Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Genes Immun ; 24(1): 12-20, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36517554

RESUMEN

Insufficient dietary folate intake, hereditary malabsorption, or defects in folate transport may lead to combined immunodeficiency (CID). Although loss of function mutations in the major intestinal folate transporter PCFT/SLC46A1 was shown to be associated with CID, the evidence for pathogenic variants of RFC/SLC19A1 resulting in immunodeficiency was lacking. We report two cousins carrying a homozygous pathogenic variant c.1042 G > A, resulting in p.G348R substitution who showed symptoms of immunodeficiency associated with defects of folate transport. SLC19A1 expression by peripheral blood mononuclear cells (PBMC) was quantified by real-time qPCR and immunostaining. T cell proliferation, methotrexate resistance, NK cell cytotoxicity, Treg cells and cytokine production by T cells were examined by flow cytometric assays. Patients were treated with and benefited from folinic acid. Studies revealed normal NK cell cytotoxicity, Treg cell counts, and naive-memory T cell percentages. Although SLC19A1 mRNA and protein expression were unaltered, remarkably, mitogen induced-T cell proliferation was significantly reduced at suboptimal folic acid and supraoptimal folinic acid concentrations. In addition, patients' PBMCs were resistant to methotrexate-induced apoptosis supporting a functionally defective SLC19A1. This study presents the second pathogenic SLC19A1 variant in the literature, providing the first experimental evidence that functionally defective variants of SLC19A1 may present with symptoms of immunodeficiency.


Asunto(s)
Síndromes de Inmunodeficiencia , Leucovorina , Proteína Portadora de Folato Reducido , Humanos , Ácido Fólico/genética , Ácido Fólico/metabolismo , Leucovorina/uso terapéutico , Leucovorina/metabolismo , Leucocitos Mononucleares/metabolismo , Metotrexato/farmacología , Metotrexato/uso terapéutico , Transportador de Folato Acoplado a Protón/genética , Transportador de Folato Acoplado a Protón/metabolismo , Proteína Portadora de Folato Reducido/genética , Síndromes de Inmunodeficiencia/tratamiento farmacológico , Síndromes de Inmunodeficiencia/genética , Síndromes de Inmunodeficiencia/metabolismo
2.
Clin Immunol ; 253: 109691, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37433423

RESUMEN

In 15 Turkish LAD-1 patients and controls, we assessed the impact of pathogenic ITGB2 mutations on Th17/Treg differentiation and functions, and innate lymphoid cell (ILC) subsets. The percentage of peripheral blood Treg cells, in vitro-generated induced Tregs differentiated from naive CD4+ T cells were decreased despite the elevated absolute counts of CD4+ cells in LAD-1 patients. Serum IL-23 levels were elevated in LAD-1 patients. Post-curdlan stimulation, LAD-1 patient-derived PBMCs produced more IL-17A. Additionally, the percentages of CD18-deficient Th17 cells expanded from total or naïve CD4+ T cells were higher. The blood ILC3 subset was significantly elevated in LAD-1. Finally, LAD-1 PBMCs showed defects in trans-well migration and proliferation and were more resistant to apoptosis. Defects in de novo generation of Tregs from CD18-deficient naïve T cells and elevated Th17s, and ILC3s in LAD-1 patients' peripheral blood suggest a type 3-skewed immunity and may contribute to LAD-1-associated autoimmune symptoms.


Asunto(s)
Síndrome de Deficiencia de Adhesión del Leucocito , Linfocitos T Reguladores , Humanos , Inmunidad Innata , Linfocitos T CD4-Positivos , Células Th17
3.
Cell Mol Neurobiol ; 42(5): 1523-1542, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33544274

RESUMEN

Activation of the hypothalamic-pituitary-adrenal (HPA) axis using an insulin tolerance test (ITT) is a medical diagnostic procedure that is frequently used in humans to assess the HPA and growth-hormone (GH) axes. Whether sex differences exist in the response to ITT stress is unknown. Thus, investigations into the analysis of transcripts during activation of the HPA axis in response to hypoglycemia have revealed the underlying influences of sex in signaling pathways that stimulate the HPA axis. We assessed four time points of ITT application in Balb/c mice. After insulin injection, expression levels of 192 microRNAs and 41 mRNAs associated with the HPA, GH and hypothalamic-pituitary-gonadal (HPG) axes were determined by real-time RT-PCR in the hypothalamus, pituitary and adrenal tissues, as well as blood samples (Raw data accession: https://drive.google.com/drive/folders/10qI00NAtjxOepcNKxSJnQbJeBFa6zgHK?usp=sharing ). Although the ITT is commonly used as a gold standard for evaluating the HPA axis, we found completely different responses between males and females with respect to activation of the HPA axis. While activation of several transcripts in the hypothalamus and pituitary was observed after performing the ITT in males within 10 min, females responded via the pituitary and adrenal immediately and durably over 40 min. Additionally, we found that microRNA alterations precede mRNA responses in the HPA axis. Furthermore, robust changes in the levels of several transcripts including Avpr1b and Avpr2 observed at all time points strongly suggest that transcriptional control of these genes occurs mostly via differential signaling in pituitary and blood between males and females. Male and female HPA axis responses to ITT involve a number of sophisticated regulatory signaling pathways of miRNAs and mRNAs. Our results highlight the first robust markers in several layers of HPA, HPG and GH axis involved in ITT/hypoglycemia stress-induced dynamics.


Asunto(s)
Hormona de Crecimiento Humana , Hipoglucemia , Animales , Femenino , Hormona de Crecimiento Humana/metabolismo , Hipoglucemia/inducido químicamente , Hipoglucemia/genética , Hipoglucemia/metabolismo , Sistema Hipotálamo-Hipofisario/metabolismo , Insulina/metabolismo , Masculino , Ratones , Sistema Hipófiso-Suprarrenal/metabolismo , Caracteres Sexuales , Transcriptoma/genética
4.
Int J Neurosci ; 132(11): 1072-1079, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33287601

RESUMEN

BACKGROUND: Autism spectrum disorder (ASD) is a neurodevelopmental disorder with large genetic background, but identification of pathogenic variants has proceeded slowly because hundreds of loci are involved in this complex disorder. CC2D1A gene firstly associated with the intellectual disability (ID) in a family with a large deletion. We aimed to contribute to the literature by sequencing this gene and by this way we report novel CC2D1A variations in patients with ASD. METHODS: Forty families who have a child with a diagnosis of ASD were enrolled to the study. DNA samples were obtained from each family member. Bidirectional CC2D1A gene sequencing was performed with CEQ Cycle Sequencing Kit, and the products were analyzed on the Beckman CEQ 8000. All of the genetic analysis was conducted in Erciyes University Genome and Stem Cell Center (GENKOK). RESULTS: According to the sequencing results, we defined new alterations in this gene with two SNPs in exon 15 and 19 (rs747172992 and rs1364074600) in our patients. We found a pathogenic variant in one patient. This variant was located in the acceptor region. Six of the variants were missense mutations. Additionally, six different benign variants were detected in 30 patients; however, they were not associated with ASD. Two patients carried multiple rare variants. CONCLUSION: In vitro and in vivo functional analysis with this gene will help to understand its contribution to ASD pathogenesis. Future studies may help to elucidate the underlying biological mechanisms of these variants leading to the autism phenotype.


Asunto(s)
Trastorno del Espectro Autista , Discapacidad Intelectual , Humanos , Trastorno del Espectro Autista/genética , Fenotipo , Polimorfismo de Nucleótido Simple/genética , Mutación Missense , Proteínas de Unión al ADN
5.
Immunology ; 164(1): 73-89, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33876425

RESUMEN

IL-22 is an alpha-helical cytokine which belongs to the IL-10 family of cytokines. IL-22 is produced by RORγt+ innate and adaptive lymphocytes, including ILC3, γδ T, iNKT, Th17 and Th22 cells and some granulocytes. IL-22 receptor is expressed primarily by non-haematopoietic cells. IL-22 is critical for barrier immunity at the mucosal surfaces in the steady state and during infection. Although IL-22 knockout mice were previously shown to develop experimental autoimmune encephalomyelitis (EAE), a murine model of multiple sclerosis (MS), how temporal IL-22 manipulation in adult mice would affect EAE course has not been studied previously. In this study, we overexpressed IL-22 via hydrodynamic gene delivery or blocked it via neutralizing antibodies in C57BL/6 mice to explore the therapeutic impact of IL-22 modulation on the EAE course. IL-22 overexpression significantly decreased EAE scores and demyelination, and reduced infiltration of IFN-γ+IL-17A+Th17 cells into the central nervous system (CNS). The neutralization of IL-22 did not alter the EAE pathology significantly. We show that IL-22-mediated protection is independent of Reg3γ, an epithelial cell-derived antimicrobial peptide induced by IL-22. Thus, overexpression of Reg3γ significantly exacerbated EAE scores, demyelination and infiltration of IFN-γ+IL-17A+ and IL-17A+GM-CSF+Th17 cells to CNS. We also show that Reg3γ may inhibit IL-2-mediated STAT5 signalling and impair expansion of Treg cells in vivo and in vitro. Finally, Reg3γ overexpression dramatically impacted intestinal microbiota during EAE. Our results provide novel insight into the role of IL-22 and IL-22-induced antimicrobial peptide Reg3γ in the pathogenesis of CNS inflammation in a murine model of MS.


Asunto(s)
Encefalomielitis Autoinmune Experimental/inmunología , Interleucinas/metabolismo , Esclerosis Múltiple/inmunología , Proteínas Asociadas a Pancreatitis/metabolismo , Linfocitos T Reguladores/inmunología , Animales , Citocinas/metabolismo , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Regulación de la Expresión Génica , Células HEK293 , Humanos , Interleucinas/genética , Ratones , Ratones Endogámicos C57BL , Proteínas Asociadas a Pancreatitis/genética , Receptores de Interleucina/metabolismo , Factor de Transcripción STAT5/metabolismo , Transducción de Señal , Interleucina-22
6.
Allergy ; 75(4): 921-932, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31596517

RESUMEN

BACKGROUND: Dedicator of cytokinesis 8 (DOCK8) deficiency is the main cause of the autosomal recessive hyper-IgE syndrome (HIES). We previously reported the selective loss of group 3 innate lymphoid cell (ILC) number and function in a Dock8-deficient mouse model. In this study, we sought to test whether DOCK8 is required for the function and maintenance of ILC subsets in humans. METHODS: Peripheral blood ILC1-3 subsets of 16 DOCK8-deficient patients recruited at the pretransplant stage, and seven patients with autosomal dominant (AD) HIES due to STAT3 mutations, were compared with those of healthy controls or post-transplant DOCK8-deficient patients (n = 12) by flow cytometry and real-time qPCR. Sorted total ILCs from DOCK8- or STAT3-mutant patients and healthy controls were assayed for survival, apoptosis, proliferation, and activation by IL-7, IL-23, and IL-12 by cell culture, flow cytometry, and phospho-flow assays. RESULTS: DOCK8-deficient but not STAT3-mutant patients exhibited a profound depletion of ILC3s, and to a lesser extent ILC2s, in their peripheral blood. DOCK8-deficient ILC1-3 subsets had defective proliferation, expressed lower levels of IL-7R, responded less to IL-7, IL-12, or IL-23 cytokines, and were more prone to apoptosis compared with those of healthy controls. CONCLUSION: DOCK8 regulates human ILC3 expansion and survival, and more globally ILC cytokine signaling and proliferation. DOCK8 deficiency leads to loss of ILC3 from peripheral blood. ILC3 deficiency may contribute to the susceptibility of DOCK8-deficient patients to infections.


Asunto(s)
Inmunidad Innata , Síndrome de Job , Citocinas , Factores de Intercambio de Guanina Nucleótido , Humanos , Síndrome de Job/genética , Linfocitos , Mutación
7.
J Clin Immunol ; 39(4): 391-400, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-31025232

RESUMEN

PURPOSE: Interleukin-2-inducible T cell kinase (ITK) is an important mediator of T cell receptor signaling. Loss of function mutations in ITK results in hypogammaglobulinemia and CD4+ T cell loss in humans, and the patients often present with EBV-associated B cell lymphoproliferative syndrome. Itk-deficient mice show loss of T cell naivety, impaired cytolytic activity of CD8+ T cells, and defects in CD4+ T cell lineage choice decisions. In mice, Itk mutations were shown to affect Th17-Treg lineage choice in favor of the latter. In this study, we explored whether human ITK reciprocally regulates Th17-Treg balance as its murine ortholog. METHODS: Whole Exome Sequencing was used to identify the mutation. ITK-deficient peripheral blood lymphocytes were characterized by FACSAria III-based flow cytometric assays with respect to proliferation, apoptosis, cytokine production, and innate lymphoid cell (ILC) frequency. Sorted T cells from healthy donors were exposed to ibrutinib, an irreversible ITK inhibitor, to assess ITK's contribution to Th17 and Treg cell generation and functions. RESULTS: In this study, we report a child with a novel ITK mutation who showed impaired CD3/CD28 induced proliferation in T cells. ITK-mutant cells were more apoptotic irrespective of TCR activation. More importantly, T cells produced less Th17-associated cytokines IL-17A, IL-22, and GM-CSF. Conversely, Th1-associated IFN-γ production was increased. An irreversible inhibitor of ITK, ibrutinib, blocked ex vivo Th17 generation and IL-17A production, conversely augmented FOXP3 expression only at low doses in Treg cultures. Finally, we analyzed peripheral ILC populations and observed a relative decrease in ILC2 and ILC3 frequency in our ITK-deficient patient. CONCLUSIONS: To our knowledge, this is the first report showing that both genetic and chemical inhibition of ITK result in reduced Th17 generation and function in humans. We also report, for the first time, a reduction in ILC2 and ILC3 populations in an ITK-deficient human patient.


Asunto(s)
Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Inmunidad Innata , Proteínas Tirosina Quinasas/antagonistas & inhibidores , Proteínas Tirosina Quinasas/deficiencia , Linfocitos T Reguladores/metabolismo , Células Th17/metabolismo , Animales , Apoptosis , Biomarcadores , Proliferación Celular , Preescolar , Consanguinidad , Citocinas/metabolismo , Análisis Mutacional de ADN , Femenino , Citometría de Flujo , Factores de Transcripción Forkhead/metabolismo , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Ratones , Linaje , Proteínas Tirosina Quinasas/metabolismo , Subgrupos de Linfocitos T/inmunología , Subgrupos de Linfocitos T/metabolismo , Linfocitos T Reguladores/inmunología , Células Th17/inmunología
9.
Tumour Biol ; 37(10): 13237-13245, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27456363

RESUMEN

The induced pluripotent stem cell (iPSC) technology is the forced expression of specific transcription factors in somatic cells resulting in transformation into self-renewing, pluripotent cells which possess the ability to differentiate into any type of cells in the human body. While malignant cells could also be reprogrammed into iPSC-like cells with lower efficiency due to the genetic and epigenetic barriers in cancer cells, only a limited number of cancer cell types could be successfully reprogrammed until today. In the present study, we aimed at reprogramming two bladder cancer cell lines HTB-9 and T24 using a non-integrating Sendai virus (SeV) system. We have generated six sub-clones using distinct combinations of four factors-OCT4, SOX2, KLF4 and c-MYC-in two bladder cancer cell lines. Only a single sub-clone, T24 transduced with 4Fs, gave rise to iPSC-like cells. Bladder cancer cell-derived T24 4F cells represent unique features of pluripotent cells such as epithelial-like morphology, colony-forming ability, expression of pluripotency-associated markers and bearing the ability to differentiate in vitro. This is the first study focusing on the reprogramming susceptibility of two different bladder cancer cell lines to nuclear reprogramming. Further molecular characterisation of T24 4F cells could provide a better insight for biomarker research in bladder carcinogenesis and could offer a valuable tool for the development of novel therapeutic approaches in bladder carcinoma.


Asunto(s)
Transformación Celular Neoplásica , Reprogramación Celular , Neoplasias de la Vejiga Urinaria/etiología , Neoplasias de la Vejiga Urinaria/patología , Biomarcadores , Línea Celular Tumoral , Transdiferenciación Celular , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/metabolismo , Células Cultivadas , Técnicas de Reprogramación Celular , Cuerpos Embrioides/citología , Cuerpos Embrioides/metabolismo , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Factor 4 Similar a Kruppel , Factores de Transcripción de Tipo Kruppel/genética , Factores de Transcripción de Tipo Kruppel/metabolismo , Factor 3 de Transcripción de Unión a Octámeros/genética , Factor 3 de Transcripción de Unión a Octámeros/metabolismo , Fosforilación , Proteínas Proto-Oncogénicas c-myc/genética , Proteínas Proto-Oncogénicas c-myc/metabolismo , Factores de Transcripción SOXB1/genética , Factores de Transcripción SOXB1/metabolismo , Transducción de Señal , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
10.
Tumour Biol ; 37(2): 1967-81, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26334623

RESUMEN

Tumour microenvironment is a key factor for cancer growth and metastasis. Tumour surrounding tissue is known to include high number of mesenchymal stem cells which have been thought to have a role in regulating cancer cell behaviour via paracrine signalling. Therefore, modulating human mesenchymal stem cell (hMSC) secretome is highly significant for controlling and treating disease. Since common therapeutic agents are known to enhance cancer resistance, there is a strong urge to define novel agents for developing cell-based therapies. In the present study, we aimed at investigating the effect of active compounds, myrtucommulone-A (MC-A) and thymoquinone (TQ), on hMSC cytokine expression. Our data revealed that MC-A treatment have significantly altered cytokine expression in hMSCs. Upon MC-A treatment, hMSCs decreased the expression levels of various cytokines including TNF-α, VEGF, IL-6, IL-8 and FGF-2. hMSC conditioned medium (CM) primed with MC-A decreased the proliferation, migration ability and clonogenicity of bladder cancer cells and breast cancer cells in comparison to non-primed hMSC medium and hMSC medium primed with TQ. To the best of our knowledge, this study is the first report showing the effects of active compounds, MC-A and TQ, on hMSCs and therefore valuable for highlighting the potential use of active compounds in combination with hMSCs for cell-based targeted cancer therapy.


Asunto(s)
Antineoplásicos/farmacología , Citocinas/biosíntesis , Células Madre Mesenquimatosas/efectos de los fármacos , Floroglucinol/análogos & derivados , Transducción de Señal/efectos de los fármacos , Animales , Benzoquinonas/farmacología , Western Blotting , Diferenciación Celular/efectos de los fármacos , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Medios de Cultivo Condicionados , Ensayo de Inmunoadsorción Enzimática , Citometría de Flujo , Humanos , Inmunohistoquímica , Células Madre Mesenquimatosas/metabolismo , Ratones , Floroglucinol/farmacología , Fosfatidilinositol 3-Quinasas/metabolismo , Reacción en Cadena de la Polimerasa , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal/fisiología , Microambiente Tumoral
11.
Tumour Biol ; 37(4): 4467-77, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26500095

RESUMEN

Thymoquinone (TQ) is the active ingredient of Nigella sativa which has a therapeutic potential in cancer therapy and prevention. In this study, TQ has been shown to induce specific cytotoxicity and apoptosis and to inhibit wound healing in triple-negative breast cancer cell line. TQ also inhibited cancer growth in a mouse tumor model. Moreover, TQ and paclitaxel (Pac) combination inhibited cancer growth in cell culture and in mice. Genes involved in TQ and TQ-Pac-mediated cytotoxicity were studied using focused real-time PCR arrays. After bioinformatic analysis, genes in apoptosis, cytokine, and p53 signaling categories were found to be modulated with a high significance in TQ-treated cells (p < 10(-28), p < 10(-8), and p < 10(-6), respectively). Important to note, TQ has been found to regulate the genes involved in the induction of apoptosis through death receptors (p = 5.5 × 10(-5)). Additionally, tumor suppressor genes such as p21, Brca1, and Hic1 were highly upregulated by TQ and TQ-Pac combination. Interestingly, when cells were treated with high dose TQ, several growth factors such as Vegf and Egf were upregulated and several pro-apoptotic factors such as caspases were downregulated possibly pointing out key pathways manipulated by cancer cells to resist against TQ. In cells treated with the combination of TQ and Pac, genes in apoptosis cascade (p < 10(-12)), p53 signaling (p = 10(-5)), and JAK-STAT signaling (p < 10(-3)) were differentially expressed. TQ has also been shown to induce protein levels of cleaved Caspase-3, Caspase-7, and Caspase-12 and PARP and to reduce phosphorylated p65 and Akt1. The in vivo therapeutic potential of TQ-Pac combination and the genetic network involved in this synergy have been shown for the first time to the best of our knowledge.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Apoptosis/efectos de los fármacos , Carcinoma de Ehrlich/tratamiento farmacológico , Neoplasias Mamarias Experimentales/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Animales , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Proteínas Reguladoras de la Apoptosis/genética , Proteínas Reguladoras de la Apoptosis/metabolismo , Benzoquinonas/administración & dosificación , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Ensayos de Selección de Medicamentos Antitumorales , Femenino , Expresión Génica/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Redes Reguladoras de Genes , Neoplasias Mamarias Experimentales/genética , Neoplasias Mamarias Experimentales/metabolismo , Ratones Endogámicos BALB C , Trasplante de Neoplasias , Paclitaxel/administración & dosificación , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/metabolismo , Carga Tumoral/efectos de los fármacos
12.
Tumour Biol ; 37(6): 8281-91, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26718217

RESUMEN

Mounting evidence suggests that signalling cross-talk plays a significant role in the regulation of epithelial-mesenchymal transition (EMT) in cancer cells. However, the complex network regulating the EMT in different cancer types has not been fully described yet which affects the development of novel therapeutic strategies. In the present study, we investigated the signalling pathways involved in EMT of bladder cancer cells and demonstrated the effects of two novel agents in the regulation of EMT. Myrtucommulone-A (MC-A) and thymoquinone (TQ) have been shown to possess anti-cancer properties. However, their targets in the regulation of cancer cell behavior are not well defined. Here, we defined the effects of two putative anti-cancer agents on bladder cancer cell migration and their possible intracellular targets in the regulation of EMT. Our results suggest that MC-A or TQ treatment affected N-cadherin, Snail, Slug, and ß-catenin expressions and effectively attenuated mTOR activity. The downstream components in mTOR signalling were also affected. MC-A treatment resulted in the concomitant inhibition of extracellular matrix-regulated protein kinases 1 and 2 (ERK 1/2), p38 mitogen-activated protein kinase (MAPK) and Src activity. On the other hand, TQ treatment increased Src activity while exerting no effect on ERK 1/2 or p38 MAPK activity. Given the stronger inhibition of EMT-related markers in MC-A-treated samples, we concluded that this effect might be due to collective inhibition of multiple signalling pathways which result in a decrease in their cross-talk in bladder cancer cells. Overall, the data in this study proposes novel action mechanisms for MC-A or TQ in bladder cancer cells and highlights the potential use of these active compounds in the regulation of EMT.


Asunto(s)
Antineoplásicos/farmacología , Benzoquinonas/farmacología , Transición Epitelial-Mesenquimal/efectos de los fármacos , Floroglucinol/análogos & derivados , Serina-Treonina Quinasas TOR/metabolismo , Neoplasias de la Vejiga Urinaria/tratamiento farmacológico , Western Blotting , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Ensayo de Unidades Formadoras de Colonias , Transición Epitelial-Mesenquimal/genética , Regulación Neoplásica de la Expresión Génica , Humanos , Inmunohistoquímica , Floroglucinol/farmacología , Transducción de Señal/efectos de los fármacos , Serina-Treonina Quinasas TOR/efectos de los fármacos , Neoplasias de la Vejiga Urinaria/metabolismo , Cicatrización de Heridas/efectos de los fármacos
13.
Mol Cell Biochem ; 416(1-2): 71-84, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-27032769

RESUMEN

Epithelial-mesenchymal transition (EMT) plays a prominent role in cancer progression and metastasis. Inhibition of EMT-associated regulators may hold a huge promise for cancer therapy. Although TGF-ß signalling has a pivotal role in the induction of EMT, alterations during the EMT process are usually initiated and controlled by the cross-talk of multiple signalling pathways, and in most cases this is context-dependent. In the present study, we aimed at identifying the molecular mechanisms during the inhibition of EMT by novel anti-cancer agent myrtucommulone-A (MC-A) and thymoquinone (TQ). We used epithelial cancer cells to study the effects of MC-A and TQ on EMT. We first showed the functional inhibition of EMT by MC-A or TQ using migration assays and confirmed the EMT inhibition by analysing the expression of EMT markers with RT-PCR, immunocytochemistry and Western blotting. We evaluated the changes in intracellular dynamics by Western blotting and compared the effects of MC-A and TQ with the effects of selective inhibitors of PI3K (LY294002), ERK 1/2 (U0126) and TGF-ßR (SB431542). We demonstrate that both MC-A and TQ treatment negatively regulate the EMT process through modulation of signalling pathways in cancer cells. MC-A and TQ treatment inhibited phosphorylation of multiple proteins in a context-dependent manner. Novel anti-cancer agent MC-A and TQ regulate distinct signalling pathways for the repression of EMT which emphasises the significance of combinational therapies in cancer treatment. MC-A and TQ could be considered as candidate molecules for combinational therapies with their ability to interfere signalling pathways regulating cancer cell behaviour.


Asunto(s)
Benzoquinonas/farmacología , Transición Epitelial-Mesenquimal/efectos de los fármacos , Neoplasias/tratamiento farmacológico , Floroglucinol/análogos & derivados , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal/efectos de los fármacos , Línea Celular Tumoral , Femenino , Humanos , Masculino , Neoplasias/enzimología , Neoplasias/patología , Floroglucinol/farmacología , Inhibidores de las Quinasa Fosfoinosítidos-3 , Proteínas Proto-Oncogénicas c-akt/antagonistas & inhibidores
14.
Metab Brain Dis ; 31(3): 613-9, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-26782176

RESUMEN

Classical autism belongs to a group of heterogeneous disorders known as autism spectrum disorders (ASD). Autism is defined as a neurodevelopmental disorder, characterized by repetitive stereotypic behaviors or restricted interests, social withdrawal, and communication deficits. Numerous susceptibility genes and chromosomal abnormalities have been reported in association with autism but the etiology of this disorder is unknown in many cases. CC2D1A gene has been linked to mental retardation (MR) in a family with a large deletion before. Intellectual disability (ID) is a common feature of autistic cases. Therefore we aimed to investigate the expressions of CC2D1A and HTR1A genes with the diagnosis of autism in Turkey. Forty-four autistic patients (35 boys, 9 girls) and 27 controls were enrolled and obtained whole blood samples to isolate RNA samples from each participant. CC2D1A and HTR1A gene expressions were assessed by quantitative Real-Time PCR (qRT-PCR) in Genome and Stem Cell Center, Erciyes University. Both expressions of CC2D1A and HTR1A genes studied on ASD cases and controls were significantly different (p < 0.001). The expression of HTR1A was undetectable in the ASD samples. Comparison of ID and CC2D1A gene expression was also found statistically significant (p = 0.028). CC2D1A gene expression may be used as a candidate gene for ASD cases with ID. Further studies are needed to investigate the potential roles of these CC2D1A and HTR1A genes in their related pathways in ASD.


Asunto(s)
Trastorno del Espectro Autista/genética , Proteínas de Unión al ADN/genética , Receptor de Serotonina 5-HT1A/genética , Estudios de Casos y Controles , Niño , Preescolar , Femenino , Expresión Génica , Estudios de Asociación Genética , Humanos , Masculino
15.
J Biochem Mol Toxicol ; 29(9): 432-439, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26032814

RESUMEN

Myrtucommulone-A is the active compound derived from Myrtus communis. The molecular targets of myrtucommulone-A is widely unknown, which impedes its potential therapeutic use. In this study, we demonstrated the cytotoxicity of MC-A and its potential to induce apoptosis in cancer cells. Myrtucommulone-A was also found to be antiproliferative and strongly inhibited cancer cell migration. Eighty four apoptotic pathway genes were used to assess the effect of myrtucommulone-A on cancer cells. Myrtucommulone-A mediated an increase in apoptotic genes including Fas, FasL, Gadd45a, Tnf, Tnfsf12, Trp53, and caspase 4. The increase in myrtucommulone-A dose (25 µM versus 6.25 µM) also upregulated the expression of genes, which are involved mainly in apoptosis, regulation of apoptosis, role of mitochondria in apoptotic signaling, cytokine activity, and tumor necrosis factor signaling. Our data indicate that myrtucommulone-A could be utilized as a potential therapeutic compound with its molecular targets in apoptotic pathways.

16.
Expert Rev Mol Med ; 16: e7, 2014 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-24666581

RESUMEN

Glucagon-like peptide (GLP)-1 is an incretin hormone with several antidiabetic functions including stimulation of glucose-dependent insulin secretion, increase in insulin gene expression and beta-cell survival. Despite the initial technical difficulties and profound inefficiency of direct gene transfer into the pancreas that seriously restricted in vivo gene transfer experiments with GLP-1, recent exploitation of various routes of gene delivery and alternative means of gene transfer has permitted the detailed assessment of the therapeutic efficacy of GLP-1 in animal models of type 2 diabetes (T2DM). As a result, many clinical benefits of GLP-1 peptide/analogues observed in clinical trials involving induction of glucose tolerance, reduction of hyperglycaemia, suppression of appetite and food intake linked to weight loss have been replicated in animal models using gene therapy. Furthermore, GLP-1-centered gene therapy not only improved insulin sensitivity, but also reduced abdominal and/or hepatic fat associated with obesity-induced T2DM with drastic alterations in adipokine profiles in treated subjects. Thus, a comprehensive assessment of recent GLP-1-mediated gene therapy approaches with detailed analysis of current hurdles and resolutions, is discussed.


Asunto(s)
Diabetes Mellitus Tipo 2/terapia , Péptido 1 Similar al Glucagón/genética , Adenoviridae/genética , Animales , Dependovirus/genética , Terapia Genética , Vectores Genéticos , Péptido 1 Similar al Glucagón/biosíntesis , Humanos , Páncreas/metabolismo , Páncreas/patología , Regiones Promotoras Genéticas , Integración Viral
17.
Int Immunopharmacol ; 128: 111560, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38246003

RESUMEN

The anti-inflammatory and immunosuppressive drugs which are used in the treatment of Graft-versus-Host Disease (GVHD) have limited effects in controlling the severity of the disease. In this study, we aimed to investigate the prophylactic effect of Alantolactone (ALT) in a murine model of experimental GVHD. The study included 4 BALB/c groups as hosts: Naïve (n = 7), Control GVHD (n = 16), ALT-GVHD (n = 16), and Syngeneic transplantation (n = 10). Busulfan (20 mg/kg/day) for 4 days followed by cyclophosphamide (100 mg/kg/day) were administered for conditioning. Allogeneic transplantation was performed with cells collected from mismatched female C57BL/6, and GVHD development was monitored by histological and flow cytometric assays. Additionally, liver biopsies were taken from GVHD patient volunteers between ages 2-18 (n = 4) and non-GVHD patients between ages 2-50 (n = 5) and cultured ex vivo with ALT, and the supernatants were used for ELISA. ALT significantly ameliorated histopathological scores of the GVHD and improved GVHD clinical scores. CD8+ T cells were shown to be reduced after ALT treatment. More importantly, ALT treatment skewed T cells to a more naïve phenotype (CD62L+ CD44-). ALT did not alter Treg cell number or frequency. ALT treatment appears to suppress myeloid cell lineage (CD11c+). Consistent with reduced myeloid lineage, liver and small intestine levels of GM-CSF were reduced in ALT-treated mice. IL-6 gene expression was significantly reduced in the intestinal tissue. Ex vivo ALT-treated liver biopsy samples from GVHD patients showed a trend of decrease in pro-inflammatory cytokines but there was no statistical significance. Collectively, the data indicated that ALT may have immunomodulatory actions in a preclinical murine GVHD model.


Asunto(s)
Linfocitos T CD8-positivos , Enfermedad Injerto contra Huésped , Lactonas , Sesquiterpenos de Eudesmano , Humanos , Ratones , Femenino , Animales , Ratones Endogámicos C57BL , Enfermedad Injerto contra Huésped/prevención & control , Trasplante Homólogo , Trasplante de Médula Ósea
18.
Mol Cell Biochem ; 383(1-2): 243-51, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23943306

RESUMEN

Thymoquinone (TQ) is the active ingredient extracted from the essential oil of Nigella sativa. A number of studies implicated TQ as an antitumor agent. In this study, cytotoxic effects of the oil of N. sativa and TQ were evaluated on human cervical cancer cell line, HeLa cells. IC50 value was ~0.125 µl/ml for N. sativa oil preparations and 12.5 µM for TQ. TQ strongly inhibited wound healing at all concentrations ranging from 12.5 to 100 µM in a scratch wound healing assay. Additionally, induction of apoptosis by TQ was assessed by Giemsa staining and TQ was found to induce apoptosis in cancer cells especially at concentrations of 50 and 100 µM. TQ-mediated transcriptional regulation of 84 genes involved in apoptosis was studied using a PCR array. At low dose (12.5 µM), TQ was found to induce expression of four pro-apoptotic genes: BIK (~22.7-fold), FASL (~2.9-fold), BCL2L10 (~2.1-fold), and CASP1 (~2-fold). TQ was also found to reduce the expression of an anti-apoptotic gene implicated in NF-kappa-B signaling and cancer: RELA (~8-fold). At high dose (100 µM), TQ mediated the expression of 21 genes implicated directly in apoptosis (6 genes), TNF signaling (10 genes), and NF-kappa-B signaling (3 genes) such as BIK, BID, TNFRSF10A, TNFRSF10B, TNF, TRAF3, RELA, and RELB. In conclusion, this study implicates the role of TQ in the inhibition of cancer cell proliferation and migration. At the same time, our results strongly suggest that TQ intervenes with TNF and NF-kappa-B signaling during TQ-mediated induction of apoptosis in cancer cells.


Asunto(s)
Apoptosis/genética , Benzoquinonas/farmacología , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , FN-kappa B/genética , Transducción de Señal/genética , Transcripción Genética/efectos de los fármacos , Factor de Necrosis Tumoral alfa/genética , Apoptosis/efectos de los fármacos , Benzoquinonas/química , Células HeLa , Humanos , Modelos Biológicos , FN-kappa B/metabolismo , Aceites de Plantas/farmacología , Transducción de Señal/efectos de los fármacos , Factores de Tiempo , Factor de Necrosis Tumoral alfa/metabolismo , Cicatrización de Heridas/efectos de los fármacos , Cicatrización de Heridas/genética
19.
Tohoku J Exp Med ; 230(1): 7-11, 2013 05.
Artículo en Inglés | MEDLINE | ID: mdl-23629694

RESUMEN

Pulmonary arterial hypertension (PAH) is a progressive disease, with a poor prognosis. The pathophysiologic mechanism of PAH is unknown, but may involve both tissue remodeling and inflammatory processes. Hyaluronan (HA) is a large glycosaminoglycan polymer and a major component of the extracellular matrix. In the present study, we measured plasma HA levels in PAH associated with systolic congestive heart failure (CHF, n = 16) or chronic obstructive pulmonary disease (COPD, n = 18). The control group was consisted of 14 healthy individuals without pulmonary or cardiovascular disease. Plasma HA levels (ng/mL) were determined in all patients by an enzyme linked HA binding assay. Pulmonary arterial pressure (PAP) was calculated in echocardiography (mmHg). Pulmonary arterial pressures were significantly higher in CHF and COPD (CHF: 55.0 ± 11 mmHg and COPD: 62.5 ± 21 mmHg, p < 0.001 for each), compared to the control group (25.4 ± 5.9 mmHg). Plasma HA levels were significantly higher in CHF (73.0 ± 37.5 ng/ml, p = 0.007) and COPD (87.3 ± 53.2 ng/ml, p = 0.001) compared to control patients (26.2 ± 8.4 ng/ml). There was no significant difference in plasma HA levels between the CFH and COPD groups (p = 0.690). In COPD, plasma HA levels were significantly correlated with PAP, left atrium diameter. There was no significant correlation between plasma HA levels and age or with echocardiography parameters in CHF. Both CHF and COPD are associated with increased plasma HA levels. Elevated plasma HA may contribute to the development of PAH.


Asunto(s)
Ácido Hialurónico/sangre , Hipertensión Pulmonar/sangre , Estudios de Casos y Controles , Demografía , Femenino , Insuficiencia Cardíaca/sangre , Insuficiencia Cardíaca/complicaciones , Humanos , Hipertensión Pulmonar/complicaciones , Masculino , Persona de Mediana Edad , Enfermedad Pulmonar Obstructiva Crónica/sangre , Enfermedad Pulmonar Obstructiva Crónica/complicaciones
20.
Int Immunopharmacol ; 107: 108665, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35255303

RESUMEN

Multiple Sclerosis is an immune-mediated neurodegenerative disease. IL-23-mediated signaling and Th17 cells play critical roles in disease pathogenesis in murine models of disease and humans. Sphingosine 1 phosphate (S1P) regulates migration of several types of immune cells including Th17 cells. S1P analogues (fingolimod (FTY720) and Siponimod (BAF312)) have been approved and currently used for MS treatment. Immunomodulatory roles for FTY720 have been defined, however, how different S1P analogues impact human Th17 and Treg cell generation and cytokine production, and IL-23-mediated signaling have not yet been explored in detail. In the current study, we investigated the effects of S1P receptor 1 (S1P1) specific S1P analogue SEW2871, S1P1 and S1P5 specific BAF312, and non-selective FTY720 on human Th17 and Treg differentiation and IL-23-mediated signaling. All three S1P analogues directly inhibited Th17 cell differentiation ex vivo while increasing Treg differentiation from naive CD4 + T cells. All three S1P analogues suppressed IL-23-mediated STAT4, NF-kB and AKT activation. Lastly, all three S1P analogues also inhibited Dectin-1 expression by both mature and immature monocyte-derived dendritic cells (moDCs) and in turn curdlan-mediated production of IL-23p19, p40, IL-6 and IL-1ß cytokines. Our results provide novel insight into the immunomodulatory roles of different S1P analogues on human Th17 and Treg cell biology.


Asunto(s)
Enfermedades Neurodegenerativas , Esfingosina , Animales , Azetidinas , Compuestos de Bencilo , Clorhidrato de Fingolimod/farmacología , Clorhidrato de Fingolimod/uso terapéutico , Humanos , Inmunosupresores/farmacología , Interleucina-23 , Lisofosfolípidos/farmacología , Ratones , Oxadiazoles , Glicoles de Propileno/farmacología , Receptores de Lisoesfingolípidos/metabolismo , Linfocitos T Reguladores/metabolismo , Células Th17/metabolismo , Tiofenos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA