Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 82
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 186(16): 3350-3367.e19, 2023 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-37421950

RESUMEN

Synucleinopathies are characterized by the accumulation of α-synuclein (α-Syn) aggregates in the brain. Positron emission tomography (PET) imaging of synucleinopathies requires radiopharmaceuticals that selectively bind α-Syn deposits. We report the identification of a brain permeable and rapid washout PET tracer [18F]-F0502B, which shows high binding affinity for α-Syn, but not for Aß or Tau fibrils, and preferential binding to α-Syn aggregates in the brain sections. Employing several cycles of counter screenings with in vitro fibrils, intraneuronal aggregates, and neurodegenerative disease brain sections from several mice models and human subjects, [18F]-F0502B images α-Syn deposits in the brains of mouse and non-human primate PD models. We further determined the atomic structure of the α-Syn fibril-F0502B complex by cryo-EM and revealed parallel diagonal stacking of F0502B on the fibril surface through an intense noncovalent bonding network via inter-ligand interactions. Therefore, [18F]-F0502B is a promising lead compound for imaging aggregated α-Syn in synucleinopathies.


Asunto(s)
Enfermedades Neurodegenerativas , Sinucleinopatías , Animales , Humanos , alfa-Sinucleína/metabolismo , Sinucleinopatías/diagnóstico por imagen , Sinucleinopatías/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Tomografía de Emisión de Positrones , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo
2.
Apoptosis ; 29(5-6): 726-742, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38478169

RESUMEN

Necroptosis, a programmed cell death pathway, has been demonstrated to be activated in Alzheimer's disease (AD). However, the precise role of necroptosis and its correlation with immune cell infiltration in AD remains unclear. In this study, we conducted non-negative matrix factorization clustering analysis to identify three subtypes of AD based on necroptosis-relevant genes. Notably, these subtypes exhibited varying necroptosis scores, clinical characteristics and immune infiltration signatures. Cluster B, characterized by high necroptosis scores, showed higher immune cell infiltration and was associated with a more severe pathology, potentially representing a high-risk subgroup. To identify potential biomarkers for AD within cluster B, we employed two machine learning algorithms: the least absolute shrinkage and selection operator regression and Random Forest. Subsequently, we identified eight feature genes (CARTPT, KLHL35, NRN1, NT5DC3, PCYOX1L, RHOQ, SLC6A12, and SLC38A2) that were utilized to develop a diagnosis model with remarkable predictive capacity for AD. Moreover, we conducted validation using bulk RNA-seq, single-nucleus RNA-seq, and in vivo experiments to confirm the expression of these feature genes. In summary, our study identified a novel necroptosis-related subtype of AD and eight diagnostic biomarkers, explored the roles of necroptosis in AD progression and shed new light for the clinical diagnosis and treatment of this disease.


Asunto(s)
Enfermedad de Alzheimer , Necroptosis , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/inmunología , Enfermedad de Alzheimer/patología , Necroptosis/genética , Necroptosis/inmunología , Humanos , Biomarcadores/metabolismo , Aprendizaje Automático , Animales , Perfilación de la Expresión Génica , Masculino , Femenino , Ratones , Transcriptoma
3.
J Transl Med ; 21(1): 628, 2023 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-37715200

RESUMEN

BACKGROUND: Owing to the heterogeneity of Alzheimer's disease (AD), its pathogenic mechanisms are yet to be fully elucidated. Evidence suggests an important role of metabolism in the pathophysiology of AD. Herein, we identified the metabolism-related AD subtypes and feature genes. METHODS: The AD datasets were obtained from the Gene Expression Omnibus database and the metabolism-relevant genes were downloaded from a previously published compilation. Consensus clustering was performed to identify the AD subclasses. The clinical characteristics, correlations with metabolic signatures, and immune infiltration of the AD subclasses were evaluated. Feature genes were screened using weighted correlation network analysis (WGCNA) and processed via Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analyses. Furthermore, three machine-learning algorithms were used to narrow down the selection of the feature genes. Finally, we identified the diagnostic value and expression of the feature genes using the AD dataset and quantitative reverse-transcription polymerase chain reaction (qRT-PCR) analysis. RESULTS: Three AD subclasses were identified, namely Metabolism Correlated (MC) A (MCA), MCB, and MCC subclasses. MCA contained signatures associated with high AD progression and may represent a high-risk subclass compared with the other two subclasses. MCA exhibited a high expression of genes related to glycolysis, fructose, and galactose metabolism, whereas genes associated with the citrate cycle and pyruvate metabolism were downregulated and associated with high immune infiltration. Conversely, MCB was associated with citrate cycle genes and exhibited elevated expression of immune checkpoint genes. Using WGCNA, 101 metabolic genes were identified to exhibit the strongest association with poor AD progression. Finally, the application of machine-learning algorithms enabled us to successfully identify eight feature genes, which were employed to develop a nomogram model that could bring distinct clinical benefits for patients with AD. As indicated by the AD datasets and qRT-PCR analysis, these genes were intimately associated with AD progression. CONCLUSION: Metabolic dysfunction is associated with AD. Hypothetical molecular subclasses of AD based on metabolic genes may provide new insights for developing individualized therapy for AD. The feature genes highly correlated with AD progression included GFAP, CYB5R3, DARS, KIAA0513, EZR, KCNC1, COLEC12, and TST.


Asunto(s)
Enfermedad de Alzheimer , Humanos , Enfermedad de Alzheimer/genética , Algoritmos , Citratos , Ácido Cítrico , Análisis por Conglomerados , Canales de Potasio Shaw , Proteínas del Tejido Nervioso
4.
Mov Disord ; 38(11): 2005-2018, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37593929

RESUMEN

BACKGROUND: The accumulation and aggregation of α-synuclein (α-Syn) are characteristic of Parkinson's disease (PD). Epidemiological evidence indicates that hyperlipidemia is associated with an increased risk of PD. The levels of 27-hydroxycholesterol (27-OHC), a cholesterol oxidation derivative, are increased in the brain and cerebrospinal fluid of patients with PD. However, whether 27-OHC plays a role in α-Syn aggregation and propagation remains elusive. OBJECTIVE: The aim of this study was to determine whether 27-OHC regulates α-Syn aggregation and propagation. METHODS: Purified recombinant α-Syn, neuronal cultures, and α-Syn fibril-injected mouse model of PD were treated with 27-OHC. In addition, CYP27A1 knockout mice were used to investigate the effect of lowering 27-OHC on α-Syn pathology in vivo. RESULTS: 27-OHC accelerates the aggregation of α-Syn and enhances the seeding activity of α-Syn fibrils. Furthermore, the 27-OHC-modified α-Syn fibrils localize to the mitochondria and induce mitochondrial dysfunction and neurotoxicity. Injection of 27-OHC-modified α-Syn fibrils induces enhanced spread of α-Syn pathology and dopaminergic neurodegeneration compared with pure α-Syn fibrils. Similarly, subcutaneous administration of 27-OHC facilitates the seeding of α-Syn pathology. Genetic deletion of cytochrome P450 27A1 (CYP27A1), the enzyme that converts cholesterol to 27-OHC, ameliorates the spread of pathologic α-Syn, degeneration of the nigrostriatal dopaminergic pathway, and motor impairments. These results indicate that the cholesterol metabolite 27-OHC plays an important role in the pathogenesis of PD. CONCLUSIONS: 27-OHC promotes the aggregation and spread of α-Syn. Strategies aimed at inhibiting the CYP27A1-27-OHC axis may hold promise as a disease-modifying therapy to halt the progression of α-Syn pathology in PD. © 2023 International Parkinson and Movement Disorder Society.


Asunto(s)
Enfermedad de Parkinson , Humanos , Ratones , Animales , Enfermedad de Parkinson/genética , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo , Hidroxicolesteroles/farmacología , Colesterol
5.
EMBO J ; 37(12)2018 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-29769405

RESUMEN

Dopaminergic neurodegeneration in Parkinson's disease (PD) is associated with abnormal dopamine metabolism by MAO-B (monoamine oxidase-B) and intracellular α-Synuclein (α-Syn) aggregates, called the Lewy body. However, the molecular relationship between α-Syn and MAO-B remains unclear. Here, we show that α-Syn directly binds to MAO-B and stimulates its enzymatic activity, which triggers AEP (asparagine endopeptidase; legumain) activation and subsequent α-Syn cleavage at N103, leading to dopaminergic neurodegeneration. Interestingly, the dopamine metabolite, DOPAL, strongly activates AEP, and the N103 fragment of α-Syn binds and activates MAO-B. Accordingly, overexpression of AEP in SNCA transgenic mice elicits α-Syn N103 cleavage and accelerates PD pathogenesis, and inhibition of MAO-B by Rasagiline diminishes α-Syn-mediated PD pathology and motor dysfunction. Moreover, virally mediated expression of α-Syn N103 induces PD pathogenesis in wild-type, but not MAO-B-null mice. Our findings thus support that AEP-mediated cleavage of α-Syn at N103 is required for the association and activation of MAO-B, mediating PD pathogenesis.


Asunto(s)
Cisteína Endopeptidasas/metabolismo , Monoaminooxidasa/metabolismo , Enfermedad de Parkinson/metabolismo , alfa-Sinucleína/metabolismo , Animales , Cisteína Endopeptidasas/genética , Modelos Animales de Enfermedad , Dopamina/genética , Dopamina/metabolismo , Indanos/farmacología , Ratones , Ratones Transgénicos , Monoaminooxidasa/genética , Inhibidores de la Monoaminooxidasa/farmacología , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/patología , alfa-Sinucleína/genética
6.
J Neural Transm (Vienna) ; 128(1): 37-48, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33392827

RESUMEN

Information about Parkinson's disease (PD) patients with severe COVID-19 is scarce. We aimed to analyze the clinical characteristics, outcomes, and risk factors affecting the prognosis of PD patients with severe COVID-19 infection. Clinical data of severe COVID-19 patients admitted at the Union Hospital, Wuhan between 28th January and 29th February 2020 were collected and analyzed. 10 patients (1.96%) had a medical history of PD with a mean (SD) age of 72.10 (± 11.46) years. The clinical characteristics and outcomes of severe COVID-19 with and without PD patients were then compared. There was no significant difference in overall mortality between the PD and non-PD patients with severe COVID-19 (p > 0.05). In PD patients with severe COVID-19, the proportion of patients with critical type, disturbance of consciousness, incidence of complications, white blood cells count and neutrophils counts on admission seem higher in the non-survivors. PD patients with older age, longer PD duration, and late stage PD may be highly susceptible to critical COVID-19 infection and bad outcome. The PD patients with consciousness disorders and complications that progressed rapidly are at increased risk of death.


Asunto(s)
COVID-19/epidemiología , Trastornos de la Conciencia/epidemiología , Enfermedad de Parkinson/epidemiología , Anciano , Anciano de 80 o más Años , COVID-19/complicaciones , COVID-19/mortalidad , China/epidemiología , Comorbilidad , Trastornos de la Conciencia/etiología , Femenino , Humanos , Masculino , Persona de Mediana Edad , Enfermedad de Parkinson/mortalidad , Estudios Retrospectivos , Factores de Riesgo , Índice de Severidad de la Enfermedad
7.
Neurobiol Dis ; 139: 104807, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32088382

RESUMEN

L-DOPA-induced dyskinesia (LID) is a major complication of long-term dopamine replacement therapy in Parkinson's disease. Characteristic neural oscillation and abnormal activity of striatal projection neurons (SPNs) are typical pathological events of LID, which would be reliable biomarkers for assessment of novel anti-dyskinetic approach if fully profiled. Glutamate dysregulation plays a critical role in the development of LID, and the group II metabotropic glutamate receptors (mGluR2/3) is believed to regulate the release of glutamate on the presynaptic terminals and inhibits postsynaptic excitation. However, the anti-dyskinetic effect of modulating mGluR2/3 is still unclear. In this study, rats with unilateral dopaminergic lesion were injected with L-DOPA (12 mg/kg, i.p.) for seven days, while motor behavior was correlated with in vivo electrophysiology analyzing LFP and single-cell activity in both primary motor cortex and dorsolateral striatum. Our study showed that as LID established, high γ oscillation (hγ) predominated during LID, the number of unstable responses of SPN to dopamine increased, and the coherence between these patterns of oscillation and spiking activity also increased. We found that pretreatment of NMDA receptor antagonist, amantadine 60 mg/kg, i.p. (AMAN) significantly reduced abnormal involuntary movements (AIMs), in parallel with the reduction of hγ oscillation, and more markedly with a decrease in unstable responses of SPNs. In contrast, a mGluR2/3 agonist, LY354740 12 mg/kg, i.p. (LY) significantly shortened the duration of LID but merely exhibited a weak effect in diminishing the intensity of LID or reversing SPN responses. Together results indicate that AIMs in the rat model of PD are associated with abnormal corticostriatal signaling, which could be reversed by NMDAR antagonism more efficiently than mGluR2/3 agonism.


Asunto(s)
Amantadina/farmacología , Compuestos Bicíclicos con Puentes/farmacología , Discinesia Inducida por Medicamentos/tratamiento farmacológico , Receptores de Glutamato Metabotrópico/agonistas , Animales , Antiparkinsonianos/farmacología , Cuerpo Estriado , Electrofisiología , Levodopa/farmacología , Masculino , Corteza Motora/efectos de los fármacos , Oxidopamina/farmacología , Enfermedad de Parkinson , Ratas , Ratas Sprague-Dawley
8.
Proc Natl Acad Sci U S A ; 114(40): 10773-10778, 2017 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-28923922

RESUMEN

BDNF/TrkB neurotrophic signaling is essential for dopaminergic neuronal survival, and the activities are reduced in the substantial nigra (SN) of Parkinson's disease (PD). However, whether α-Syn (alpha-synuclein) aggregation, a hallmark in the remaining SN neurons in PD, accounts for the neurotrophic inhibition remains elusive. Here we show that α-Syn selectively interacts with TrkB receptors and inhibits BDNF/TrkB signaling, leading to dopaminergic neuronal death. α-Syn binds to the kinase domain on TrkB, which is negatively regulated by BDNF or Fyn tyrosine kinase. Interestingly, α-Syn represses TrkB lipid raft distribution, decreases its internalization, and reduces its axonal trafficking. Moreover, α-Syn also reduces TrkB protein levels via up-regulation of TrkB ubiquitination. Remarkably, dopamine's metabolite 3,4-Dihydroxyphenylacetaldehyde (DOPAL) stimulates the interaction between α-Syn and TrkB. Accordingly, MAO-B inhibitor rasagiline disrupts α-Syn/TrkB complex and rescues TrkB neurotrophic signaling, preventing α-Syn-induced dopaminergic neuronal death and restoring motor functions. Hence, our findings demonstrate a noble pathological role of α-Syn in antagonizing neurotrophic signaling, providing a molecular mechanism that accounts for its neurotoxicity in PD.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo/metabolismo , Neuronas Dopaminérgicas/patología , Glicoproteínas de Membrana/metabolismo , Enfermedad de Parkinson/patología , Receptor trkB/metabolismo , alfa-Sinucleína/metabolismo , Animales , Factor Neurotrófico Derivado del Encéfalo/genética , Muerte Celular , Células Cultivadas , Dopamina/metabolismo , Neuronas Dopaminérgicas/metabolismo , Humanos , Glicoproteínas de Membrana/genética , Ratones , Ratones Endogámicos C57BL , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/metabolismo , Receptor trkB/genética , Transducción de Señal , alfa-Sinucleína/genética
9.
Proc Natl Acad Sci U S A ; 114(5): 1183-1188, 2017 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-28096359

RESUMEN

The abnormal aggregation of fibrillar α-synuclein in Lewy bodies plays a critical role in the pathogenesis of Parkinson's disease. However, the molecular mechanisms regulating α-synuclein pathological effects are incompletely understood. Here we show that α-synuclein binds phosphoinositide-3 kinase enhancer L (PIKE-L) in a phosphorylation-dependent manner and sequesters it in Lewy bodies, leading to dopaminergic cell death via AMP-activated protein kinase (AMPK) hyperactivation. α-Synuclein interacts with PIKE-L, an AMPK inhibitory binding partner, and this action is increased by S129 phosphorylation through AMPK and is decreased by Y125 phosphorylation via Src family kinase Fyn. A pleckstrin homology (PH) domain in PIKE-L directly binds α-synuclein and antagonizes its aggregation. Accordingly, PIKE-L overexpression decreases dopaminergic cell death elicited by 1-methyl-4-phenylpyridinium (MPP+), whereas PIKE-L knockdown elevates α-synuclein oligomerization and cell death. The overexpression of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) or α-synuclein induces greater dopaminergic cell loss and more severe motor defects in PIKE-KO and Fyn-KO mice than in wild-type mice, and these effects are attenuated by the expression of dominant-negative AMPK. Hence, our findings demonstrate that α-synuclein neutralizes PIKE-L's neuroprotective actions in synucleinopathies, triggering dopaminergic neuronal death by hyperactivating AMPK.


Asunto(s)
Adenilato Quinasa/metabolismo , Neuronas Dopaminérgicas/metabolismo , Proteínas de Unión al GTP/metabolismo , Proteínas Activadoras de GTPasa/metabolismo , Cuerpos de Lewy/metabolismo , alfa-Sinucleína/metabolismo , 1-Metil-4-fenilpiridinio/toxicidad , Anciano , Anciano de 80 o más Años , Animales , Muerte Celular , Neuronas Dopaminérgicas/ultraestructura , Activación Enzimática , GTP Fosfohidrolasas/deficiencia , Proteínas de Unión al GTP/química , Proteínas Activadoras de GTPasa/química , Humanos , Intoxicación por MPTP/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas del Tejido Nervioso/deficiencia , Fosforilación , Dominios Homólogos a Pleckstrina , Agregación Patológica de Proteínas , Unión Proteica , Mapeo de Interacción de Proteínas , Procesamiento Proteico-Postraduccional , Proteínas Proto-Oncogénicas c-fyn/deficiencia , Proteínas Proto-Oncogénicas c-fyn/metabolismo
10.
Biol Res ; 49(1): 32, 2016 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-27378167

RESUMEN

BACKGROUND: Chitosan, the N-deacetylated derivative of chitin, is a cationic polyelectrolyte due to the presence of amino groups, one of the few occurring in nature. The use of chitosan in protein and drug delivery systems is being actively researched and reported in the literature. RESULTS: In this study, we used chitosan-coated levodopa liposomes to investigate the behavioral character and the expression of phosphorylated extracellular signal-regulated kinase (ERK1/2), dopamine- and cAMP-regulated phosphoprotein of 32 kDa (DARPP-32) and FosB/ΔFosB in striatum of rat model of levodopa-induced dyskinesia (LID). We found that scores of abnormal involuntary movement (AIM) decreased significantly in liposome group (P < 0.05), compared with levodopa group. Levels of phospho-ERK1/2, phospho-Thr34 DARPP-32 and FosB/ΔFosB in striatum decreased significantly in liposome group lesion side compared with levodopa group (P < 0.05). However, both of two groups above have significantly differences compared with the control group (P < 0.05). CONCLUSION: Chitosan-coated levodopa liposomes may be useful in reducing dyskinesias inducing for Parkinson disease. The mechanism might be involved the pathway of signaling molecular phospho-ERK1/2, phospho-Thr34 DARPP-32 and ΔFosB in striatum.


Asunto(s)
Quitosano/farmacología , Dopaminérgicos/farmacología , Fosfoproteína 32 Regulada por Dopamina y AMPc/metabolismo , Discinesia Inducida por Medicamentos/metabolismo , Discinesia Inducida por Medicamentos/prevención & control , Levodopa/farmacología , Proteínas Proto-Oncogénicas c-fos/metabolismo , Animales , Materiales Biocompatibles/farmacología , Western Blotting , Cuerpo Estriado/efectos de los fármacos , Fosfoproteína 32 Regulada por Dopamina y AMPc/análisis , Fosfoproteína 32 Regulada por Dopamina y AMPc/efectos de los fármacos , Discinesia Inducida por Medicamentos/etiología , Quinasas MAP Reguladas por Señal Extracelular/análisis , Quinasas MAP Reguladas por Señal Extracelular/efectos de los fármacos , Inmunohistoquímica , Liposomas , Sistema de Señalización de MAP Quinasas , Masculino , Nanopartículas , Enfermedad de Parkinson/tratamiento farmacológico , Fosforilación/efectos de los fármacos , Proteínas Proto-Oncogénicas c-fos/análisis , Proteínas Proto-Oncogénicas c-fos/efectos de los fármacos , Distribución Aleatoria , Ratas Sprague-Dawley , Reproducibilidad de los Resultados , Resultado del Tratamiento
11.
J Neurophysiol ; 113(5): 1533-44, 2015 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-25505120

RESUMEN

Nigrostriatal dopamine denervation plays a major role in basal ganglia circuitry disarray and motor abnormalities of Parkinson's disease (PD). Studies in rodent and primate models have revealed that striatal projection neurons, namely, medium spiny neurons (MSNs), increase the firing frequency. However, their activity pattern changes and the effects of dopaminergic stimulation in such conditions are unknown. Using single-cell recordings in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated primates with advanced parkinsonism, we studied MSN activity patterns in the transition to different motor states following levodopa administration. In the "off" state (baseline parkinsonian disability), a burst-firing pattern accompanied by prolonged silences (pauses) was found in 34% of MSNs, and 80% of these exhibited a levodopa response compatible with dopamine D1 receptor activation (direct pathway MSNs). This pattern was highly responsive to levodopa given that bursting/pausing almost disappeared in the "on" state (reversal of parkinsonism after levodopa injection), although this led to higher firing rates. Nonbursty MSNs fired irregularly with marked pausing that increased in the on state in the MSN subset with a levodopa response compatible with dopamine D2 receptor activation (indirect pathway MSNs), although the pause increase was not sustained in some units during the appearance of dyskinesias. Data indicate that the MSN firing pattern in the advanced parkinsonian monkey is altered by bursting and pausing changes and that dopamine differentially and inefficiently regulates these behaviorally correlated patterns in MSN subpopulations. These findings may contribute to understand the impact of striatal dysfunction in the basal ganglia network and its role in motor symptoms of PD.


Asunto(s)
Potenciales de Acción , Cuerpo Estriado/metabolismo , Dopaminérgicos/farmacología , Dopamina/metabolismo , Levodopa/farmacología , Intoxicación por MPTP/metabolismo , Neuronas/metabolismo , Animales , Cuerpo Estriado/citología , Cuerpo Estriado/fisiopatología , Femenino , Intoxicación por MPTP/fisiopatología , Macaca mulatta , Neuronas/efectos de los fármacos , Neuronas/fisiología , Receptores de Dopamina D2/metabolismo
12.
Proc Natl Acad Sci U S A ; 109(9): 3540-5, 2012 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-22331903

RESUMEN

N-acetylserotonin (NAS) is synthesized from serotonin by arylalkylamine N-acetyltransferase (AANAT), which is predominantly expressed in the pineal gland and retina. NAS activates TrkB in a circadian manner and exhibits antidepressant effects in a TrkB-dependent manner. It also enhances neurogenesis in hippocampus in sleep-deprived mice. Here we report the identification of NAS derivatives that possess much more robust neurotrophic effects with improved pharmacokinetic profiles. The compound N-[2-(5-hydroxy-1H-indol-3-yl)ethyl]-2-oxopiperidine-3-carboxamide (HIOC) selectively activates TrkB receptor with greater potency than NAS. It potently protects retinas from light-induced retinal degeneration (LIRD), which is tightly coupled with pronounced TrkB activation in retinas. Pharmacokinetic studies demonstrate that this compound is stable in serum and liver microsomes. It can pass the blood-brain barrier and blood-retinal barrier. Hence, HIOC is a good lead compound for further drug development for treating retinal degenerative diseases.


Asunto(s)
Indoles/uso terapéutico , Neuronas/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Piperidinas/uso terapéutico , Receptor trkB/agonistas , Agonistas de Receptores de Serotonina/farmacología , Adenilato Quinasa/metabolismo , Animales , Barrera Hematoencefálica , Barrera Hematorretinal , Factor Neurotrófico Derivado del Encéfalo/farmacología , Células Cultivadas/efectos de los fármacos , Corteza Cerebral/citología , Evaluación Preclínica de Medicamentos , Semivida , Indoles/farmacocinética , Indoles/farmacología , Inyecciones Intraperitoneales , Ratones , Microsomas Hepáticos/metabolismo , Fármacos Neuroprotectores/farmacocinética , Fosforilación/efectos de los fármacos , Fosforilación/efectos de la radiación , Piperidinas/farmacocinética , Piperidinas/farmacología , Procesamiento Proteico-Postraduccional/efectos de los fármacos , Procesamiento Proteico-Postraduccional/efectos de la radiación , Ratas , Retina/efectos de los fármacos , Agonistas de Receptores de Serotonina/farmacocinética , Transducción de Señal/efectos de los fármacos , Transducción de Señal/efectos de la radiación , Distribución Tisular
13.
Int J Health Plann Manage ; 29(2): 124-40, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-23737394

RESUMEN

The article evaluates submerged discontent among Chinese public hospital doctors (Note1) regarding their pay and patterns of accommodation, including doctors' responses through formal and informal actions in the context of health service marketization. On the basis of a case study of two public hospitals, the article illustrates the dynamical impact of marketization on Chinese doctors' pay-related dissatisfaction and health service employment relationship. Because of the authoritarian management and compliant trade unions, the conflict between doctors and hospitals is unable to be accommodated through collective methods. Instead, doctors' discontent is often channelled through informal, individual and subtle activities. Meanwhile, doctors' professional society is gradually influential, showing its potential of developing doctors' group identity and protecting members' interests in future.


Asunto(s)
Hospitales Públicos/economía , Médicos/economía , Salarios y Beneficios , China , Sector de Atención de Salud/economía , Sector de Atención de Salud/organización & administración , Hospitales Públicos/organización & administración , Humanos , Estudios de Casos Organizacionales , Administración de Personal en Hospitales/economía , Administración de Personal en Hospitales/métodos , Médicos/psicología , Salarios y Beneficios/economía , Recursos Humanos
14.
Cell Signal ; 118: 111125, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38432574

RESUMEN

BACKGROUND: Parkinson's disease patients on chronic levodopa often suffer from motor complications, which tend to reduce their quality of life. Levodopa-induced dyskinesia (LID) is one of the most prevalent motor complications, often characterized by abnormal involuntary movements, and the pathogenesis of LID is still unclear but recent studies have suggested the involvement of autophagy. METHODS: The onset of LID was mimicked by chronic levodopa treatment in a unilateral 6-hydroxydopamine (6-OHDA) -lesion rat model. Overexpression of ΔFosB in HEK293 cells to mimic the state of ΔFosB accumulation. The modulation of the AMP-activated protein kinase (AMPK)-mediated autophagy pathway using by metformin, AICAR (an AMPK activator), Compound C (an AMPK inhibitor) and chloroquine (an autophagy pathway inhibitor). The severity of LID was assessed by axial, limb, and orofacial (ALO) abnormal involuntary movements (AIMs) score and in vivo electrophysiology. The activity of AMPK pathway as well as autophagy markers and FosB-ΔFosB levels were detected by western blotting. RT-qPCR was performed to detect the transcription level of FosB-ΔFosB. The mechanism of autophagy dysfunction was further explored by immunofluorescence and transmission electron microscopy. RESULTS: In vivo experiments demonstrated that chronic levodopa treatment reduced AMPK phosphorylation, impaired autophagosome-lysosomal fusion and caused FosB-ΔFosB accumulation in the striatum of PD rats. Long-term metformin intervention improved ALO AIMs scores as well as reduced the mean power of high gamma (hγ) oscillations and the proportion of striatal projection neurons unstable in response to dopamine for LID rats. Moreover, the intervention of metformin promoted AMPK phosphorylation, ameliorated the impairment of autophagosome-lysosomal fusion, thus, promoting FosB-ΔFosB degradation to attenuate its accumulation in the striatum of LID rats. However, the aforementioned roles of metformin were reversed by Compound C and chloroquine. The results of in vitro studies demonstrated the ability of metformin and AICAR to attenuate ΔFosB levels by promoting its degradation, while Compound C and chloroquine could block this effect. CONCLUSIONS: In conclusion, our results suggest that long-term metformin treatment could promote ΔFosB degradation and thus attenuate the development of LID through activating the AMPK-mediated autophagy pathway. Overall, our results support the AMPK-mediated autophagy pathway as a novel therapeutic target for LID and also indicate that metformin is a promising therapeutic candidate for LID.


Asunto(s)
Discinesia Inducida por Medicamentos , Metformina , Humanos , Ratas , Animales , Levodopa/farmacología , Levodopa/uso terapéutico , Antiparkinsonianos/farmacología , Proteínas Quinasas Activadas por AMP , Células HEK293 , Calidad de Vida , Discinesia Inducida por Medicamentos/tratamiento farmacológico , Discinesia Inducida por Medicamentos/metabolismo , Proteínas Proto-Oncogénicas c-fos/metabolismo , Oxidopamina/uso terapéutico , Autofagia , Cloroquina/farmacología , Cloroquina/uso terapéutico , Metformina/farmacología , Modelos Animales de Enfermedad
15.
Front Mol Neurosci ; 16: 1172197, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37168679

RESUMEN

Many neurodegenerative diseases including Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis are characterized by the accumulation of pathogenic proteins and abnormal localization of organelles. These pathological features may be related to axonal transport deficits in neurons, which lead to failures in pathological protein targeting to specific sites for degradation and organelle transportation to designated areas needed for normal physiological functioning. Axonal transport deficits are most likely early pathological events in such diseases and gradually lead to the loss of axonal integrity and other degenerative changes. In this review, we investigated reports of mechanisms underlying the development of axonal transport deficits in a variety of common neurodegenerative diseases, such as Alzheimer's disease, amyotrophic lateral sclerosis, Parkinson's disease and Huntington's disease to provide new ideas for therapeutic targets that may be used early in the disease process. The mechanisms can be summarized as follows: (1) motor protein changes including expression levels and post-translational modification alteration; (2) changes in microtubules including reducing stability and disrupting tracks; (3) changes in cargoes including diminished binding to motor proteins. Future studies should determine which axonal transport defects are disease-specific and whether they are suitable therapeutic targets in neurodegenerative diseases.

16.
Neuroscience ; 523: 61-79, 2023 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-36796751

RESUMEN

BACKGROUND: Levodopa-induced dyskinesia (LID) is a common motor complication of levodopa (L-DOPA) treatment for Parkinson's disease (PD). In recent years, the role of astrocytes in LID has increasingly attracted attention. OBJECTIVE: To explore the effect of an astrocyte regulator (ONO-2506) on LID in a rat model and the potential underlying physiological mechanism. METHODS: Unilateral LID rat models, established by administering 6-hydroxydopamine (6-OHDA) into the right medial forebrain bundle through stereotactic injection, were injected with ONO-2506 or saline into the striatum through brain catheterization and were administered L-DOPA to induce LID. Through a series of behavioral experiments, LID performance was observed. Relevant indicators were assessed through biochemical experiments. RESULTS: In the LID model of 6-OHDA rats, ONO-2506 significantly delayed the development and reduced the degree of abnormal involuntary movement in the early stage of L-DOPA treatment and increased glial fibrillary acidic protein and glutamate transporter 1 (GLT-1) expression in the striatum compared to saline. However, there was no significant difference in the improvement in motor function between the ONO-2506 and saline groups. CONCLUSIONS: ONO-2506 delays the emergence of L-DOPA-induced abnormal involuntary movements in the early stage of L-DOPA administration, without affecting the anti-PD effect of L-DOPA. The delaying effect of ONO-2506 on LID may be linked to the increased expression of GLT-1 in the rat striatum. Interventions targeting astrocytes and glutamate transporters are potential therapeutic strategies to delay the development of LID.


Asunto(s)
Discinesia Inducida por Medicamentos , Enfermedad de Parkinson , Ratas , Animales , Levodopa/farmacología , Oxidopamina/farmacología , Discinesia Inducida por Medicamentos/tratamiento farmacológico , Enfermedad de Parkinson/tratamiento farmacológico , Cuerpo Estriado/metabolismo , Modelos Animales de Enfermedad , Antiparkinsonianos/uso terapéutico
17.
Behav Brain Res ; 454: 114609, 2023 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-37532003

RESUMEN

AIM: Parkinson's disease is one of the most common neurodegenerative diseases. Excellent levodopa responsiveness has been proposed as a characteristic supporting feature in substantiating the PD diagnosis. However, a small portion of clinically established PD patients shows poor levodopa response. This study aims to investigate brain function alterations of PD patients with poor levodopa responsiveness by PET/MRI. METHOD: A total of 46 PD patients were recruited. They all completed 11C-CFT PET/MRI scans and the acute levodopa challenge test. Among these 46 PD patients, 42 participants further underwent 18F-FDG PET/MRI scans. Clinical variables regarding demographic data, disease features and cognition scales were also collected. Based on the improvement rate of UPDRS-III, PD patients were divided into non-responders (improvement rate < 33 %) and responders (improvement rate ≥ 33 %). Statistical parametric zapping was performed to analyze molecular imaging. Dopaminergic uptake and metabolism of 70 brain regions were converted to quantitative values and expressed as standard uptake value (SUV). SUV was further normalized by the cerebellum. The resulting SUV ratios and clinical variables were then compared by SPSS. RESULTS: The difference between levodopa non-responders (n = 17) and responders (n = 29) in the UPDRS III baseline was statistically significant and the former had a lower UPDRS III baseline (19 (10, 32), p<0.05). In contrast, no statistical difference between these two groups was found in age, gender, disease duration, cognition, motor subtype and Hoehn-Yahr stage. Dopaminergic uptake differences between levodopa non-responders (n = 17) and responders (n = 29) were shown in the left inferior frontal cortex (1.00 ± 0.09 vs 1.07 ± 0.08, p < 0.05 and FDR < 0.2), the right posterior cingulum (1.10 ± 0.10 vs 1.20 ± 0.13, p < 0.05 and FDR < 0.2) and the right insula (1.21 ± 0.12 vs 1.30 ± 0.10, p < 0.05 and FDR < 0.2). The metabolic alterations between levodopa non-responders (n = 16) and responders (n = 26) were shown in the right supplementary motor area (1.30 (1.18, 1.39) vs 1.41 (1.31, 1.53), p < 0.05 and FDR < 0.2), right precuneus (1.37 ± 0.10 vs 1.47 ± 0.18, p < 0.05 and FDR < 0.2), right parietal cortex (1.14 ± 0.15 vs 1.27 ± 0.21, p < 0.05 and FDR < 0.2), right supramarginal gyrus (1.16 (1.12, 1.26) vs 1.25 (1.14, 1.46), p < 0.05 and FDR < 0.2), right postcentral gyrus (1.15 (1.08, 1.32) vs 1.24 (1.17, 1.39), p < 0.05 and FDR < 0.2), medulla (0.75 ± 0.07 vs 0.80 ± 0.07, p < 0.05 and FDR < 0.2), right rolandic operculum (1.25 (1.18, 1.32) vs 1.33 (1.25, 1.50), p < 0.05 and FDR < 0.2), right olfactory (0.95 (0.91, 1.01) vs 1.01 (0.95, 1.15), p < 0.05 and FDR < 0.2), the right insula (1.15 (1.06, 1.22) vs 1.21 (1.12, 1.35), p < 0.05 and FDR < 0.2) and the left cerebellum crus (0.96 (0.91, 1.01) vs 0.92 (0.86, 0.96), p < 0.05 and FDR < 0.2). CONCLUSIONS: PD patients with poor response to levodopa showed less severe impairment of baseline motor symptoms, more severe dopaminergic deficits in the left inferior frontal, right posterior cingulate cortex and the right insula, and lower metabolism in the right supplementary motor area, right precuneus, right parietal cortex, right supramarginal gyrus, right postcentral gyrus, medulla, right rolandic operculum, right olfactory, the right insula and higher metabolism in the left cerebellum crus.


Asunto(s)
Levodopa , Enfermedad de Parkinson , Humanos , Levodopa/uso terapéutico , Enfermedad de Parkinson/diagnóstico por imagen , Enfermedad de Parkinson/tratamiento farmacológico , Enfermedad de Parkinson/metabolismo , Fluorodesoxiglucosa F18 , Tomografía de Emisión de Positrones , Dopamina , Imagen por Resonancia Magnética/métodos
18.
Heliyon ; 9(7): e18081, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37483764

RESUMEN

Background: The symptoms of early Parkinson's disease (PD) are complex and hidden. The aim of this study is to explore and summarize the characteristics of the symptoms of drug naïve patients with PD. Objectives: and Methods Drug-naïve patients with PD and age-matched healthy controls were recruited from the outpatient clinic of Wuhan Union Hospital. The motor and non-motor symptoms were evaluated for further analysis using Unified Parkinson's Disease Rating Scale (UPDRS) I, II, and III; Sniffin' Sticks Screening 12 test; Mini-Mental State Exam (MMSE); Montreal Cognitive Assessment (MoCA); Hamilton Anxiety Scale (HAMA); and Hamilton Depression Scale (HAMD) scores. The acute levodopa challenge test (ALCT) was adopted to assess the reaction to dopaminergic treatment. Results: We recruited 80 drug-naïve patients with PD and 40 age-matched healthy controls (HCs). Approximately 53.7% of the patients were females. The mean onset age was 59.96 ± 10.40 years. The mean UPDRS I, II, and III were 2.01 ± 1.90, 6.18 ± 3.68, and 26.13 ± 12.09, respectively. Compared with HCs, PD patients had lower scores in MMSE and MoCA; and higher scores in HAMA and HAMD (p < 0.05). In ALCT, 54 patients showed good responses to levodopa while 26 patients did not. The mean improvement rate of UPDRS III was 34.09% at 120 min. Conclusion: The motor symptoms of patients with early PD were mild but virous. They also suffered from different non-motor symptoms. In ALCT, about two thirds of patients (54/80) with early PD showed good response to levodopa. Among four aspects of motor symptoms, bradykinesia reacted best to ALCT, while axial symptoms were the worst.

19.
Pharmacol Biochem Behav ; 231: 173637, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37714223

RESUMEN

Group II metabotropic glutamate receptors (mGlu2/3 receptors) have been regarded as promising candidates for the treatment of L-DOPA-induced dyskinesia (LID); however, confirmation is still lacking. As the hub of the basal ganglia circuit, the striatum plays a critical role in action control. Supersensitive responsiveness of glutamatergic corticostriatal input may be the key mechanism for the development of LID. In this study, we first examined the potency of LY354740 (12 mg/kg, i.p.) in modulating glutamate and dopamine release in lesioned striatum of stable LID rats. Then, we injected LY354740 (20nmoL or 40nmoL in 4 µL of sterile 0.9 % saline) directly into the lesioned striatum to verify its ability to reduce or attenuate L-DOPA-induced abnormal involuntary movements. In experiment conducted in established LID rats, after continuous injection for 4 days, we found that LY354740 significantly reduced the expression of dyskinesia. In another experiment conducted in parkinsonism rat models, we found that LY354740 attenuated the development of LID with an inverted-U dose-response curve. The role of LY354740 in modulating striatal expressions of LID-related molecular changes was also assessed after these behavioral experiments. We found that LY354740 significantly inhibited abnormal expressions of p-Fyn/p-NMDA/p-ERK1/2/p-HistoneH3/ΔFosB, which is in line with its ability to alleviate abnormal involuntary movements in both LID expression and induction phase. Our study indicates that activation of striatal mGlu2/3 receptors can attenuate the development of dyskinesia in parkinsonism rats and provide some functional improvements in LID rats by inhibiting LID-related molecular changes.


Asunto(s)
Discinesia Inducida por Medicamentos , Trastornos Parkinsonianos , Ratas , Animales , Levodopa/efectos adversos , Ratas Sprague-Dawley , Discinesia Inducida por Medicamentos/tratamiento farmacológico , Discinesia Inducida por Medicamentos/metabolismo , Cuerpo Estriado/metabolismo , Trastornos Parkinsonianos/inducido químicamente , Trastornos Parkinsonianos/tratamiento farmacológico , Trastornos Parkinsonianos/metabolismo , Oxidopamina , Antiparkinsonianos/efectos adversos , Modelos Animales de Enfermedad
20.
ACS Nano ; 17(24): 25625-25637, 2023 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-38096441

RESUMEN

Implantable neural stimulation devices are becoming prevalent in bioelectronic medicine for the precise treatment of various clinical diseases. Nevertheless, the limited lifespan and buckling size of the implanted devices remain significant obstacles for chronic clinical application. In this study, we developed an ultrasound-driven battery-free neurostimulator based on a high-performance mini-sized nanogenerator and demonstrated its successful application for the deep-brain-stimulation (DBS) therapy of Parkinson's disease in a rat model. This soft piezoelectric-triboelectric hybrid nanogenerators (PTNG) are made of porous thin-films of molecular piezoelectric materials, which have great advantages of facile, scalable, low-temperature, and flexible processing. Without any bucky accessory control circuits, the subcutaneously implanted soft PTNG can function as a wirelessly powered neurostimulator, allowing for the adjustment of stimulation parameters through external programmable ultrasound pulses. This DBS electroceutical application of energy-harvesting thin-film devices based on molecular piezoelectric materials provides valuable insight into the development of a soft high-performance bioelectronic device.


Asunto(s)
Estimulación Encefálica Profunda , Enfermedad de Parkinson , Animales , Ratas , Ultrasonografía , Suministros de Energía Eléctrica , Porosidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA