Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Proc Natl Acad Sci U S A ; 113(19): 5364-9, 2016 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-27078102

RESUMEN

HLA-G, a nonclassical HLA molecule uniquely expressed in the placenta, is a central component of fetus-induced immune tolerance during pregnancy. The tissue-specific expression of HLA-G, however, remains poorly understood. Here, systematic interrogation of the HLA-G locus using massively parallel reporter assay (MPRA) uncovered a previously unidentified cis-regulatory element 12 kb upstream of HLA-G with enhancer activity, Enhancer L Strikingly, clustered regularly-interspaced short palindromic repeats (CRISPR)/Cas9-mediated deletion of this enhancer resulted in ablation of HLA-G expression in JEG3 cells and in primary human trophoblasts isolated from placenta. RNA-seq analysis demonstrated that Enhancer L specifically controls HLA-G expression. Moreover, DNase-seq and chromatin conformation capture (3C) defined Enhancer L as a cell type-specific enhancer that loops into the HLA-G promoter. Interestingly, MPRA-based saturation mutagenesis of Enhancer L identified motifs for transcription factors of the CEBP and GATA families essential for placentation. These factors associate with Enhancer L and regulate HLA-G expression. Our findings identify long-range chromatin looping mediated by core trophoblast transcription factors as the mechanism controlling tissue-specific HLA-G expression at the maternal-fetal interface. More broadly, these results establish the combination of MPRA and CRISPR/Cas9 deletion as a powerful strategy to investigate human immune gene regulation.


Asunto(s)
Elementos de Facilitación Genéticos/inmunología , Regulación del Desarrollo de la Expresión Génica/inmunología , Antígenos HLA-G/inmunología , Histocompatibilidad Materno-Fetal/inmunología , Intercambio Materno-Fetal/inmunología , Embarazo/inmunología , Trofoblastos/inmunología , Elementos de Facilitación Genéticos/genética , Femenino , Regulación del Desarrollo de la Expresión Génica/genética , Antígenos HLA-G/genética , Histocompatibilidad Materno-Fetal/genética , Humanos , Fenómenos Inmunogenéticos/genética , Intercambio Materno-Fetal/genética , Placenta/inmunología
2.
Mol Cell ; 35(6): 794-805, 2009 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-19782029

RESUMEN

The budding yeast CenH3 histone variant Cse4 localizes to centromeric nucleosomes and is required for kinetochore assembly and chromosome segregation. The exact composition of centromeric Cse4-containing nucleosomes is a subject of debate. Using unbiased biochemical, cell-biological, and genetic approaches, we have tested the composition of Cse4-containing nucleosomes. Using micrococcal nuclease-treated chromatin, we find that Cse4 is associated with the histones H2A, H2B, and H4, but not H3 or the nonhistone protein Scm3. Overexpression of Cse4 rescues the lethality of a scm3 deletion, indicating that Scm3 is not essential for the formation of functional centromeric chromatin. We also find that octameric Cse4 nucleosomes can be reconstituted in vitro. Furthermore, Cse4-Cse4 dimerization occurs in vivo at the centromeric nucleosome, and this requires the predicted Cse4-Cse4 dimerization interface. Taken together, our experimental evidence supports the model that the Cse4 nucleosome is an octamer, containing two copies each of Cse4, H2A, H2B, and H4.


Asunto(s)
Centrómero/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Proteínas de Unión al ADN/metabolismo , Histonas/metabolismo , Nucleosomas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Inmunoprecipitación de Cromatina , Proteínas Cromosómicas no Histona/genética , Proteínas de Unión al ADN/genética , Regulación Fúngica de la Expresión Génica , Modelos Moleculares , Complejos Multiproteicos , Mutación , Conformación de Ácido Nucleico , Nucleosomas/genética , Conformación Proteica , Multimerización de Proteína , Subunidades de Proteína , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Proteínas de Saccharomyces cerevisiae/genética
3.
J Biol Chem ; 286(14): 12016-23, 2011 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-21317428

RESUMEN

The Cse4 nucleosome at each budding yeast centromere must be faithfully assembled each cell cycle to specify the site of kinetochore assembly and microtubule attachment for chromosome segregation. Although Scm3 is required for the localization of the centromeric H3 histone variant Cse4 to centromeres, its role in nucleosome assembly has not been tested. We demonstrate that Scm3 is able to mediate the assembly of Cse4 nucleosomes in vitro, but not H3 nucleosomes, as measured by a supercoiling assay. Localization of Cse4 to centromeres and the assembly activity depend on an evolutionarily conserved core motif in Scm3, but localization of the CBF3 subunit Ndc10 to centromeres does not depend on this motif. The centromere targeting domain of Cse4 is sufficient for Scm3 nucleosome assembly activity. Assembly does not depend on centromeric sequence. We propose that Scm3 plays an active role in centromeric nucleosome assembly.


Asunto(s)
Centrómero/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Nucleosomas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Ciclo Celular/genética , Ciclo Celular/fisiología , Centrómero/genética , Inmunoprecipitación de Cromatina , Proteínas Cromosómicas no Histona/genética , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Citometría de Flujo , Histonas/genética , Histonas/metabolismo , Inmunoprecipitación , Cinetocoros/metabolismo , Mutagénesis Sitio-Dirigida , Mutación , Reacción en Cadena de la Polimerasa , Proteínas de Saccharomyces cerevisiae/genética
4.
Mol Cell Biol ; 26(8): 2913-23, 2006 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-16581767

RESUMEN

During meiosis, each chromosome must pair with its homolog and undergo meiotic crossover recombination in order to segregate properly at the first meiotic division. Recombination in meiosis in Saccharomyces cerevisiae relies on two Escherichia coli recA homologs, Rad51 and Dmc1, as well as the more recently discovered heterodimer Mnd1/Hop2. Meiotic recombination in S. cerevisiae mnd1 and hop2 single mutants is initiated via double-strand breaks (DSBs) but does not progress beyond this stage; heteroduplex DNA, joint molecules, and crossovers are not detected. Whereas hop2 and mnd1 single mutants are profoundly recombination defective, we show that mnd1 rad51, hop2 rad51, and mnd1 rad17 double mutants are able to carry out crossover recombination. Interestingly, noncrossover recombination is absent, indicating a role for Mnd1/Hop2 in the designation of DSBs for noncrossover recombination. We demonstrate that in the rad51 mnd1 double mutant, recombination is more likely to occur between repetitive sequences on nonhomologous chromosomes. Our results support a model in which Mnd1/Hop2 is required for DNA-DNA interactions that help ensure Dmc1-mediated stable strand invasion between homologous chromosomes, thereby preserving genomic integrity.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Proteínas de Unión al ADN/metabolismo , Meiosis/genética , Recombinación Genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Adenosina Trifosfatasas/genética , Proteínas de Ciclo Celular/genética , Proteínas Cromosómicas no Histona/genética , Mapeo Cromosómico , Cromosomas Fúngicos/genética , Daño del ADN , ADN de Hongos/análisis , Proteínas de Unión al ADN/genética , Diploidia , Modelos Genéticos , Mutación , Pruebas de Precipitina , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Técnicas del Sistema de Dos Híbridos
5.
Genetics ; 175(2): 513-25, 2007 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-17151247

RESUMEN

Chromosomes segregate using their kinetochores, the specialized protein structures that are assembled on centromeric DNA and mediate attachment to the mitotic spindle. Because centromeric sequences are not conserved, centromere identity is propagated by an epigenetic mechanism. All eukaryotes contain an essential histone H3 variant (CenH3) that localizes exclusively to centromeres. Because CenH3 is required for kinetochore assembly and is likely to be the epigenetic mark that specifies centromere identity, it is critical to elucidate the mechanisms that assemble and maintain CenH3 exclusively at centromeres. To learn more about the functions and regulation of CenH3, we isolated mutants in the budding yeast CenH3 that are lethal when overexpressed. These CenH3 mutants fall into three unique classes: (I) those that localize to euchromatin but do not alter kinetochore function, (II) those that localize to the centromere and disrupt kinetochore function, and (III) those that no longer target to the centromere but still disrupt chromosome segregation. We found that a class III mutant is specifically defective in the ability of sister kinetochores to biorient and attach to microtubules from opposite spindle poles, indicating that CenH3 mutants defective in kinetochore biorientation can be obtained.


Asunto(s)
Proteínas Cromosómicas no Histona/genética , Proteínas de Unión al ADN/genética , Expresión Génica , Histonas/genética , Cinetocoros/metabolismo , Proteínas Mutantes/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas Cromosómicas no Histona/aislamiento & purificación , Proteínas Cromosómicas no Histona/metabolismo , Proteínas de Unión al ADN/aislamiento & purificación , Genes Letales , Proteínas Mutantes/aislamiento & purificación , Mutación/genética , Proteínas Nucleares/metabolismo , Fenotipo , Plásmidos/metabolismo , Transporte de Proteínas , Saccharomyces cerevisiae/citología , Proteínas de Saccharomyces cerevisiae/aislamiento & purificación , Huso Acromático/metabolismo , Cohesinas
6.
Stem Cell Reports ; 8(5): 1164-1173, 2017 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-28416283

RESUMEN

The striking rise of obesity-related metabolic disorders has focused attention on adipocytes as critical mediators of disease phenotypes. To better understand the role played by excess adipose in metabolic dysfunction it is crucial to decipher the transcriptional underpinnings of the low-grade adipose inflammation characteristic of diseases such as type 2 diabetes. Through employing a comparative transcriptomics approach, we identified IRF1 as differentially regulated between primary and in vitro-derived genetically matched adipocytes. This suggests a role as a mediator of adipocyte inflammatory phenotypes, similar to its function in other tissues. Utilizing adipose-derived mesenchymal progenitors we subsequently demonstrated that expression of IRF1 in adipocytes indeed contributes to upregulation of inflammatory processes, both in vitro and in vivo. This highlights IRF1's relevance to obesity-related inflammation and the resultant metabolic dysregulation.


Asunto(s)
Adipocitos/metabolismo , Factor 1 Regulador del Interferón/genética , Obesidad/metabolismo , Fenotipo , Adipocitos/citología , Animales , Células Cultivadas , Femenino , Humanos , Inflamación/genética , Inflamación/metabolismo , Factor 1 Regulador del Interferón/metabolismo , Trasplante de Células Madre Mesenquimatosas/efectos adversos , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo , Ratones , Ratones Desnudos , Obesidad/genética , Transcriptoma , Regulación hacia Arriba
7.
Cell Stem Cell ; 10(1): 4-6, 2012 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-22226347

RESUMEN

The Polycomb repressive complexes (PRC) regulate self-renewal and differentiation in embryonic stem cells (ESCs). In this issue of Cell Stem Cell, Morey et al. (2012) and O'Loghlen et al. (2012) report that dynamic interchange of PRC subunits modulates the balance between self-renewal and lineage commitment in ESCs.

8.
Nat Cell Biol ; 14(2): 209-19, 2012 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-22246346

RESUMEN

The utility of human pluripotent stem cells is dependent on efficient differentiation protocols that convert these cells into relevant adult cell types. Here we report the robust and efficient differentiation of human pluripotent stem cells into white or brown adipocytes. We found that inducible expression of PPARG2 alone or combined with CEBPB and/or PRDM16 in mesenchymal progenitor cells derived from pluripotent stem cells programmed their development towards a white or brown adipocyte cell fate with efficiencies of 85%-90%. These adipocytes retained their identity independent of transgene expression, could be maintained in culture for several weeks, expressed mature markers and had mature functional properties such as lipid catabolism and insulin-responsiveness. When transplanted into mice, the programmed cells gave rise to ectopic fat pads with the morphological and functional characteristics of white or brown adipose tissue. These results indicate that the cells could be used to faithfully model human disease.


Asunto(s)
Adipocitos Marrones/metabolismo , Adipocitos Blancos/metabolismo , Diferenciación Celular/genética , Células Madre Pluripotentes/metabolismo , Transgenes/genética , Células 3T3 , Adipocitos Marrones/citología , Adipocitos Blancos/citología , Tejido Adiposo Pardo/citología , Tejido Adiposo Pardo/metabolismo , Tejido Adiposo Blanco/citología , Tejido Adiposo Blanco/metabolismo , Animales , Proteína beta Potenciadora de Unión a CCAAT/genética , Proteína beta Potenciadora de Unión a CCAAT/metabolismo , Células Cultivadas , Análisis por Conglomerados , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Perfilación de la Expresión Génica , Células HEK293 , Humanos , Inmunohistoquímica , Trasplante de Células Madre Mesenquimatosas/métodos , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo , Ratones , Ratones Noqueados , Análisis de Secuencia por Matrices de Oligonucleótidos , PPAR gamma/genética , PPAR gamma/metabolismo , Células Madre Pluripotentes/citología , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Trasplante Heterólogo
9.
Mol Cell ; 26(6): 853-65, 2007 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-17569568

RESUMEN

The kinetochore is a complex multiprotein structure located at centromeres that is essential for proper chromosome segregation. Budding-yeast Cse4 is an essential evolutionarily conserved histone H3 variant recruited to the centromere by an unknown mechanism. We have identified Scm3, an inner kinetochore protein that immunopurifies with Cse4. Scm3 is essential for viability and localizes to all centromeres. Construction of a conditional SCM3 allele reveals that depletion results in metaphase arrest, with duplicated spindle poles, short spindles, and unequal DNA distribution. The metaphase arrest is mediated by the mitotic spindle checkpoint being dependent on Mad1 and the Aurora kinase B homolog Ipl1. Scm3 interacts with both Ndc10 and Cse4 and is essential to establish centromeric chromatin after DNA replication. In addition, Scm3 is required to maintain kinetochore function throughout the cell cycle. We propose a model in which Ndc10/Scm3 binds to centromeric DNA, which is in turn essential for targeting Cse4 to centromeres.


Asunto(s)
Proteínas Cromosómicas no Histona/metabolismo , Replicación del ADN/fisiología , Proteínas de Unión al ADN/metabolismo , Histonas/metabolismo , Metafase/fisiología , Modelos Moleculares , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Aurora Quinasas , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Cromatina/genética , Cromatina/metabolismo , Proteínas Cromosómicas no Histona/genética , ADN de Hongos/genética , ADN de Hongos/metabolismo , Proteínas de Unión al ADN/genética , Histonas/genética , Cinetocoros , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Transporte de Proteínas/fisiología , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Huso Acromático/genética , Huso Acromático/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA