Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 186(18): 3903-3920.e21, 2023 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-37557169

RESUMEN

Immune-checkpoint blockade has revolutionized cancer treatment, but some cancers, such as acute myeloid leukemia (AML), do not respond or develop resistance. A potential mode of resistance is immune evasion of T cell immunity involving aberrant major histocompatibility complex class I (MHC-I) antigen presentation (AP). To map such mechanisms of resistance, we identified key MHC-I regulators using specific peptide-MHC-I-guided CRISPR-Cas9 screens in AML. The top-ranked negative regulators were surface protein sushi domain containing 6 (SUSD6), transmembrane protein 127 (TMEM127), and the E3 ubiquitin ligase WWP2. SUSD6 is abundantly expressed in AML and multiple solid cancers, and its ablation enhanced MHC-I AP and reduced tumor growth in a CD8+ T cell-dependent manner. Mechanistically, SUSD6 forms a trimolecular complex with TMEM127 and MHC-I, which recruits WWP2 for MHC-I ubiquitination and lysosomal degradation. Together with the SUSD6/TMEM127/WWP2 gene signature, which negatively correlates with cancer survival, our findings define a membrane-associated MHC-I inhibitory axis as a potential therapeutic target for both leukemia and solid cancers.


Asunto(s)
Antígenos de Histocompatibilidad Clase I , Neoplasias , Escape del Tumor , Humanos , Presentación de Antígeno , Linfocitos T CD8-positivos , Antígenos de Histocompatibilidad Clase I/metabolismo , Antígenos HLA , Neoplasias/inmunología , Ubiquitina-Proteína Ligasas/genética
2.
Nat Immunol ; 18(1): 15-25, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27841869

RESUMEN

The lymph node periphery is an important site for many immunological functions, from pathogen containment to the differentiation of helper T cells, yet the cues that position cells in this region are largely undefined. Here, through the use of a reporter for the signaling lipid S1P (sphingosine 1-phosphate), we found that cells sensed higher concentrations of S1P in the medullary cords than in the T cell zone and that the S1P transporter SPNS2 on lymphatic endothelial cells generated this gradient. Natural killer (NK) cells are located at the periphery of the lymph node, predominantly in the medulla, and we found that expression of SPNS2, expression of the S1P receptor S1PR5 on NK cells, and expression of the chemokine receptor CXCR4 were all required for NK cell localization during homeostasis and rapid production of interferon-γ by NK cells after challenge. Our findings elucidate the spatial cues for NK cell organization and reveal a previously unknown role for S1P in positioning cells within the medulla.


Asunto(s)
Proteínas de Transporte de Anión/metabolismo , Células Endoteliales/inmunología , Células Asesinas Naturales/inmunología , Ganglios Linfáticos/inmunología , Lisofosfolípidos/metabolismo , Receptores CXCR4/metabolismo , Receptores de Lisoesfingolípidos/metabolismo , Esfingosina/análogos & derivados , Animales , Proteínas de Transporte de Anión/genética , Diferenciación Celular , Movimiento Celular , Células Cultivadas , Quimiotaxis , Homeostasis , Interferón gamma/metabolismo , Activación de Linfocitos/genética , Lisofosfolípidos/química , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Receptores CXCR4/genética , Receptores de Lisoesfingolípidos/genética , Transducción de Señal , Esfingosina/química , Esfingosina/metabolismo , Linfocitos T Colaboradores-Inductores/fisiología
3.
Nature ; 616(7958): 774-782, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-37076619

RESUMEN

For unknow reasons, the melanocyte stem cell (McSC) system fails earlier than other adult stem cell populations1, which leads to hair greying in most humans and mice2,3. Current dogma states that McSCs are reserved in an undifferentiated state in the hair follicle niche, physically segregated from differentiated progeny that migrate away following cues of regenerative stimuli4-8. Here we show that most McSCs toggle between transit-amplifying and stem cell states for both self-renewal and generation of mature progeny, a mechanism fundamentally distinct from those of other self-renewing systems. Live imaging and single-cell RNA sequencing revealed that McSCs are mobile, translocating between hair follicle stem cell and transit-amplifying compartments where they reversibly enter distinct differentiation states governed by local microenvironmental cues (for example, WNT). Long-term lineage tracing demonstrated that the McSC system is maintained by reverted McSCs rather than by reserved stem cells inherently exempt from reversible changes. During ageing, there is accumulation of stranded McSCs that do not contribute to the regeneration of melanocyte progeny. These results identify a new model whereby dedifferentiation is integral to homeostatic stem cell maintenance and suggest that modulating McSC mobility may represent a new approach for the prevention of hair greying.


Asunto(s)
Desdiferenciación Celular , Folículo Piloso , Melanocitos , Nicho de Células Madre , Células Madre , Animales , Humanos , Ratones , Folículo Piloso/citología , Melanocitos/citología , Células Madre/citología , Microambiente Celular , Linaje de la Célula , Envejecimiento , Homeostasis , Color del Cabello/fisiología
4.
Nature ; 610(7932): 547-554, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36198790

RESUMEN

Loss of Paneth cells and their antimicrobial granules compromises the intestinal epithelial barrier and is associated with Crohn's disease, a major type of inflammatory bowel disease1-7. Non-classical lymphoid cells, broadly referred to as intraepithelial lymphocytes (IELs), intercalate the intestinal epithelium8,9. This anatomical position has implicated them as first-line defenders in resistance to infections, but their role in inflammatory disease pathogenesis requires clarification. The identification of mediators that coordinate crosstalk between specific IEL and epithelial subsets could provide insight into intestinal barrier mechanisms in health and disease. Here we show that the subset of IELs that express γ and δ T cell receptor subunits (γδ IELs) promotes the viability of Paneth cells deficient in the Crohn's disease susceptibility gene ATG16L1. Using an ex vivo lymphocyte-epithelium co-culture system, we identified apoptosis inhibitor 5 (API5) as a Paneth cell-protective factor secreted by γδ IELs. In the Atg16l1-mutant mouse model, viral infection induced a loss of Paneth cells and enhanced susceptibility to intestinal injury by inhibiting the secretion of API5 from γδ IELs. Therapeutic administration of recombinant API5 protected Paneth cells in vivo in mice and ex vivo in human organoids with the ATG16L1 risk allele. Thus, we identify API5 as a protective γδ IEL effector that masks genetic susceptibility to Paneth cell death.


Asunto(s)
Proteínas Reguladoras de la Apoptosis , Enfermedad de Crohn , Predisposición Genética a la Enfermedad , Linfocitos Intraepiteliales , Proteínas Nucleares , Células de Paneth , Animales , Humanos , Ratones , Proteínas Reguladoras de la Apoptosis/metabolismo , Muerte Celular , Enfermedad de Crohn/genética , Enfermedad de Crohn/metabolismo , Enfermedad de Crohn/patología , Predisposición Genética a la Enfermedad/genética , Mucosa Intestinal/patología , Proteínas Nucleares/metabolismo , Células de Paneth/patología , Receptores de Antígenos de Linfocitos T/inmunología , Receptores de Antígenos de Linfocitos T/metabolismo , Linfocitos Intraepiteliales/inmunología , Linfocitos Intraepiteliales/metabolismo , Supervivencia Celular , Organoides , Alelos
5.
Nat Immunol ; 16(12): 1245-52, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26502404

RESUMEN

Despite the importance of signaling lipids, many questions remain about their function because few tools are available for charting lipid gradients in vivo. Here we generated a sphingosine 1-phosphate (S1P) reporter mouse and used this mouse to define the distribution of S1P in the spleen. Unexpectedly, the presence of blood did not serve as a predictor of the concentration of signaling-available S1P. Large areas of the red pulp had low concentrations of S1P, while S1P was sensed by cells inside the white pulp near the marginal sinus. The lipid phosphate phosphatase LPP3 maintained low S1P concentrations in the spleen and enabled efficient shuttling of marginal zone B cells. The exquisitely tight regulation of S1P availability might explain how a single lipid can simultaneously orchestrate the movements of many cells of the immune system.


Asunto(s)
Lisofosfolípidos/metabolismo , Esfingosina/análogos & derivados , Bazo/metabolismo , Animales , Antígenos de Diferenciación/metabolismo , Linfocitos B/metabolismo , Línea Celular , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Macrófagos/metabolismo , Ratones Noqueados , Ratones Transgénicos , Microscopía Confocal , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Fosfatidato Fosfatasa/genética , Fosfatidato Fosfatasa/metabolismo , Receptores de Lisoesfingolípidos/genética , Receptores de Lisoesfingolípidos/metabolismo , Lectina 1 Similar a Ig de Unión al Ácido Siálico/metabolismo , Esfingosina/metabolismo , Receptores de Esfingosina-1-Fosfato , Bazo/citología , Proteína Fluorescente Roja
6.
Nature ; 592(7853): 290-295, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33658712

RESUMEN

The lipid chemoattractant sphingosine 1-phosphate (S1P) guides cells out of tissues, where the concentration of S1P is relatively low, into circulatory fluids, where the concentration of S1P is high1. For example, S1P directs the exit of T cells from lymph nodes, where T cells are initially activated, into lymph, from which T cells reach the blood and ultimately inflamed tissues1. T cells follow S1P gradients primarily using S1P receptor 1 (ref. 1). Recent studies have described how S1P gradients are established at steady state, but little is known about the distribution of S1P in disease or about how changing levels of S1P may affect immune responses. Here we show that the concentration of S1P increases in lymph nodes during an immune response. We found that haematopoietic cells, including inflammatory monocytes, were an important source of this S1P, which was an unexpected finding as endothelial cells provide S1P to lymph1. Inflammatory monocytes required the early activation marker CD69 to supply this S1P, in part because the expression of CD69 was associated with reduced levels of S1pr5 (which encodes S1P receptor 5). CD69 acted as a 'stand-your-ground' signal, keeping immune cells at a site of inflammation by regulating both the receptors and the gradients of S1P. Finally, increased levels of S1P prolonged the residence time of T cells in the lymph nodes and exacerbated the severity of experimental autoimmune encephalomyelitis in mice. This finding suggests that residence time in the lymph nodes might regulate the differentiation of T cells, and points to new uses of drugs that target S1P signalling.


Asunto(s)
Ganglios Linfáticos/inmunología , Ganglios Linfáticos/metabolismo , Lisofosfolípidos/metabolismo , Monocitos/metabolismo , Esfingosina/análogos & derivados , Linfocitos T/inmunología , Animales , Antígenos CD/metabolismo , Antígenos de Diferenciación de Linfocitos T/metabolismo , Encefalomielitis Autoinmune Experimental/inmunología , Encefalomielitis Autoinmune Experimental/metabolismo , Encefalomielitis Autoinmune Experimental/fisiopatología , Femenino , Inflamación/inmunología , Inflamación/metabolismo , Lectinas Tipo C/metabolismo , Ganglios Linfáticos/citología , Masculino , Ratones , Ratones Endogámicos C57BL , Transducción de Señal , Esfingosina/metabolismo , Receptores de Esfingosina-1-Fosfato/antagonistas & inhibidores , Receptores de Esfingosina-1-Fosfato/genética , Receptores de Esfingosina-1-Fosfato/metabolismo , Linfocitos T/citología
7.
PLoS Pathog ; 19(9): e1011647, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37738244

RESUMEN

The bacterial microbiota promotes the life cycle of the intestine-dwelling whipworm Trichuris by mediating hatching of parasite eggs ingested by the mammalian host. Despite the enormous disease burden associated with Trichuris colonization, the mechanisms underlying this transkingdom interaction have been obscure. Here, we used a multiscale microscopy approach to define the structural events associated with bacteria-mediated hatching of eggs for the murine model parasite Trichuris muris. Through the combination of scanning electron microscopy (SEM) and serial block face SEM (SBFSEM), we visualized the outer surface morphology of the shell and generated 3D structures of the egg and larva during the hatching process. These images revealed that exposure to hatching-inducing bacteria catalyzed asymmetric degradation of the polar plugs prior to exit by the larva. Unrelated bacteria induced similar loss of electron density and dissolution of the structural integrity of the plugs. Egg hatching was most efficient when high densities of bacteria were bound to the poles. Consistent with the ability of taxonomically distant bacteria to induce hatching, additional results suggest chitinase released from larva within the eggs degrade the plugs from the inside instead of enzymes produced by bacteria in the external environment. These findings define at ultrastructure resolution the evolutionary adaptation of a parasite for the microbe-rich environment of the mammalian gut.


Asunto(s)
Microbiota , Trichuris , Ratones , Animales , Microscopía Electrónica de Rastreo , Bacterias , Larva , Óvulo , Mamíferos
8.
Proc Natl Acad Sci U S A ; 119(16): e2119168119, 2022 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-35412885

RESUMEN

A hallmark of pancreatic tumors is their highly desmoplastic stroma composed of fibroblasts, immune cells, and a dense network of collagen fibers. Tumor-associated macrophages are one of the most abundant immune cell populations in the pancreatic tumor stroma. Their protumorigenic function has been attributed predominantly to their capacity to promote immune evasion and metastasis. Tumor-assoc iated macrophages are also well known for their role in the remodeling of the stroma via collagen production and degradation, with the latter being mediated by mannose receptor (MRC1)-dependent endocytosis of collagen. Here we show that MRC1-mediated collagen internalization and subsequent lysosomal degradation by macrophages harboring a tumor-associated phenotype are accompanied by the accumulation of collagen-derived intracellular free amino acids and increased arginine biosynthesis. The resulting increase in intracellular arginine levels leads to the up-regulation of inducible nitric oxide synthase and the production of reactive nitrogen species. Furthermore, reactive nitrogen species derived from internalized and degraded collagen promotes a profibrotic phenotype in pancreatic stellate cells resulting in enhanced intratumoral collagen deposition. Overall, our findings identify a role for extracellular matrix remodeling in the functional modulation of tumor-associated macrophages via metabolic rewiring.


Asunto(s)
Carcinoma Ductal Pancreático , Colágeno , Neoplasias Pancreáticas , Macrófagos Asociados a Tumores , Carcinoma Ductal Pancreático/inmunología , Carcinoma Ductal Pancreático/patología , Colágeno/metabolismo , Fibrosis , Humanos , Tolerancia Inmunológica , Neoplasias Pancreáticas/inmunología , Neoplasias Pancreáticas/patología , Microambiente Tumoral , Macrófagos Asociados a Tumores/metabolismo , Neoplasias Pancreáticas
9.
Antimicrob Agents Chemother ; 68(9): e0023524, 2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39072634

RESUMEN

In response to the antimicrobial resistance crisis, we have developed a powerful and versatile therapeutic platform, the Antibacterial Drone (ABD) system. The ABD consists of a highly mobile staphylococcal pathogenicity island re-purposed to deliver genes encoding antibacterial proteins. The chromosomally located island is induced by a co-resident helper phage, packaged in phage-like particles, and released in very high numbers upon phage-induced lysis. ABD particles specifically adsorb to bacteria causing an infection and deliver their DNA to these bacteria, where the bactericidal cargo genes are expressed, kill the bacteria, and cure the infection. Here, we report a major advance of the system, incorporation of the gene encoding a secreted, bactericidal, species-specific lytic enzyme, lysostsphin. This ABD not only kills the bacterium that has been attacked by the ABD, but also any surrounding bacteria that are sensitive to the lytic enzyme which is released by secretion and by lysis of the doomed cell. So while the killing field is thus expanded, there are no civilian casualties (bacteria that are insensitive to the ABD and its cargo protein(s) are not inadvertently killed). Without amplifying the number of ABD particles (which are not re-packaged), the expression and release of the cargo gene's product dramatically extend the effective reach of the ABD. A cargo gene that encodes a secreted bactericidal protein also enables the treatment of a mixed bacterial infection in which one of the infecting organisms is insensitive to the ABD delivery system but is sensitive to the ABD's secreted cargo protein.


Asunto(s)
Antibacterianos , Lisostafina , Antibacterianos/farmacología , Lisostafina/farmacología , Islas Genómicas/genética , Staphylococcus aureus/efectos de los fármacos , Staphylococcus aureus/genética , Bacteriófagos/genética
10.
Biomacromolecules ; 25(1): 258-271, 2024 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-38110299

RESUMEN

Protein hydrogels represent an important and growing biomaterial for a multitude of applications, including diagnostics and drug delivery. We have previously explored the ability to engineer the thermoresponsive supramolecular assembly of coiled-coil proteins into hydrogels with varying gelation properties, where we have defined important parameters in the coiled-coil hydrogel design. Using Rosetta energy scores and Poisson-Boltzmann electrostatic energies, we iterate a computational design strategy to predict the gelation of coiled-coil proteins while simultaneously exploring five new coiled-coil protein hydrogel sequences. Provided this library, we explore the impact of in silico energies on structure and gelation kinetics, where we also reveal a range of blue autofluorescence that enables hydrogel disassembly and recovery. As a result of this library, we identify the new coiled-coil hydrogel sequence, Q5, capable of gelation within 24 h at 4 °C, a more than 2-fold increase over that of our previous iteration Q2. The fast gelation time of Q5 enables the assessment of structural transition in real time using small-angle X-ray scattering (SAXS) that is correlated to coarse-grained and atomistic molecular dynamics simulations revealing the supramolecular assembling behavior of coiled-coils toward nanofiber assembly and gelation. This work represents the first system of hydrogels with predictable self-assembly, autofluorescent capability, and a molecular model of coiled-coil fiber formation.


Asunto(s)
Simulación de Dinámica Molecular , Proteínas , Dispersión del Ángulo Pequeño , Difracción de Rayos X , Proteínas/química , Hidrogeles
11.
Am J Respir Cell Mol Biol ; 68(5): 523-536, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36693140

RESUMEN

Normal lung development critically depends on HH (Hedgehog) and PDGF (platelet-derived growth factor) signaling, which coordinate mesenchymal differentiation and proliferation. PDGF signaling is required for postnatal alveolar septum formation by myofibroblasts. Recently, we demonstrated a requirement for HH in postnatal lung development involving alveolar myofibroblast differentiation. Given shared features of HH signaling and PDGF signaling and their impact on this key cell type, we sought to clarify their relationship during murine postnatal lung development. Timed experiments revealed that HH inhibition phenocopies the key lung myofibroblast phenotypes of Pdgfa (platelet-derived growth factor subunit A) and Pdgfra (platelet-derived growth factor receptor alpha) knockouts during secondary alveolar septation. Using a dual signaling reporter, Gli1lZ;PdgfraEGFP, we show that HH and PDGF pathway intermediates are concurrently expressed during alveolar septal myofibroblast accumulation, suggesting pathway convergence in the generation of lung myofibroblasts. Consistent with this hypothesis, HH inhibition reduces Pdgfra expression and diminishes the number of Pdgfra-positive and Pdgfra-lineage cells in postnatal lungs. Bulk RNA sequencing data of Pdgfra-expressing cells from Postnatal Day 8 (P8) lungs show that HH inhibition alters the expression not only of well-established HH targets but also of several putative PDGF target genes. This, together with the presence of Gli-binding sites in PDGF target genes, suggests HH input into PDGF signaling. We identified these HH/PDGF targets in several postnatal lung mesenchymal cell populations, including myofibroblasts, using single-cell transcriptomic analysis. Collectively, our data indicate that HH signaling and PDGF signaling intersect to support myofibroblast/fibroblast function during secondary alveolar septum formation. Moreover, they provide a molecular foundation relevant to perinatal lung diseases associated with impaired alveolarization.


Asunto(s)
Erizos , Pulmón , Embarazo , Femenino , Animales , Ratones , Erizos/metabolismo , Pulmón/metabolismo , Factor de Crecimiento Derivado de Plaquetas/metabolismo , Miofibroblastos/metabolismo , Fibroblastos/metabolismo , Receptor alfa de Factor de Crecimiento Derivado de Plaquetas/metabolismo
12.
PLoS Pathog ; 16(9): e1008738, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32946515

RESUMEN

Microsporidia, a divergent group of single-celled eukaryotic parasites, harness a specialized harpoon-like invasion apparatus called the polar tube (PT) to gain entry into host cells. The PT is tightly coiled within the transmissible extracellular spore, and is about 20 times the length of the spore. Once triggered, the PT is rapidly ejected and is thought to penetrate the host cell, acting as a conduit for the transfer of infectious cargo into the host. The organization of this specialized infection apparatus in the spore, how it is deployed, and how the nucleus and other large cargo are transported through the narrow PT are not well understood. Here we use serial block-face scanning electron microscopy to reveal the 3-dimensional architecture of the PT and its relative spatial orientation to other organelles within the spore. Using high-speed optical microscopy, we also capture and quantify the entire PT germination process of three human-infecting microsporidian species in vitro: Anncaliia algerae, Encephalitozoon hellem and E. intestinalis. Our results show that the emerging PT experiences very high accelerating forces to reach velocities exceeding 300 µm⋅s-1, and that firing kinetics differ markedly between species. Live-cell imaging reveals that the nucleus, which is at least 7 times larger than the diameter of the PT, undergoes extreme deformation to fit through the narrow tube, and moves at speeds comparable to PT extension. Our study sheds new light on the 3-dimensional organization, dynamics, and mechanism of PT extrusion, and shows how infectious cargo moves through the tube to initiate infection.


Asunto(s)
Microscopía/métodos , Microsporidios/patogenicidad , Orgánulos/inmunología , Orgánulos/ultraestructura , Esporas Fúngicas/inmunología , Esporas Fúngicas/ultraestructura , Proteínas Fúngicas/metabolismo , Microsporidios/inmunología , Microsporidios/ultraestructura , Esporas Fúngicas/crecimiento & desarrollo
13.
Blood ; 135(26): 2388-2401, 2020 06 25.
Artículo en Inglés | MEDLINE | ID: mdl-32232483

RESUMEN

A goal in precision medicine is to use patient-derived material to predict disease course and intervention outcomes. Here, we use mechanistic observations in a preclinical animal model to design an ex vivo platform that recreates genetic susceptibility to T-cell-mediated damage. Intestinal graft-versus-host disease (GVHD) is a life-threatening complication of allogeneic hematopoietic cell transplantation. We found that intestinal GVHD in mice deficient in Atg16L1, an autophagy gene that is polymorphic in humans, is reversed by inhibiting necroptosis. We further show that cocultured allogeneic T cells kill Atg16L1-mutant intestinal organoids from mice, which was associated with an aberrant epithelial interferon signature. Using this information, we demonstrate that pharmacologically inhibiting necroptosis or interferon signaling protects human organoids derived from individuals harboring a common ATG16L1 variant from allogeneic T-cell attack. Our study provides a roadmap for applying findings in animal models to individualized therapy that targets affected tissues.


Asunto(s)
Enfermedad Injerto contra Huésped/prevención & control , Enfermedades Intestinales/prevención & control , Organoides , Linfocitos T/inmunología , Acrilamidas/farmacología , Animales , Autofagia , Proteínas Relacionadas con la Autofagia/deficiencia , Proteínas Relacionadas con la Autofagia/genética , Trasplante de Médula Ósea/efectos adversos , Técnicas de Cocultivo , Colon/anomalías , Femenino , Predisposición Genética a la Enfermedad , Enfermedad Injerto contra Huésped/inmunología , Enfermedad Injerto contra Huésped/patología , Humanos , Imidazoles/farmacología , Indoles/farmacología , Enfermedades Inflamatorias del Intestino/patología , Enfermedades Intestinales/inmunología , Enfermedades Intestinales/patología , Mucosa Intestinal/inmunología , Mucosa Intestinal/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Necroptosis/efectos de los fármacos , Nitrilos , Células de Paneth/patología , Medicina de Precisión , Pirazoles/farmacología , Pirimidinas , Quimera por Radiación , Proteína Serina-Treonina Quinasas de Interacción con Receptores/deficiencia , Sulfonamidas/farmacología , Linfocitos T/trasplante
14.
Mol Cell Neurosci ; 99: 103395, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31422108

RESUMEN

BACE1 is a transmembrane aspartic protease that cleaves various substrates and it is required for normal brain function. BACE1 expression is high during early development, but it is reduced in adulthood. Under conditions of stress and injury, BACE1 levels are increased; however, the underlying mechanisms that drive BACE1 elevation are not well understood. One mechanism associated with brain injury is the activation of injurious p75 neurotrophin receptor (p75), which can trigger pathological signals. Here we report that within 72 h after controlled cortical impact (CCI) or laser injury, BACE1 and p75 are increased and tightly co-expressed in cortical neurons of mouse brain. Additionally, BACE1 is not up-regulated in p75 null mice in response to focal cortical injury, while p75 over-expression results in BACE1 augmentation in HEK-293 and SY5Y cell lines. A luciferase assay conducted in SY5Y cell line revealed that BACE1 expression is regulated at the transcriptional level in response to p75 transfection. Interestingly, this effect does not appear to be dependent upon p75 ligands including mature and pro-neurotrophins. In addition, BACE1 activity on amyloid precursor protein (APP) is enhanced in SY5Y-APP cells transfected with a p75 construct. Lastly, we found that the activation of c-jun n-terminal kinase (JNK) by p75 contributes to BACE1 up-regulation. This study explores how two injury-induced molecules are intimately connected and suggests a potential link between p75 signaling and the expression of BACE1 after brain injury.


Asunto(s)
Secretasas de la Proteína Precursora del Amiloide/metabolismo , Ácido Aspártico Endopeptidasas/metabolismo , Lesiones Traumáticas del Encéfalo/metabolismo , Receptor de Factor de Crecimiento Nervioso/metabolismo , Secretasas de la Proteína Precursora del Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Animales , Ácido Aspártico Endopeptidasas/genética , Línea Celular Tumoral , Células Cultivadas , Corteza Cerebral/metabolismo , Células HEK293 , Humanos , MAP Quinasa Quinasa 4/metabolismo , Masculino , Ratones , Receptor de Factor de Crecimiento Nervioso/genética , Transducción de Señal , Regulación hacia Arriba
16.
J Assist Reprod Genet ; 36(9): 1877-1890, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31332596

RESUMEN

PURPOSE: To identify and characterize amyloid-like substance (ALS) in human and mouse oocytes and preimplantation embryos. METHODS: An experimental prospective pilot study. A total of 252 mouse oocytes and preimplantation embryos and 50 immature and in vitro matured human oocytes and parthenogenetic human embryos, from 11 consenting fertility patients, ages 18-45. Fluorescence intensity from immunofluorescent staining and data from confocal microscopy were quantified. Data were compared by one-way analysis of variance, with the least square-MEANS post-test, Pearson correlation coefficients (r), and bivariate analyses (t tests). ALS morphology was verified using transmission electron microscopy. RESULTS: Immunostaining for ALS appears throughout the zona pellucida, as well as in the cytoplasm and nucleus of mouse and human oocytes, polar bodies, and parthenogenetic embryos, and mouse preimplantation embryos. In mouse, 2-cell embryos exhibited the highest level of ALS (69000187.4 ± 6733098.07). Electron microscopy confirmed the presence of ALS. In humans, fresh germinal vesicle stage oocytes exhibited the highest level of ALS (4164.74088 ± 1573.46) followed by metaphase I and II stages (p = 0.008). There was a significant negative association between levels of ALS and patient body mass index, number of days of ovarian stimulation, dose of gonadotropin used, time between retrieval and fixation, and time after the hCG trigger. Significantly higher levels of ALS were found in patients with AMH between 1 and 3 ng/ml compared to < 1 ng/ml. CONCLUSION: We demonstrate for the first time the presence, distribution, and change in ALS throughout some stages of mouse and human oocyte maturation and embryonic development. We also determine associations between ALS in human oocytes with clinical characteristics.


Asunto(s)
Amiloide/metabolismo , Blastocisto/metabolismo , Oocitos/metabolismo , Adolescente , Adulto , Animales , Índice de Masa Corporal , Femenino , Humanos , Técnicas de Maduración In Vitro de los Oocitos , Metafase , Ratones , Microscopía Fluorescente , Persona de Mediana Edad , Recuperación del Oocito , Inducción de la Ovulación , Partenogénesis , Proyectos Piloto , Estudios Prospectivos , Adulto Joven , Zona Pelúcida/metabolismo
17.
Infect Immun ; 86(3)2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29311231

RESUMEN

Person-to-person transmission of Streptococcus pneumoniae (the pneumococcus) may occur via environmental sources in close contact with carriers. Pneumococcal polysaccharide capsules, the determinant of serotype (or type), are heterogeneous in structure and amount, and these differences affect rates of transmission. In this study, we examined the contribution of capsule and its variations to the maintenance of pneumococcal viability under starvation conditions. S. pneumoniae retained its ability to colonize infant mice even after incubation for 24 h in phosphate-buffered saline at 25°C. The expression of capsule by the cps locus prolonged survival under these and other nutrient-poor conditions. Analysis of capsule-switch constructs showed that strain-to-strain differences in survival were due to capsule type rather than genetic background. The addition of glucose was sufficient to rescue the survival defect of the capsule-deficient derivative, demonstrating that in the absence of capsule, survival depends upon nutrient availability. During starvation, there was a decrease in capsule size and amount of capsular polysaccharide that was dependent on bacterial viability and the presence of the cps locus. These observations suggest that pneumococci catabolize their own capsular polysaccharide using the genes involved in its biosynthesis to maintain viability when other carbon sources are unavailable. Our findings describe a new role of the pneumococcal capsule: the prolongation of viability under nutrient-limiting conditions as would be encountered during periods when the organism is between hosts.


Asunto(s)
Cápsulas Bacterianas/fisiología , Streptococcus pneumoniae/fisiología , Animales , Ratones , Ratones Endogámicos C57BL , Infecciones Neumocócicas/microbiología
18.
Knee Surg Sports Traumatol Arthrosc ; 26(8): 2481-2489, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-29362860

RESUMEN

PURPOSE: The purpose of this study was to quantify the regional histology of the long head of the biceps tendon (LHBT) and compare the histopathology present to clinical findings in patients with rotator cuff tears and SLAP lesions. METHODS: Prospectively enrolled patients undergoing an open subpectoral LHBT tenodesis in the setting of a rotator cuff (RTC) tear or SLAP lesion. Perioperative data were collected and the excised LHBT was analyzed by a fellowship trained pathologist. Tendons were sectioned into proximal (biceps anchor), middle (bicipital groove), and distal (myotendinous junction) portions. Sections were stained with Movat's pentachrome stain and digitized for analysis. Comparisons were made between the histologic findings present in the setting of a rotator cuff tear with those seen in the setting of a SLAP tear. RESULTS: 39 tendons were analyzed: 20 from patients with SLAP lesions (mean age of 44.7 years, range 23-60 years) and 19 from patients with rotator cuff tears (mean age of 58.7 years, range 43-71). Patients with the most pathologic tendons in the bicipital groove were significantly older (59.4 vs. 50.4 years; p < 0.05), reported higher pre-operative VAS scores (6.6 vs. 5.0; p < 0.02), and demonstrated lower pre-operative ASES scores (41.6 vs. 50.7; p < 0.05). The RTC group showed significantly more mucinous degeneration at both the proximal (p < 0.03) and the middle (p < 0.01) tendon portions compared to the SLAP group. In both groups, the portions of proximal tendon showed significantly (p < 0.05) more mucinous degeneration than distal portions. CONCLUSION: Regional histologic differences exist in the LHBT. Rotator cuff patients showed the most degenerated tendon in the bicipital groove and these patients tended to be older and have higher VAS and lower ASES scores. Surgeons should consider performing a subpectoral biceps tenodesis as the bicipital groove portion of the tendon may be very degenerated, especially in patients with rotator cuff disease. Additional research is warranted to distinguish whether treating the biceps differently in distinct geographic regions affects patient outcomes. LEVEL OF EVIDENCE: II.


Asunto(s)
Lesiones del Manguito de los Rotadores/patología , Lesiones del Manguito de los Rotadores/cirugía , Tendones/patología , Tendones/cirugía , Tenodesis/métodos , Adulto , Artroscopía/métodos , Femenino , Humanos , Masculino , Persona de Mediana Edad , Músculo Esquelético/patología , Músculo Esquelético/cirugía , Dimensión del Dolor , Estudios Prospectivos , Rango del Movimiento Articular , Lesiones del Manguito de los Rotadores/fisiopatología
19.
Proc Natl Acad Sci U S A ; 111(31): E3214-23, 2014 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-25056968

RESUMEN

Human respiratory syncytial virus (hRSV) is the leading cause of bronchiolitis and pneumonia in young children worldwide. The recurrent hRSV outbreaks and reinfections are the cause of a significant public health burden and associate with an inefficient antiviral immunity, even after disease resolution. Although several mouse- and human cell-based studies have shown that hRSV infection prevents naïve T-cell activation by antigen-presenting cells, the mechanism underlying such inhibition remains unknown. Here, we show that the hRSV nucleoprotein (N) could be at least partially responsible for inhibiting T-cell activation during infection by this virus. Early after infection, the N protein was expressed on the surface of epithelial and dendritic cells, after interacting with trans-Golgi and lysosomal compartments. Further, experiments on supported lipid bilayers loaded with peptide-MHC (pMHC) complexes showed that surface-anchored N protein prevented immunological synapse assembly by naive CD4(+) T cells and, to a lesser extent, by antigen-experienced T-cell blasts. Synapse assembly inhibition was in part due to reduced T-cell receptor (TCR) signaling and pMHC clustering at the T-cell-bilayer interface, suggesting that N protein interferes with pMHC-TCR interactions. Moreover, N protein colocalized with the TCR independently of pMHC, consistent with a possible interaction with TCR complex components. Based on these data, we conclude that hRSV N protein expression at the surface of infected cells inhibits T-cell activation. Our study defines this protein as a major virulence factor that contributes to impairing acquired immunity and enhances susceptibility to reinfection by hRSV.


Asunto(s)
Linfocitos T CD4-Positivos/inmunología , Membrana Celular/metabolismo , Sinapsis Inmunológicas/inmunología , Nucleoproteínas/metabolismo , Virus Sincitial Respiratorio Humano/inmunología , Proteínas Virales/metabolismo , Animales , Brefeldino A/farmacología , Linfocitos T CD4-Positivos/efectos de los fármacos , Linfocitos T CD4-Positivos/patología , Comunicación Celular , Línea Celular , Membrana Celular/efectos de los fármacos , Células Dendríticas/efectos de los fármacos , Células Dendríticas/metabolismo , Aparato de Golgi/efectos de los fármacos , Aparato de Golgi/metabolismo , Antígenos de Histocompatibilidad/inmunología , Humanos , Sinapsis Inmunológicas/efectos de los fármacos , Membrana Dobles de Lípidos/metabolismo , Activación de Linfocitos/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Péptidos/inmunología , Transporte de Proteínas/efectos de los fármacos , Receptores de Antígenos de Linfocitos T/inmunología , Infecciones por Virus Sincitial Respiratorio/inmunología , Transducción de Señal/efectos de los fármacos , Transducción de Señal/inmunología , Replicación Viral/efectos de los fármacos
20.
Immunol Cell Biol ; 94(10): 981-993, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27359298

RESUMEN

The immunological synapse formed between a T-cell and an antigen-presenting cell is important for cell-cell communication during T-cell-mediated immune responses. Immunological synapse formation begins with stimulation of the T-cell receptor (TCR). TCR microclusters are assembled and transported to the center of the immunological synapse in an actin polymerization-dependent process. However, the physical link between TCR and actin remains elusive. Here we show that lymphocyte-specific Crk-associated substrate (Cas-L), a member of a force sensing protein family, is required for transport of TCR microclusters and for establishing synapse stability. We found that Cas-L is phosphorylated at TCR microclusters in an actin polymerization-dependent fashion. Furthermore, Cas-L participates in a positive feedback loop leading to amplification of Ca2+ signaling, inside-out integrin activation, and actomyosin contraction. We propose a new role for Cas-L in T-cell activation as a mechanical transducer linking TCR microclusters to the underlying actin network and coordinating multiple actin-dependent structures in the immunological synapse. Our studies highlight the importance of mechanotransduction processes in T-cell-mediated immune responses.


Asunto(s)
Actinas/metabolismo , Proteína Sustrato Asociada a CrK/metabolismo , Sinapsis Inmunológicas/metabolismo , Polimerizacion , Animales , Calcio/metabolismo , Adhesión Celular , Proteína Sustrato Asociada a CrK/deficiencia , Integrinas/metabolismo , Activación de Linfocitos/inmunología , Ratones Endogámicos C57BL , Modelos Inmunológicos , Fosforilación , Transporte de Proteínas , Receptores de Antígenos de Linfocitos T/metabolismo , Linfocitos T/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA