isolated in 1954 has been in use globally for six decades and protects effectively by providing a durable humoral and cell-mediated immunity. Our study addresses the temporal stability of epitopes on the viral surface glycoprotein hemagglutinin (H) which is the major target of MV-neutralizing antibodies. We investigated the binding of seven vaccine-induced MV-H-specific monoclonal antibodies (mAbs) to cell-free synthesized MV-H proteins derived from the H gene sequences obtained from a lung specimen of a fatal case of measles pneumonia in 1912 and an isolate from a current case. The binding of four out of seven mAbs to the H protein of both MV strains provides evidence of epitopes that are stable for more than 100 years. The binding of the universally neutralizing mAbs RKI-MV-12b and RKI-MV-34c to the H protein of the 1912 MV suggests the long-term stability of highly conserved epitopes on the MV surface.


Asunto(s)
Virus del Sarampión , Sarampión , Humanos , Virus del Sarampión/genética , Anticuerpos Neutralizantes , Pruebas de Neutralización , Vacuna Antisarampión/genética , Sarampión/prevención & control , Anticuerpos Antivirales , Epítopos/genética , Hemaglutininas Virales/genética , Anticuerpos Monoclonales
6.
Proc Natl Acad Sci U S A ; 118(15)2021 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-33876746

RESUMEN

Humans harbor diverse communities of microorganisms, the majority of which are bacteria in the gastrointestinal tract. These gut bacterial communities in turn host diverse bacteriophage (hereafter phage) communities that have a major impact on their structure, function, and, ultimately, human health. However, the evolutionary and ecological origins of these human-associated phage communities are poorly understood. To address this question, we examined fecal phageomes of 23 wild nonhuman primate taxa, including multiple representatives of all the major primate radiations. We find relatives of the majority of human-associated phages in wild primates. Primate taxa have distinct phageome compositions that exhibit a clear phylosymbiotic signal, and phage-superhost codivergence is often detected for individual phages. Within species, neighboring social groups harbor compositionally and evolutionarily distinct phageomes, which are structured by superhost social behavior. Captive nonhuman primate phageome composition is intermediate between that of their wild counterparts and humans. Phage phylogenies reveal replacement of wild great ape-associated phages with human-associated ones in captivity and, surprisingly, show no signal for the persistence of wild-associated phages in captivity. Together, our results suggest that potentially labile primate-phage associations have persisted across millions of years of evolution. Across primates, these phylosymbiotic and sometimes codiverging phage communities are shaped by transmission between groupmates through grooming and are dramatically modified when primates are moved into captivity.


Asunto(s)
Bacteriófagos/patogenicidad , Microbioma Gastrointestinal , Hominidae/virología , Viroma , Animales , Bacteriófagos/genética , Ambiente , Evolución Molecular , Hominidae/clasificación , Hominidae/genética , Hominidae/microbiología , Filogenia , Conducta Social
7.
Virus Genes ; 59(3): 370-376, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36932280

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants with increased transmissibility, virulence and immune escape abilities have heavily altered the COVID-19 pandemic's course. Deciphering local and global transmission patterns of those variants is thus key in building a profound understanding of the virus' spread around the globe. In the present study, we investigate SARS-CoV-2 variant epidemiology in Côte d'Ivoire, Western sub-Saharan Africa. We therefore generated 234 full SARS-CoV-2 genomes stemming from Central and Northern Côte d'Ivoire. Covering the first and second pandemic wave the country had been facing, we identified 20 viral lineages and showed that in Côte d'Ivoire the second pandemic wave in 2021 was driven by the spread of the Alpha (B.1.1.7) and Eta (B.1.525) variant. Our analyses are consistent with a limited number of international introductions of Alpha and Eta into Côte d'Ivoire, and those introduction events mostly stemmed from within the West African subregion. This suggests that subregional travel to Côte d'Ivoire had more impact on local pandemic waves than direct intercontinental travel.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Côte d'Ivoire/epidemiología , SARS-CoV-2/genética , Pandemias , COVID-19/epidemiología
8.
Clin Infect Dis ; 75(Suppl 1): S110-S120, 2022 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-35749674

RESUMEN

BACKGROUND: Comprehensive pathogen genomic surveillance represents a powerful tool to complement and advance precision vaccinology. The emergence of the Alpha variant in December 2020 and the resulting efforts to track the spread of this and other severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern led to an expansion of genomic sequencing activities in Germany. METHODS: At Robert Koch Institute (RKI), the German National Institute of Public Health, we established the Integrated Molecular Surveillance for SARS-CoV-2 (IMS-SC2) network to perform SARS-CoV-2 genomic surveillance at the national scale, SARS-CoV-2-positive samples from laboratories distributed across Germany regularly undergo whole-genome sequencing at RKI. RESULTS: We report analyses of 3623 SARS-CoV-2 genomes collected between December 2020 and December 2021, of which 3282 were randomly sampled. All variants of concern were identified in the sequenced sample set, at ratios equivalent to those in the 100-fold larger German GISAID sequence dataset from the same time period. Phylogenetic analysis confirmed variant assignments. Multiple mutations of concern emerged during the observation period. To model vaccine effectiveness in vitro, we employed authentic-virus neutralization assays, confirming that both the Beta and Zeta variants are capable of immune evasion. The IMS-SC2 sequence dataset facilitated an estimate of the SARS-CoV-2 incidence based on genetic evolution rates. Together with modeled vaccine efficacies, Delta-specific incidence estimation indicated that the German vaccination campaign contributed substantially to a deceleration of the nascent German Delta wave. CONCLUSIONS: SARS-CoV-2 molecular and genomic surveillance may inform public health policies including vaccination strategies and enable a proactive approach to controlling coronavirus disease 2019 spread as the virus evolves.


Asunto(s)
COVID-19 , SARS-CoV-2 , COVID-19/epidemiología , COVID-19/prevención & control , Genoma Viral , Genómica , Humanos , Filogenia , SARS-CoV-2/genética , Vacunología
9.
Mol Biol Evol ; 38(7): 2818-2830, 2021 06 25.
Artículo en Inglés | MEDLINE | ID: mdl-33720357

RESUMEN

Viruses closely related to human pathogens can reveal the origins of human infectious diseases. Human herpes simplexvirus type 1 (HSV-1) and type 2 (HSV-2) are hypothesized to have arisen via host-virus codivergence and cross-species transmission. We report the discovery of novel herpes simplexviruses during a large-scale screening of fecal samples from wild gorillas, bonobos, and chimpanzees. Phylogenetic analysis indicates that, contrary to expectation, simplexviruses from these African apes are all more closely related to HSV-2 than to HSV-1. Molecular clock-based hypothesis testing suggests the divergence between HSV-1 and the African great ape simplexviruses likely represents a codivergence event between humans and gorillas. The simplexviruses infecting African great apes subsequently experienced multiple cross-species transmission events over the past 3 My, the most recent of which occurred between humans and bonobos around 1 Ma. These findings revise our understanding of the origins of human herpes simplexviruses and suggest that HSV-2 is one of the earliest zoonotic pathogens.


Asunto(s)
Hominidae/virología , Filogenia , Simplexvirus/genética , Zoonosis Virales , Animales , Herpesvirus Humano 2 , Humanos , Análisis de Secuencia de ADN
11.
Proc Natl Acad Sci U S A ; 115(36): E8450-E8459, 2018 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-30127015

RESUMEN

Wild-living African apes are endemically infected with parasites that are closely related to human Plasmodium vivax, a leading cause of malaria outside Africa. This finding suggests that the origin of P. vivax was in Africa, even though the parasite is now rare in humans there. To elucidate the emergence of human P. vivax and its relationship to the ape parasites, we analyzed genome sequence data of P. vivax strains infecting six chimpanzees and one gorilla from Cameroon, Gabon, and Côte d'Ivoire. We found that ape and human parasites share nearly identical core genomes, differing by only 2% of coding sequences. However, compared with the ape parasites, human strains of P. vivax exhibit about 10-fold less diversity and have a relative excess of nonsynonymous nucleotide polymorphisms, with site-frequency spectra suggesting they are subject to greatly relaxed purifying selection. These data suggest that human P. vivax has undergone an extreme bottleneck, followed by rapid population expansion. Investigating potential host-specificity determinants, we found that ape P. vivax parasites encode intact orthologs of three reticulocyte-binding protein genes (rbp2d, rbp2e, and rbp3), which are pseudogenes in all human P. vivax strains. However, binding studies of recombinant RBP2e and RBP3 proteins to human, chimpanzee, and gorilla erythrocytes revealed no evidence of host-specific barriers to red blood cell invasion. These data suggest that, from an ancient stock of P. vivax parasites capable of infecting both humans and apes, a severely bottlenecked lineage emerged out of Africa and underwent rapid population growth as it spread globally.


Asunto(s)
Evolución Molecular , Estudio de Asociación del Genoma Completo , Plasmodium vivax/genética , Polimorfismo Genético , Proteínas Protozoarias/genética , Selección Genética , Animales , Camerún , Côte d'Ivoire , Femenino , Gabón , Gorilla gorilla , Humanos , Masculino , Pan troglodytes , Proteínas Protozoarias/metabolismo , Seudogenes
12.
BMC Biol ; 18(1): 136, 2020 10 08.
Artículo en Inglés | MEDLINE | ID: mdl-33032594

RESUMEN

BACKGROUND: African swine fever virus (ASFV) is a most devastating pathogen affecting swine. In 2007, ASFV was introduced into Eastern Europe where it continuously circulates and recently reached Western Europe and Asia, leading to a socio-economic crisis of global proportion. In Africa, where ASFV was first described in 1921, it is transmitted between warthogs and soft ticks of the genus Ornithodoros in a so-called sylvatic cycle. However, analyses into this virus' evolution are aggravated by the absence of any closely related viruses. Even ancient endogenous viral elements, viral sequences integrated into a host's genome many thousand years ago that have proven extremely valuable to analyse virus evolution, remain to be identified. Therefore, the evolution of ASFV, the only known DNA virus transmitted by arthropods, remains a mystery. RESULTS: For the identification of ASFV-like sequences, we sequenced DNA from different recent Ornithodoros tick species, e.g. O. moubata and O. porcinus, O. moubata tick cells and also 100-year-old O. moubata and O. porcinus ticks using high-throughput sequencing. We used BLAST analyses for the identification of ASFV-like sequences and further analysed the data through phylogenetic reconstruction and molecular clock analyses. In addition, we performed tick infection experiments as well as additional small RNA sequencing of O. moubata and O. porcinus soft ticks. CONCLUSION: Here, we show that soft ticks of the Ornithodoros moubata group, the natural arthropod vector of ASFV, harbour African swine fever virus-like integrated (ASFLI) elements corresponding to up to 10% (over 20 kb) of the ASFV genome. Through orthologous dating and molecular clock analyses, we provide data suggesting that integration could have occurred over 1.47 million years ago. Furthermore, we provide data showing ASFLI-element specific siRNA and piRNA in ticks and tick cells allowing for speculations on a possible role of ASFLI-elements in RNA interference-based protection against ASFV in ticks. We suggest that these elements, shaped through many years of co-evolution, could be part of an evolutionary virus-vector 'arms race', a finding that has not only high impact on our understanding of the co-evolution of viruses with their hosts but also provides a glimpse into the evolution of ASFV.


Asunto(s)
Virus de la Fiebre Porcina Africana/genética , Vectores Artrópodos/genética , Evolución Molecular , Genoma , Ornithodoros/genética , Animales , Evolución Biológica , Filogenia , Análisis de Secuencia de ADN
13.
Emerg Infect Dis ; 26(6): 1283-1286, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32441635

RESUMEN

Yaws-like lesions are widely reported in wild African great apes, yet the causative agent has not been confirmed in affected animals. We describe yaws-like lesions in a wild chimpanzee in Guinea for which we demonstrate infection with Treponema pallidum subsp. pertenue. Assessing the conservation implications of this pathogen requires further research.


Asunto(s)
Buba , Animales , Guinea/epidemiología , Pan troglodytes , Treponema , Treponema pallidum/genética , Buba/epidemiología , Buba/veterinaria
14.
Emerg Infect Dis ; 26(9): 2205-2209, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32818404

RESUMEN

After the 2017 Ebola virus (EBOV) outbreak in Likati, a district in northern Democratic Republic of the Congo, we sampled small mammals from the location where the primary case-patient presumably acquired the infection. None tested positive for EBOV RNA or antibodies against EBOV, highlighting the ongoing challenge in detecting animal reservoirs for EBOV.


Asunto(s)
Ebolavirus , Fiebre Hemorrágica Ebola , Animales , Animales Salvajes , República Democrática del Congo/epidemiología , Brotes de Enfermedades , Ebolavirus/genética , Fiebre Hemorrágica Ebola/epidemiología , Humanos
15.
Virol J ; 17(1): 42, 2020 03 27.
Artículo en Inglés | MEDLINE | ID: mdl-32220234

RESUMEN

BACKGROUND: Squirrels (family Sciuridae) are globally distributed members of the order Rodentia with wildlife occurrence in indigenous and non-indigenous regions (as invasive species) and frequent presence in zoological gardens and other holdings. Multiple species introductions, strong inter-species competition as well as the recent discovery of a novel zoonotic bornavirus resulted in increased research interest on squirrel pathogens. Therefore we aimed to test a variety of squirrel species for representatives of three virus families. METHODS: Several species of the squirrel subfamilies Sciurinae, Callosciurinae and Xerinae were tested for the presence of polyomaviruses (PyVs; family Polyomaviridae) and herpesviruses (HVs; family Herpesviridae), using generic nested polymerase chain reaction (PCR) with specificity for the PyV VP1 gene and the HV DNA polymerase (DPOL) gene, respectively. Selected animals were tested for the presence of bornaviruses (family Bornaviridae), using both a broad-range orthobornavirus- and a variegated squirrel bornavirus 1 (VSBV-1)-specific reverse transcription-quantitative PCR (RT-qPCR). RESULTS: In addition to previously detected bornavirus RNA-positive squirrels no more animals tested positive in this study, but four novel PyVs, four novel betaherpesviruses (BHVs) and six novel gammaherpesviruses (GHVs) were identified. For three PyVs, complete genomes could be amplified with long-distance PCR (LD-PCR). Splice sites of the PyV genomes were predicted in silico for large T antigen, small T antigen, and VP2 coding sequences, and experimentally confirmed in Vero and NIH/3T3 cells. Attempts to extend the HV DPOL sequences in upstream direction resulted in contiguous sequences of around 3.3 kilobase pairs for one BHV and two GHVs. Phylogenetic analysis allocated the novel squirrel PyVs to the genera Alpha- and Betapolyomavirus, the BHVs to the genus Muromegalovirus, and the GHVs to the genera Rhadinovirus and Macavirus. CONCLUSIONS: This is the first report on molecular identification and sequence characterization of PyVs and HVs and the detection of bornavirus coinfections with PyVs or HVs in two squirrel species. Multiple detection of PyVs and HVs in certain squirrel species exclusively indicate their potential host association to a single squirrel species. The novel PyVs and HVs might serve for a better understanding of virus evolution in invading host species in the future.


Asunto(s)
Bornaviridae/clasificación , Herpesviridae/clasificación , Filogenia , Poliomavirus/clasificación , Sciuridae/virología , Animales , Bornaviridae/aislamiento & purificación , Genoma Viral , Herpesviridae/aislamiento & purificación , Poliomavirus/aislamiento & purificación , Sciuridae/clasificación , Análisis de Secuencia de ADN
16.
Arch Virol ; 165(10): 2291-2299, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32754877

RESUMEN

The multimammate mouse (Mastomys natalensis; M. natalensis) serves as the main reservoir for the zoonotic arenavirus Lassa virus (LASV), and this has led to considerable investigation into the distribution of LASV and other related arenaviruses in this host species. In contrast to the situation with arenaviruses, the presence of other viruses in M. natalensis remains largely unexplored. In this study, herpesviruses and polyomaviruses were identified and partially characterized by PCR methods, sequencing, and phylogenetic analysis. In tissues sampled from M. natalensis populations in Côte d'Ivoire and Mali, six new DNA viruses (four betaherpesviruses, one gammaherpesvirus and one polyomavirus) were identified. Phylogenetic analysis based on glycoprotein B amino acid sequences showed that the herpesviruses clustered with cytomegaloviruses and rhadinoviruses of multiple rodent species. The complete circular genome of the newly identified polyomavirus was amplified by PCR. Amino acid sequence analysis of the large T antigen or VP1 showed that this virus clustered with a known polyomavirus from a house mouse (species Mus musculus polyomavirus 1). These two polyomaviruses form a clade with other rodent polyomaviruses, and the newly identified virus represents the third known polyomavirus of M. natalensis. This study represents the first identification of herpesviruses and the discovery of a novel polyomavirus in M. natalensis. In contrast to arenaviruses, we anticipate that these newly identified viruses represent a low zoonotic risk due to the normally highly restricted specificity of members of these two DNA virus families to their individual mammalian host species.


Asunto(s)
Genoma Viral , Infecciones por Herpesviridae/epidemiología , Herpesviridae/genética , Filogenia , Infecciones por Polyomavirus/epidemiología , Poliomavirus/genética , Enfermedades de los Roedores/epidemiología , África del Sur del Sahara/epidemiología , Animales , Antígenos Virales de Tumores/genética , Proteínas de la Cápside/genética , Reservorios de Enfermedades/virología , Herpesviridae/clasificación , Herpesviridae/aislamiento & purificación , Infecciones por Herpesviridae/virología , Especificidad del Huésped , Tipificación Molecular , Murinae/virología , Poliomavirus/clasificación , Poliomavirus/aislamiento & purificación , Infecciones por Polyomavirus/virología , Enfermedades de los Roedores/virología , Proteínas del Envoltorio Viral/genética
17.
Virus Genes ; 56(1): 95-98, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31654295

RESUMEN

To date, only two rodent-borne hantaviruses have been detected in sub-Saharan Africa. Here, we report the detection of a yet unknown hantavirus in a Natal mastomys (Mastomys natalensis) in Méliandou, Guinea, in 2014. The phylogenetic placement of this virus suggests that it might represent a cross-order spillover event from an unknown bat or eulipotyphlan host.


Asunto(s)
Infecciones por Hantavirus/veterinaria , Murinae/virología , Orthohantavirus/aislamiento & purificación , Enfermedades de los Roedores/virología , Animales , Guinea , Orthohantavirus/clasificación , Orthohantavirus/genética , Infecciones por Hantavirus/virología , Filogenia
18.
Euro Surveill ; 25(41)2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-33063655

RESUMEN

BackgroundEmerging antimicrobial resistance (AMR) challenges gonorrhoea treatment and requires surveillance.AimThis observational study describes the genetic diversity of Neisseria gonorrhoeae isolates in Germany from 2014 to 2017 and identifies N. gonorrhoeae multi-antigen sequence typing (NG-MAST) genogroups associated with AMR or some patient demographics.Methods1,220 gonococcal isolates underwent AMR testing and NG-MAST. Associations between genogroups and AMR or sex/age of patients were statistically assessed.ResultsPatients' median age was 32 years (interquartile range: 25-44); 1,078 isolates (88.4%) originated from men. In total, 432 NG-MAST sequence types including 156 novel ones were identified, resulting in 17 major genogroups covering 59.1% (721/1,220) of all isolates. Genogroups G1407 and G10557 (G7072) were significantly associated with decreased susceptibility to cefixime (Kruskal-Wallis chi-squared: 549.3442, df: 16, p < 0.001). Their prevalences appeared to decline during the study period from 14.2% (15/106) to 6.2% (30/481) and from 6.6% (7/106) to 3.1% (15/481) respectively. Meanwhile, several cefixime susceptible genogroups' prevalence seemed to increase. Proportions of isolates from men differed among genogroups (Fisher's exact test, p < 0.001), being e.g. lower for G25 (G51) and G387, and higher for G5441 and G2992. Some genogroups differed relative to each other in affected patients' median age (Kruskal-Wallis chi-squared: 47.5358, df: 16, p < 0.001), with e.g. G25 (G51) and G387 more frequent among ≤ 30 year olds and G359 and G17420 among ≥ 40 year olds.ConclusionAMR monitoring with molecular typing is important. Dual therapy (ceftriaxone plus azithromycin) recommended in 2014 in Germany, or only the ceftriaxone dose of this therapy, might have contributed to cefixime-resistant genogroups decreasing.


Asunto(s)
Cefixima/farmacología , Gonorrea/tratamiento farmacológico , Neisseria gonorrhoeae/genética , Neisseria gonorrhoeae/aislamiento & purificación , Adulto , Cefixima/uso terapéutico , Farmacorresistencia Bacteriana Múltiple/genética , Femenino , Alemania/epidemiología , Gonorrea/epidemiología , Humanos , Masculino , Pruebas de Sensibilidad Microbiana , Epidemiología Molecular , Tipificación de Secuencias Multilocus , Neisseria gonorrhoeae/efectos de los fármacos , Filogenia , Prevalencia
19.
J Infect Dis ; 220(10): 1599-1608, 2019 10 08.
Artículo en Inglés | MEDLINE | ID: mdl-30657940

RESUMEN

Bats are considered a reservoir species for Ebola viruses, but nonhuman primates (NHPs) have represented a source of infection in several outbreaks in humans. Here we report serological screening of blood or fecal samples from monkeys (n = 2322) and apes (n = 2327). Thirty-six NHP species from Cameroon, Democratic Republic of the Congo, and Ivory Coast were tested with a sensitive and specific Luminex-based assay for immunoglobulin G antibodies to 4 Ebola virus species. Using the simultaneous presence of antibodies to nucleoproteins and glycoproteins to define positivity, we showed that specific Ebola virus antibodies are not widespread among NHPs. Only 1 mustached monkey (Cercopithecus cephus) from Cameroon was positive for Sudan ebolavirus. These observations support that NHPs are most likely intermediate hosts for Ebola viruses. With the increasing frequency of Ebola outbreaks, it is crucial to identify the animal reservoir and understand the ecology of Ebola viruses to inform disease control.


Asunto(s)
Anticuerpos Antivirales/sangre , Enfermedades del Simio Antropoideo/epidemiología , Ebolavirus/inmunología , Fiebre Hemorrágica Ebola/veterinaria , Inmunoglobulina G/sangre , Enfermedades de los Monos/epidemiología , Animales , Enfermedades del Simio Antropoideo/inmunología , Camerún , Côte d'Ivoire , República Democrática del Congo , Fiebre Hemorrágica Ebola/epidemiología , Fiebre Hemorrágica Ebola/inmunología , Hominidae , Enfermedades de los Monos/inmunología , Primates , Estudios Seroepidemiológicos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA