Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Phys Rev Lett ; 130(17): 176901, 2023 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-37172240

RESUMEN

Magnetic 2D materials hold promise to change the miniaturization paradigm of unidirectional photonic components. However, the integration of these materials in devices hinges on the accurate determination of the optical properties down to the monolayer limit, which is still missing. By using hyperspectral wide-field imaging at room temperature, we reveal a nonmonotonic thickness dependence of the complex optical dielectric function in the archetypal magnetic 2D material CrI_{3} extending across different length scales: onsetting at the mesoscale, peaking at the nanoscale, and decreasing again down to the single layer. These results portray a modification of the electronic properties of the material and align with the layer-dependent magnetism in CrI_{3}, shedding light on the long-standing structural conundrum in this material. The unique modulation of the complex dielectric function from the monolayer up to more than 100 layers will be instrumental for understanding mesoscopic effects in layered materials and tuning light-matter interactions in magnetic 2D materials.

2.
Nano Lett ; 21(8): 3379-3385, 2021 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-33835813

RESUMEN

The mechanical properties of magnetic materials are instrumental for the development of magnetoelastic theories and the optimization of strain-modulated magnetic devices. In particular, two-dimensional (2D) magnets hold promise to enlarge these concepts into the realm of low-dimensional physics and ultrathin devices. However, no experimental study on the intrinsic mechanical properties of the archetypal 2D magnet family of the chromium trihalides has thus far been performed. Here, we report the room temperature layer-dependent mechanical properties of atomically thin CrCl3 and CrI3, finding that the bilayers have Young's moduli of 62.1 and 43.4 GPa, highest sustained strains of 6.49% and 6.09% and breaking strengths of 3.6 and 2.2 GPa, respectively. This portrays the outstanding plasticity of these materials that is qualitatively demonstrated in the bulk crystals. The current study will contribute to the applications of the 2D magnets in magnetostrictive and flexible devices.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA