Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Int J Mol Sci ; 24(24)2023 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-38139304

RESUMEN

Thiadiazole derivatives have garnered significant attention in the field of medicinal chemistry due to their diverse pharmacological activities, including anticancer properties. This article presents the synthesis of a series of thiadiazole derivatives and investigates their chemical characterization and potential anticancer effects on various cell lines. The results of the nuclear magnetic resonance (NMR) analyses confirmed the successful formation of the target compounds. The anticancer potential was evaluated through in silico and in vitro cell-based assays using LoVo and MCF-7 cancer lines. The assays included cell viability, proliferation, apoptosis, and cell cycle analysis to assess the compounds' effects on cancer cell growth and survival. Daphnia magna was used as an invertebrate model for the toxicity evaluation of the compounds. The results revealed promising anticancer activity for several of the synthesized derivatives, suggesting their potential as lead compounds for further drug development. The novel compound 2g, 5-[2-(benzenesulfonylmethyl)phenyl]-1,3,4-thiadiazol-2-amine, demonstrated good anti-proliferative effects, exhibiting an IC50 value of 2.44 µM against LoVo and 23.29 µM against MCF-7 after a 48-h incubation and little toxic effects in the Daphnia test.


Asunto(s)
Antineoplásicos , Tiadiazoles , Estructura Molecular , Relación Estructura-Actividad , Antineoplásicos/química , Tiadiazoles/química , Proliferación Celular , Ensayos de Selección de Medicamentos Antitumorales , Línea Celular Tumoral
2.
Int J Mol Sci ; 22(13)2021 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-34202639

RESUMEN

ß-Ketophosphonates with pentalenofurane fragments linked to the keto group were synthesized. The bulky pentalenofurane skeleton is expected to introduce more hindrance in the prostaglandin analogues of type III, greater than that obtained with the bicyclo[3.3.0]oct(a)ene fragments of prostaglandin analogues I and II, to slow down (retard) the inactivation of the prostaglandin analogues by oxidation of 15α-OH to the 15-keto group via the 15-PGDH pathway. Their synthesis was performed by a sequence of three high yield reactions, starting from the pentalenofurane alcohols 2, oxidation of alcohols to acids 3, esterification of acids 3 to methyl esters 4 and reaction of the esters 4 with lithium salt of dimethyl methanephosphonate at low temperature. The secondary compounds 6b and 6c were formed in small amounts in the oxidation reactions of 2b and 2c, and the NMR spectroscopy showed that their structure is that of an ester of the acid with the starting alcohol. Their molecular structures were confirmed by single crystal X-ray determination method for 6c and XRPD powder method for 6b.


Asunto(s)
Cetonas/química , Organofosfonatos/química , Prostaglandinas Sintéticas/síntesis química , Técnicas de Química Sintética , Cristalografía por Rayos X , Modelos Moleculares , Conformación Molecular , Estructura Molecular , Prostaglandinas Sintéticas/química , Sesquiterpenos/química
3.
Molecules ; 26(14)2021 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-34299440

RESUMEN

(1) Background: The research aims to find new treatments for neurodegenerative diseases, in particular, Alzheimer's disease. (2) Methods: This article presents a bioinformatics and pathology study of new Schiff bases, (EZ)-N'-benzylidene-(2RS)-2-(6-chloro-9H-carbazol-2-yl)propanehydrazide derivatives, and aims to evaluate the drug-like, pharmacokinetic, pharmacodynamic and pharmacogenomic properties, as well as to predict the binding to therapeutic targets by applying bioinformatics, cheminformatics and computational pharmacological methods. (3) Results: We obtained these Schiff bases by condensing (2RS)-2-(6-chloro-9H-carbazol-2-yl)propanehydrazide with aromatic aldehydes, using the advantages of microwave irradiation. The newly synthesized compounds were characterized spectrally, using FT-IR and NMR spectroscopy, which confirmed their structure. Using bioinformatics tools, we noticed that all new compounds are drug-likeness features and may be proposed as potentially neuropsychiatric drugs (4) Conclusions: Using bioinformatics tools, we determined that the new compound 1e had a high potential to be used as a good candidate in neurodegenerative disorders treatment.


Asunto(s)
Carbazoles/química , Bases de Schiff/química , Bases de Schiff/síntesis química , Aldehídos/química , Antibacterianos/farmacología , Carbazoles/síntesis química , Carbazoles/farmacología , Quimioinformática/métodos , Biología Computacional/métodos , Glucosamina/química , Estructura Molecular , Enfermedades Neurodegenerativas/tratamiento farmacológico , Espectroscopía Infrarroja por Transformada de Fourier/métodos
4.
Molecules ; 25(7)2020 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-32218209

RESUMEN

The increasing threat of antimicrobial resistance to all currently available therapeutic agents has urged the development of novel antimicrobials. In this context, a series of new benzoylthiourea derivatives substituted with one or more fluorine atoms and with the trifluoromethyl group have been tested, synthesized, and characterized by IR, NMR, CHNS and crystal X-ray diffraction. The molecular docking has provided information regarding the binding affinity and the orientation of the new compounds to Escherichia coli DNA gyrase B. The docking score predicted the antimicrobial activity of the studied compounds, especially against E. coli, which was further demonstrated experimentally against planktonic and biofilm embedded bacterial and fungal cells. The compounds bearing one fluorine atom on the phenyl ring have shown the best antibacterial effect, while those with three fluorine atoms exhibited the most intensive antifungal activity. All tested compounds exhibited antibiofilm activity, correlated with the trifluoromethyl substituent, most favorable in para position.


Asunto(s)
Antibacterianos/farmacología , Diseño de Fármacos , Tiourea/análogos & derivados , Antibacterianos/síntesis química , Antibacterianos/química , Bacterias/efectos de los fármacos , Sitios de Unión , Biopelículas/efectos de los fármacos , Hongos/efectos de los fármacos , Ligandos , Pruebas de Sensibilidad Microbiana , Conformación Molecular , Simulación del Acoplamiento Molecular , Electricidad Estática , Tiourea/síntesis química , Tiourea/química , Tiourea/farmacología
5.
Molecules ; 25(2)2020 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-31941125

RESUMEN

In a drug-repurposing-driven approach for speeding up the development of novel antimicrobial agents, this paper presents for the first time in the scientific literature the synthesis, physico-chemical characterization, in silico analysis, antimicrobial activity against bacterial and fungal strains in planktonic and biofilm growth state, as well as the in vitro cytotoxicity of some new 6,11-dihydrodibenz[b,e]oxepin-11(6H)one O-(arylcarbamoyl)oximes. The structures of intermediary and final substances (compounds 7a-j) were confirmed by 1H-NMR, 13C-NMR and IR spectra, as well as by elemental analysis. The in silico bioinformatic and cheminformatic studies evidenced an optimal pharmacokinetic profile for the synthesized compounds 7a-j, characterized by an average lipophilic character predicting good cell membrane permeability and intestinal absorption; low maximum tolerated dose for humans; potassium channels encoded by the hERG I and II genes as potential targets and no carcinogenic effects. The obtained compounds exhibited a higher antimicrobial activity against the planktonic Gram-positive Staphylococcus aureus and Bacillus subtilis strains and the Candida albicans fungal strain. The obtained compounds also inhibited the ability of S. aureus, B. subtilis, Escherichia coli and C. albicans strains to colonize the inert substratum, accounting for their possible use as antibiofilm agents. All the active compounds exhibited low or acceptable cytotoxicity levels on the HCT8 cells, ensuring the potential use of these compounds for the development of new antimicrobial drugs with minimal side effects on the human cells and tissues.


Asunto(s)
Antiinfecciosos , Bacterias/crecimiento & desarrollo , Fenómenos Fisiológicos Bacterianos/efectos de los fármacos , Biopelículas/efectos de los fármacos , Candida albicans/fisiología , Simulación por Computador , Oximas , Antiinfecciosos/química , Antiinfecciosos/farmacología , Biopelículas/crecimiento & desarrollo , Línea Celular , Humanos , Oximas/química , Oximas/farmacología
6.
Molecules ; 22(12)2017 11 24.
Artículo en Inglés | MEDLINE | ID: mdl-29186795

RESUMEN

Hydroboration-oxidation of 2α,4α-dimethanol-1ß,5ß-bicyclo[3.3.0]oct-6-en dibenzoate (1) gave alcohols 2 (symmetric) and 3 (unsymmetric) in ~60% yield, together with the monobenzoate diol 4a (37%), resulting from the reduction of the closer benzoate by the intermediate alkylborane. The corresponding alkene and dialdehyde gave only the triols 8 and 9 in ~1:1 ratio. By increasing the reaction time and the temperature, the isomerization of alkylboranes favours the un-symmetrical triol 9. The PDC oxidation of the alcohols gave cleanly the corresponding ketones 5 and 6 and the deprotection of the benzoate groups gave the symmetrical ketone 14, and the cyclic hemiketal 15, all in high yields. The ethylene ketals of the symmetrical ketones 11 and 13 were also obtained. The compounds 5, 6, 11, 13, 14 could be used for synthesis of new (iso)carbacyclin analogues. The structure of the compounds was established by NMR spectroscopy and confirmed by X-ray crystallography.


Asunto(s)
Boranos/química , Epoprostenol/análogos & derivados , Cristalografía por Rayos X , Epoprostenol/síntesis química , Epoprostenol/química , Estructura Molecular , Oxidación-Reducción
7.
Bioorg Med Chem ; 22(1): 513-22, 2014 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-24280070

RESUMEN

An amine group was synthesized starting from an optically active bicyclo[2.2.1]heptane compound, which was then used to build the 5 atoms ring of a key 6-chloropurine intermediate. This was then reacted with ammonia and selected amines obtaining new adenine- and 6-substituted adenine conformationally constrained carbocyclic nucleoside analogues with a bicyclo[2.2.1]heptane skeleton in the sugar moiety. X-ray crystallography confirmed an exo-coupling of base to the ring and a L configuration of the nucleoside analogues. The compounds were tested for anticancer activity.


Asunto(s)
Antineoplásicos/síntesis química , Heptanos/química , Nucleósidos/química , Antineoplásicos/uso terapéutico , Cristalografía por Rayos X , Humanos , Conformación Molecular , Estructura Molecular , Estereoisomerismo
8.
Molecules ; 19(8): 12011-30, 2014 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-25120054

RESUMEN

Novel derivatives were prepared by reaction of aromatic amines with 2-(4-ethylphenoxymethyl)benzoyl isothiocyanate, affording the N-[2-(4-ethylphenoxymethyl) benzoyl]-Nꞌ-(substituted phenyl)thiourea. Structural elucidation of these compounds was performed by IR, NMR spectroscopy and elemental analysis. The new compounds were used in combination with Fe3O4 and polyvinylpyrrolidone (PVP) for the coating of medical surfaces. In our experiments, catheter pieces were coated by Matrix Assisted Pulsed Laser Evaporation (MAPLE) technique. The microbial adherence ability was investigated in 6 multi-well plates by using culture based methods. The obtained surfaces were also assessed for their cytotoxicity with respect to osteoblast cells, by using fluorescence microscopy and MTT assay. The prepared surfaces by advanced laser processing inhibited the adherence and biofilm development ability of Staphylococcus aureus and Pseudomonas aeruginosa tested strains while cytotoxic effects on the 3T3-E1 preosteoblasts embedded in layer shaped alginate hydrogels were not observed. These results suggest that the obtained medical surfaces, based on the novel thiourea derivatives and magnetic nanoparticles with a polymeric shell could represent a promising alternative for the development of new and effective anti-infective strategies.


Asunto(s)
Antibacterianos/química , Benzamidas/química , Biopelículas/efectos de los fármacos , Compuestos de Hierro/química , Polivinilos/química , Pirrolidinas/química , Antibacterianos/síntesis química , Antibacterianos/farmacología , Benzamidas/síntesis química , Benzamidas/farmacología , Biopelículas/crecimiento & desarrollo , Humanos , Compuestos de Hierro/farmacología , Espectroscopía de Resonancia Magnética , Nanoestructuras/administración & dosificación , Nanoestructuras/química , Polivinilos/síntesis química , Polivinilos/farmacología , Pseudomonas aeruginosa/efectos de los fármacos , Pseudomonas aeruginosa/crecimiento & desarrollo , Pirrolidinas/síntesis química , Pirrolidinas/farmacología , Staphylococcus aureus/efectos de los fármacos , Staphylococcus aureus/crecimiento & desarrollo
9.
Antibiotics (Basel) ; 12(5)2023 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-37237710

RESUMEN

New N-acyl thiourea derivatives with heterocyclic rings have been synthesized by first obtaining isothiocyanate, which further reacted with a heterocyclic amine, characterized by (FT-IR, NMR spectroscopy and FT-ICR) and tested for their in vitro antimicrobial, anti-biofilm and antioxidant activities to obtain a drug candidate in a lead-optimization process. From the tested compounds, those bearing benzothiazole (1b) and 6-methylpyridine (1d) moieties revealed anti-biofilm activity against E. coli ATCC 25922 at MBIC values of 625 µg/mL. Compound 1d exhibited the highest antioxidant capacity (~43%) in the in vitro assay using 1,1-diphenyl-2-picrylhydrazyl (DPPH). Considering the in vitro results, the highest anti-biofilm and antioxidant activities were obtained for compound 1d. Therefore, a reversed-phase high-performance liquid chromatography (RP-HPLC) method has been optimized and validated for the quantitative determination of compound 1d. The detection and quantitation limits were 0.0174 µg/mL and 0.0521 µg/mL, respectively. The R2 correlation coefficient of the LOQ and linearity curves were greater than 0.99, over the concentration range of 0.05 µg/mL-40 µg/mL. The precision and accuracy of the analytical method were within 98-102%, confirming that the method is suitable for the quantitative determination of compound 1d in routine quality control analyses. Evaluating the results, the promising potential of the new N-acyl thiourea derivatives bearing 6-methylpyridine moiety will be further investigated for developing agents with anti-biofilm and antioxidant activities.

10.
Pharmaceutics ; 15(10)2023 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-37896261

RESUMEN

The present study aimed to synthesize, characterize, and validate a separation and quantification method of new N-acyl thiourea derivatives (1a-1o), incorporating thiazole or pyridine nucleus in the same molecule and showing antimicrobial potential previously predicted in silico. The compounds have been physiochemically characterized by their melting points, IR, NMR and MS spectra. Among the tested compounds, 1a, 1g, 1h, and 1o were the most active against planktonic Staphylococcus aureus and Pseudomonas aeruginosa, as revealed by the minimal inhibitory concentration values, while 1e exhibited the best anti-biofilm activity against Escherichia coli (showing the lowest value of minimal inhibitory concentration of biofilm development). The total antioxidant activity (TAC) assessed by the DPPH method, evidenced the highest values for the compound 1i, followed by 1a. A routine quality control method for the separation of highly related compounds bearing a chlorine atom on the molecular backbone (1g, 1h, 1i, 1j, 1m, 1n) has been developed and validated by reversed-phase high-performance liquid chromatography (RP-HPLC), the results being satisfactory for all validation parameters recommended by the ICH guidelines (i.e., system suitability, specificity, the limits of detection and quantification, linearity, precision, accuracy and robustness) and recommending it for routine separation of these highly similar compounds.

11.
Artículo en Inglés | MEDLINE | ID: mdl-34507099

RESUMEN

The synthesis of ß-ketophosphonates, linked by a methylene group to a bicyclo[3.3.0]octene fragment, was performed by the reaction of dimethyl methanephosphonate with the ester group of two intermediates with this scaffold. Starting from a diol, protected with good leaving groups (mesyl and tosyl), we performed a sequence of reactions with good yields: the carbon chain lengthening by reaction with KCN, the hydrolysis of the nitrile groups to carboxyl, the esterification of carboxyl to ester and finally the phosphonate synthesis, which gave one bis-ß-ketophosphonate and two mono ß-ketophosphonates. The new ß-ketophosphonates are key intermediates for obtaining new prostaglandin analogues with a bicyclo[3.3.0]octene fragment in the ω-side chain. The bicyclo[3.3.0]octane scaffold, found in natural products and in anticancer compounds, are expected to keep their activity in PG analogs; the bulky scaffold, separated by a methylene group from the C-15 carbon atom, is expected to diminish the inactivation of the PG analog by enzyme oxidation of 15α-OH oxidation to 15-Keto via PGDH pathway.


Asunto(s)
Organofosfonatos/síntesis química , Prostaglandinas Sintéticas/síntesis química , Compuestos Bicíclicos con Puentes/química , Cetonas/síntesis química , Cetonas/química , Organofosfonatos/química , Compuestos Organofosforados/química
12.
Pharmaceuticals (Basel) ; 14(5)2021 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-34066442

RESUMEN

In order to develop novel chemotherapeutic agents with potent anticancer activities, a series of new 2,5-diaryl/heteroaryl-1,3,4-oxadiazoles were designed and synthesized. The structures of the new compounds were established using elemental analyses, IR and NMR spectral data. The compounds were evaluated for their anticancer potential on two standardized human cell lines, HT-29 (colon adenocarcinoma) and MDA-MB-231 (breast adenocarcinoma). Cytotoxicity was measured by MTS assay, while cell cycle arrest and apoptosis assays were conducted using a flow cytometer, the results showing that the cell line MDA-MB-231 is more sensitive to the compounds' action. The results of the predictive studies using the PASS application and the structural similarity analysis indicated STAT3 and miR-21 as the most probable pharmacological targets for the new compounds. The promising effect of compound 3e, 2-[2-(phenylsulfanylmethyl)phenyl]-5-(4-pyridyl)-1,3,4-oxadiazole, especially on the MDA-MB-231 cell line motivates future studies to improve the anticancer profile and to reduce the toxicological risks. It is worth noting that 3e produced a low toxic effect in the D. magna 24 h assay and the predictive studies on rat acute toxicity suggest a low degree of toxic risks.

13.
Nanomaterials (Basel) ; 8(1)2018 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-29342119

RESUMEN

The continuously increasing global impact of fungal infections is requiring the rapid development of novel antifungal agents. Due to their multiple pharmacological activities, thiourea derivatives represent privileged candidates for shaping new drugs. We report here the preparation, physico-chemical characterization and bioevaluation of hybrid nanosystems based on new 2-((4-chlorophenoxy)methyl)-N-(substituted phenylcarbamo-thioyl)benzamides and Fe3O4@C18 core@shell nanoparticles. The new benzamides were prepared by an efficient method, then their structure was confirmed by spectral studies and elemental analysis and they were further loaded on Fe3O4@C18 nanostructures. Both the obtained benzamides and the resulting hybrid nanosystems were tested for their efficiency against planktonic and adherent fungal cells, as well as for their in vitro biocompatibility, using mesenchymal cells. The antibiofilm activity of the obtained benzamides was dependent on the position and nature of substituents, demonstrating that structure modulation could be a very useful approach to enhance their antimicrobial properties. The hybrid nanosystems have shown an increased efficiency in preventing the development of Candida albicans (C. albicans) biofilms and moreover, they exhibited a good biocompatibility, suggesting that Fe3O4@C18core@shell nanoparticles could represent promising nanocarriers for antifungal substances, paving the way to the development of novel effective strategies with prophylactic and therapeutic value for fighting biofilm associated C. albicans infections.

14.
Drug Des Devel Ther ; 7: 883-92, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24039398

RESUMEN

A number of 2-((4-ethylphenoxy)methyl)-N-(substituted-phenylcarbamothioyl) benzamides (1a-h) were synthesized via reaction of 2-((4-ethylphenoxy)methyl)benzoyl isothiocyanate (2) as a key intermediate with several substituted primary aromatic amines. The new compounds were characterized by proton nuclear magnetic resonance ((1)H-NMR), carbon-13 nuclear magnetic resonance ((13)C-NMR), infrared spectrometry (IR), mass spectrometry (MS), and elemental analysis. The anti-inflammatory activity of 1a-h was investigated by acute carrageenan-induced paw edema in mice using the reference drug indomethacin. The results obtained indicated that, of the derivatives developed, 1a and 1d-h exhibited significantly higher anti-inflammatory activity (26.81%-61.45%) when compared with the reference drug indomethacin (22.43%) (P = 0.0490 for 1a, 0.0015 for 1d, 0.0330 for 1f, and P < 0.001 for 1e and 1h). Moreover, the ulcer incidence of 20% for 1e and 1h was clearly lower when compared with the indomethacin group (in which the ulcer incidence was 80%). Of particular note, the ulcer index of 0.2 for 1e was significantly less than that in the indomethacin group (0.6, P = 0.014). Additionally, prostaglandin E2 (PGE2) inhibitory properties were found to be high with 1e (68.32 pg/mL), significantly different from those of the placebo group (530.13 pg/mL, P < 0.001), and equipotent to the effect observed in the indomethacin-pretreated group (96.13 pg/mL, P > 0.05). Moreover, the PGE2 level of 54.15 pg/mL with 1h was also significantly different from that of the placebo group (P < 0.001) and of the indomethacin group (P < 0.05). The significant inhibition of PGE2 observed with 1e (68.32 pg/mL) and 1h (54.15 pg/mL) agree with their observed ulcer incidences. Our overall findings for N-phenylcarbamothioylbenzamides 1a-h clearly suggest that the compounds exhibit an anti-inflammatory effect, potently inhibit PGE2 synthesis, and markedly demonstrate low ulcer incidence.


Asunto(s)
Antiinflamatorios/farmacología , Benzamidas/farmacología , Dinoprostona/antagonistas & inhibidores , Inflamación/tratamiento farmacológico , Animales , Antiinflamatorios/síntesis química , Antiinflamatorios/química , Benzamidas/síntesis química , Benzamidas/química , Carragenina , Modelos Animales de Enfermedad , Edema/tratamiento farmacológico , Edema/patología , Indometacina/farmacología , Indometacina/toxicidad , Inflamación/patología , Espectroscopía de Resonancia Magnética , Masculino , Espectrometría de Masas , Ratones , Espectrofotometría Infrarroja , Úlcera Gástrica/inducido químicamente , Úlcera Gástrica/epidemiología , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA