Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nat Mater ; 18(12): 1327-1334, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31527809

RESUMEN

Precise doping of organic semiconductors allows control over the conductivity of these materials, an essential parameter in electronic applications. Although Lewis acids have recently shown promise as dopants for solution-processed polymers, their doping mechanism is not yet fully understood. In this study, we found that B(C6F5)3 is a superior dopant to the other Lewis acids investigated (BF3, BBr3 and AlCl3). Experiments indicate that Lewis acid-base adduct formation with polymers inhibits the doping process. Electron-nuclear double-resonance and nuclear magnetic resonance experiments, together with density functional theory, show that p-type doping occurs by generation of a water-Lewis acid complex with substantial Brønsted acidity, followed by protonation of the polymer backbone and electron transfer from a neutral chain segment to a positively charged, protonated one. This study provides insight into a potential path for protonic acid doping and shows how trace levels of water can transform Lewis acids into powerful Brønsted acids.

2.
ACS Nano ; 15(1): 1753-1763, 2021 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-33440123

RESUMEN

Continuously enhanced photoresponsivity and suppressed dark/noise current combinatorially lead to the recent development of high-detectivity organic photodetectors with broadband sensing competence. Despite the achievements, reliable photosensing enabled by organic photodetectors (OPDs) still faces challenges. Herein, we call for heed over a universal phenomenon of detrimental sensitivity of dark current to illumination history in high-performance inverted OPDs. The phenomenon, unfavorable to the attainment of high sensitivity and consistent figures-of-merit, is shown to arise from exposure of the commonly used electron transport layer in OPDs to high-energy photons and its consequent loss of charge selectivity via systematic studies. To solve this universal problem, "double" layer tin oxide as an alternative electron transport layer is demonstrated, which not only eliminates the inconsistency between the initial and after-illumination dark current characteristics but also preserves the low magnitude of dark current, good external quantum efficiency, and rapid transient response.

3.
ACS Appl Mater Interfaces ; 12(36): 40778-40785, 2020 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-32794728

RESUMEN

In this work, we aim to provide a better understanding of the reasons behind electron transfer inefficiencies between electrogenic bacteria and the electrode in microbial fuel cells. We do so using a self-doped conjugated polyelectrolyte (CPE) as the electrode surface, onto which Geobacter sulfurreducens is placed, then using conductive atomic force microscopy (C-AFM) to directly visualize and quantify the electrons that are transferring from each bacterium to the electrode, thereby helping us gain a better understanding for the overpotential losses in MFCs. In doing so, we obtain images that show G. sulfurreducens can directly transfer electrons to an electrode surface without the use of pili, and that overpotential losses are likely due to cell death and poor distribution or performance of individual bacterium's OmcB cytochromes. This unique combination of CPEs with C-AFM can also be used for other studies where electron transfer loss mechanisms need to be understood on the nanoscale, allowing for direct visualization of potential issues in these systems.


Asunto(s)
Geobacter/química , Polímeros/química , Conductividad Eléctrica , Electrodos , Transporte de Electrón , Microscopía de Fuerza Atómica , Tamaño de la Partícula , Propiedades de Superficie
4.
Adv Mater ; 32(1): e1906027, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31714629

RESUMEN

Sensitive detection of near-infrared (NIR) light enables many important applications in both research and industry. Current organic photodetectors suffer from low NIR sensitivity typically due to early absorption cutoff, low responsivity, and/or large dark/noise current under bias. Herein, organic photodetectors based on a novel ultranarrow-bandgap nonfullerene acceptor, CO1-4Cl, are presented, showcasing a remarkable responsivity over 0.5 A W-1 in the NIR spectral region (920-960 nm), which is the highest among organic photodiodes. By effectively delaying the onset of the space charge limited current and suppressing the shunt leakage current, the optimized devices show a large specific detectivity around 1012 Jones for NIR spectral region up to 1010 nm, close to that of a commercial Si photodiode. The presented photodetectors can also be integrated in photoplethysmography for real-time heart-rate monitoring, suggesting its potential for practical applications.

5.
Chem Sci ; 7(2): 1594-1599, 2016 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-28808535

RESUMEN

A new bimetallic platform comprising a six-coordinate Fe(ONO)2 unit bound to an (ONO)M (M = Fe, Zn) has been discovered ((ONOcat)H3 = bis(3,5-di-tert-butyl-2-phenol)amine). Reaction of Fe(ONO)2 with either (ONOcat)Fe(py)3 or with (ONOq)FeCl2 under reducing conditions led to the formation of the bimetallic complex Fe2(ONO)3, which includes unique five- and six-coordinate iron centers. Similarly, the reaction of Fe(ONO)2 with the new synthon (ONOsq˙)Zn(py)2 led to the formation of the heterobimetallic complex FeZn(ONO)3, with a six-coordinate iron center and a five-coordinate zinc center. Both bimetallic complexes were characterized by single-crystal X-ray diffraction studies, solid-state magnetic measurements, and multiple spectroscopic techniques. The magnetic data for FeZn(ONO)3 are consistent with a ground state S = 3/2 spin system, generated from a high-spin iron(ii) center that is antiferromagnetically coupled to a single (ONOsq˙)2- radical ligand. In the case of Fe2(ONO)3, the magnetic data revealed a ground state S = 7/2 spin system arising from the interactions of one high-spin iron(ii) center, one high-spin iron(iii) center, and two (ONOsq˙)2- radical ligands.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA