Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-38761998

RESUMEN

BACKGROUND: Previous studies implied that local M2 polarization of macrophage promoted mucosal edema and exacerbated TH2 type inflammation in chronic rhinosinusitis with nasal polyps (CRSwNP). However, the specific pathogenic role of M2 macrophages and the intrinsic regulators in the development of CRS remains elusive. OBJECTIVE: We sought to investigate the regulatory role of SIRT5 in the polarization of M2 macrophages and its potential contribution to the development of CRSwNP. METHODS: Real-time reverse transcription-quantitative PCR and Western blot analyses were performed to examine the expression levels of SIRT5 and markers of M2 macrophages in sinonasal mucosa samples obtained from both CRS and control groups. Wild-type and Sirt5-knockout mice were used to establish a nasal polyp model with TH2 inflammation and to investigate the effects of SIRT5 in macrophage on disease development. Furthermore, in vitro experiments were conducted to elucidate the regulatory role of SIRT5 in polarization of M2 macrophages. RESULTS: Clinical investigations showed that SIRT5 was highly expressed and positively correlated with M2 macrophage markers in eosinophilic polyps. The expression of SIRT5 in M2 macrophages was found to contribute to the development of the disease, which was impaired in Sirt5-deficient mice. Mechanistically, SIRT5 was shown to enhance the alternative polarization of macrophages by promoting glutaminolysis. CONCLUSIONS: SIRT5 plays a crucial role in promoting the development of CRSwNP by supporting alternative polarization of macrophages, thus providing a potential target for CRSwNP interventions.

2.
Dev Cell ; 58(21): 2376-2392.e6, 2023 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-37643613

RESUMEN

Embryo implantation requires temporospatial maternal-embryonic dialog. Using single-cell RNA sequencing for the uterus from 2.5 to 4.5 days post-coitum (DPC) and bulk sequencing for the corresponding embryos of 3.5 and 4.0 DPC pregnant mice, we found that estrogen-responsive luminal epithelial cells (EECs) functionally differentiated into adhesive epithelial cells (AECs) and supporting epithelial cells (SECs), promoted by progesterone. Along with maternal signals, embryonic Pdgfa and Efna3/4 signaling activated AECs and SECs, respectively, enhancing the attachment of embryos to the endometrium and furthering embryo development. This differentiation process was largely conserved between humans and mice. Notably, the developmental defects of SOX9-positive human endometrial epithelial cells (similar to mouse EEC) were related to thin endometrium, whereas functional defects of SEC-similar unciliated epithelial cells were related to recurrent implantation failure (RIF). Our findings provide insights into endometrial luminal epithelial cell development directed by maternal and embryonic signaling, which is crucial for endometrial receptivity.


Asunto(s)
Implantación del Embrión , Células Epiteliales , Embarazo , Femenino , Humanos , Animales , Ratones , Implantación del Embrión/genética , Desarrollo Embrionario , Endometrio/fisiología , Diferenciación Celular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA