Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Mov Disord ; 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38685873

RESUMEN

BACKGROUND: The MRPS36 gene encodes a recently identified component of the 2-oxoglutarate dehydrogenase complex (OGDHC), a key enzyme of the Krebs cycle catalyzing the oxidative decarboxylation of 2-oxoglutarate to succinyl-CoA. Defective OGDHC activity causes a clinically variable metabolic disorder characterized by global developmental delay, severe neurological impairment, liver failure, and early-onset lactic acidosis. METHODS: We investigated the molecular cause underlying Leigh syndrome with bilateral striatal necrosis in two siblings through exome sequencing. Functional studies included measurement of the OGDHC enzymatic activity and MRPS36 mRNA levels in fibroblasts, assessment of protein stability in transfected cells, and structural analysis. A literature review was performed to define the etiological and phenotypic spectrum of OGDHC deficiency. RESULTS: In the two affected brothers, exome sequencing identified a homozygous nonsense variant (c.283G>T, p.Glu95*) of MRPS36. The variant did not affect transcript processing and stability, nor protein levels, but resulted in a shorter protein lacking nine residues that contribute to the structural and functional organization of the OGDHC complex. OGDHC enzymatic activity was significantly reduced. The review of previously reported cases of OGDHC deficiency supports the association of this enzymatic defect with Leigh phenotypic spectrum and early-onset movement disorder. Slightly elevated plasma levels of glutamate and glutamine were observed in our and literature patients with OGDHC defect. CONCLUSIONS: Our findings point to MRPS36 as a new disease gene implicated in Leigh syndrome. The slight elevation of plasma levels of glutamate and glutamine observed in patients with OGDHC deficiency represents a candidate metabolic signature of this neurometabolic disorder. © 2024 International Parkinson and Movement Disorder Society.

2.
Br J Haematol ; 202(5): 953-959, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37357817

RESUMEN

We explored the relevance of genomic microarrays (GM) in the refinement of prognosis in newly diagnosed low-risk chronic lymphocytic leukaemia (CLL) patients as defined by isolated del(13q) or no lesions by a standard 4 probe fluorescence in situ hybridization (FISH) analysis. Compared to FISH, additional lesions were detected by GM in 27 of the 119 patients (22.7%). The concordance rate between FISH and GM was 87.4%. Discordant results between cytogenetic banding analysis (CBA) and GM were observed in 45/119 cases (37.8%) and were mainly due to the intrinsic characteristics of each technique. The presence of additional lesions by GM was associated with age > 65 years (p = 0.047), advanced Binet stage (p = 0.001), CLL-IPI score (p < 0.001), a complex karyotype (p = 0.004) and a worse time-to-first treatment in multivariate analysis (p = 0.009). Additional lesions by GM were also significantly associated with a worse time-to-first treatment in the subset of patients with wild-type TP53 and mutated IGHV (p = 0.025). In CLL patients with low-risk features, the presence of additional lesions identified by GM helps to identify a subset of patients with a worse outcome that could be proposed for a risk-adapted follow-up and for early treatment including targeted agents within clinical trials.


Asunto(s)
Leucemia Linfocítica Crónica de Células B , Humanos , Leucemia Linfocítica Crónica de Células B/patología , Hibridación Fluorescente in Situ , Pronóstico , Factores de Riesgo , Genómica
3.
Nucleic Acids Res ; 49(D1): D1282-D1288, 2021 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-33300029

RESUMEN

Numerous lines of evidence have shown that the interaction between the nuclear and mitochondrial genomes ensures the efficient functioning of the OXPHOS complexes, with substantial implications in bioenergetics, adaptation, and disease. Their interaction is a fascinating and complex trait of the eukaryotic cell that MitImpact explores with its third major release. MitImpact expands its collection of genomic, clinical, and functional annotations of all non-synonymous substitutions of the human mitochondrial genome with new information on putative Compensated Pathogenic Deviations and co-varying amino acid sites of the Respiratory Chain subunits. It further provides evidence of energetic and structural residue compensation by techniques of molecular dynamics simulation. MitImpact is freely accessible at http://mitimpact.css-mendel.it.


Asunto(s)
Proteínas del Complejo de Cadena de Transporte de Electrón/química , Mitocondrias/genética , Enfermedades Mitocondriales/genética , Proteínas Mitocondriales/química , Subunidades de Proteína/química , Programas Informáticos , Sustitución de Aminoácidos , Animales , Cetáceos , Transporte de Electrón , Proteínas del Complejo de Cadena de Transporte de Electrón/genética , Proteínas del Complejo de Cadena de Transporte de Electrón/metabolismo , Ontología de Genes , Humanos , Internet , Mitocondrias/metabolismo , Mitocondrias/patología , Enfermedades Mitocondriales/metabolismo , Enfermedades Mitocondriales/patología , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Modelos Moleculares , Anotación de Secuencia Molecular , Mutación , Fosforilación Oxidativa , Primates , Dominios y Motivos de Interacción de Proteínas , Estructura Secundaria de Proteína , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , Roedores
4.
Int J Mol Sci ; 24(9)2023 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-37175633

RESUMEN

Genetic susceptibility may influence ischemic heart disease (IHD) predisposition and affect coronary blood flow (CBF) regulation mechanisms. The aim of this study was to investigate the association among single nucleotide polymorphisms (SNPs) of genes encoding for proteins involved in CBF regulation and IHD. A total of 468 consecutive patients were enrolled and divided into three groups according to coronary angiography and intracoronary functional tests results: G1, patients with coronary artery disease (CAD); G2, patients with coronary microvascular dysfunction (CMD); and G3, patients with angiographic and functionally normal coronary arteries. A genetic analysis of the SNPs rs5215 of the potassium inwardly rectifying channel subfamily J member 11 (KCNJ11) gene and rs1799983 of the nitric oxide synthase 3 (NOS3) gene, respectively encoding for the Kir6.2 subunit of ATP sensitive potassium (KATP) channels and nitric oxide synthase (eNOS), was performed on peripheral whole blood samples. A significant association of rs5215_G/G of KCNJ11 and rs1799983_T/T of NOS3 genes was detected in healthy controls compared with CAD and CMD patients. Based on univariable and multivariable analyses, the co-presence of rs5215_G/G of KCNJ11 and rs1799983_T/T of NOS3 may represent an independent protective factor against IHD, regardless of cardiovascular risk factors. This study supports the hypothesis that SNP association may influence the crosstalk between eNOS and the KATP channel that provides a potential protective effect against IHD.


Asunto(s)
Enfermedad de la Arteria Coronaria , Isquemia Miocárdica , Humanos , Adenosina Trifosfato , Enfermedad de la Arteria Coronaria/genética , Predisposición Genética a la Enfermedad , Isquemia Miocárdica/genética , Óxido Nítrico Sintasa/genética , Óxido Nítrico Sintasa de Tipo III/genética , Óxido Nítrico Sintasa de Tipo III/metabolismo , Polimorfismo de Nucleótido Simple
5.
Hum Mutat ; 43(9): 1201-1215, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35583122

RESUMEN

The recent identification of noncoding variants with pathogenic effects suggests that these variations could underlie a significant number of undiagnosed cases. Several computational methods have been developed to predict the functional impact of noncoding variants, but they exhibit only partial concordance and are not integrated with functional annotation resources, making the interpretation of these variants still challenging. MicroRNAs (miRNAs) are small noncoding RNA molecules that act as fine regulators of gene expression and play crucial functions in several biological processes, such as cell proliferation and differentiation. An increasing number of studies demonstrate a significant impact of miRNA single nucleotide variants (SNVs) both in Mendelian diseases and complex traits. To predict the functional effect of miRNA SNVs, we implemented a new meta-predictor, MiRLog, and we integrated it into a comprehensive database, dbmiR, which includes a precompiled list of all possible miRNA allelic SNVs, providing their biological annotations at nucleotide and miRNA levels. MiRLog and dbmiR were used to explore the genetic variability of miRNAs in 15,708 human genomes included in the gnomAD project, finding several ultra-rare SNVs with a potentially deleterious effect on miRNA biogenesis and function representing putative contributors to human phenotypes.


Asunto(s)
MicroARNs , Secuencia de Bases , Biología Computacional/métodos , Genoma Humano/genética , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Anotación de Secuencia Molecular , Nucleótidos , Polimorfismo de Nucleótido Simple
6.
Mol Psychiatry ; 26(7): 2854-2871, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33664475

RESUMEN

Breastmilk contains bioactive molecules essential for brain and cognitive development. While sialylated human milk oligosaccharides (HMOs) have been implicated in phenotypic programming, their selective role and underlying mechanisms remained elusive. Here, we investigated the long-term consequences of a selective lactational deprivation of a specific sialylated HMO in mice. We capitalized on a knock-out (KO) mouse model (B6.129-St6gal1tm2Jxm/J) lacking the gene responsible for the synthesis of sialyl(alpha2,6)lactose (6'SL), one of the two sources of sialic acid (Neu5Ac) to the lactating offspring. Neu5Ac is involved in the formation of brain structures sustaining cognition. To deprive lactating offspring of 6'SL, we cross-fostered newborn wild-type (WT) pups to KO dams, which provide 6'SL-deficient milk. To test whether lactational 6'SL deprivation affects cognitive capabilities in adulthood, we assessed attention, perseveration, and memory. To detail the associated endophenotypes, we investigated hippocampal electrophysiology, plasma metabolomics, and gut microbiota composition. To investigate the underlying molecular mechanisms, we assessed gene expression (at eye-opening and in adulthood) in two brain regions mediating executive functions and memory (hippocampus and prefrontal cortex, PFC). Compared to control mice, WT offspring deprived of 6'SL during lactation exhibited consistent alterations in all cognitive functions addressed, hippocampal electrophysiology, and in pathways regulating the serotonergic system (identified through gut microbiota and plasma metabolomics). These were associated with a site- (PFC) and time-specific (eye-opening) reduced expression of genes involved in central nervous system development. Our data suggest that 6'SL in maternal milk adjusts cognitive development through a short-term upregulation of genes modulating neuronal patterning in the PFC.


Asunto(s)
Lactancia , Leche Humana , Animales , Cognición , Femenino , Lactosa , Ratones , Oligosacáridos
7.
Am J Hum Genet ; 103(4): 621-630, 2018 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-30290154

RESUMEN

Aberrant activation or inhibition of potassium (K+) currents across the plasma membrane of cells has been causally linked to altered neurotransmission, cardiac arrhythmias, endocrine dysfunction, and (more rarely) perturbed developmental processes. The K+ channel subfamily K member 4 (KCNK4), also known as TRAAK (TWIK-related arachidonic acid-stimulated K+ channel), belongs to the mechano-gated ion channels of the TRAAK/TREK subfamily of two-pore-domain (K2P) K+ channels. While K2P channels are well known to contribute to the resting membrane potential and cellular excitability, their involvement in pathophysiological processes remains largely uncharacterized. We report that de novo missense mutations in KCNK4 cause a recognizable syndrome with a distinctive facial gestalt, for which we propose the acronym FHEIG (facial dysmorphism, hypertrichosis, epilepsy, intellectual disability/developmental delay, and gingival overgrowth). Patch-clamp analyses documented a significant gain of function of the identified KCNK4 channel mutants basally and impaired sensitivity to mechanical stimulation and arachidonic acid. Co-expression experiments indicated a dominant behavior of the disease-causing mutations. Molecular dynamics simulations consistently indicated that mutations favor sealing of the lateral intramembrane fenestration that has been proposed to negatively control K+ flow by allowing lipid access to the central cavity of the channel. Overall, our findings illustrate the pleiotropic effect of dysregulated KCNK4 function and provide support to the hypothesis of a gating mechanism based on the lateral fenestrations of K2P channels.


Asunto(s)
Activación del Canal Iónico/genética , Mutación/genética , Trastornos del Neurodesarrollo/genética , Canales de Potasio/genética , Niño , Preescolar , Femenino , Humanos , Lactante , Masculino , Simulación de Dinámica Molecular
8.
Amino Acids ; 52(4): 597-617, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32185508

RESUMEN

The free D-amino acid, D-aspartate, is abundant in the embryonic brain but significantly decreases after birth. Besides its intracellular occurrence, D-aspartate is also present at extracellular level and acts as an endogenous agonist for NMDA and mGlu5 receptors. These findings suggest that D-aspartate is a candidate signaling molecule involved in neural development, influencing brain morphology and behaviors at adulthood. To address this issue, we generated a knockin mouse model in which the enzyme regulating D-aspartate catabolism, D-aspartate oxidase (DDO), is expressed starting from the zygotic stage, to enable the removal of D-aspartate in prenatal and postnatal life. In line with our strategy, we found a severe depletion of cerebral D-aspartate levels (up to 95%), since the early stages of mouse prenatal life. Despite the loss of D-aspartate content, Ddo knockin mice are viable, fertile, and show normal gross brain morphology at adulthood. Interestingly, early D-aspartate depletion is associated with a selective increase in the number of parvalbumin-positive interneurons in the prefrontal cortex and also with improved memory performance in Ddo knockin mice. In conclusion, the present data indicate for the first time a biological significance of precocious D-aspartate in regulating mouse brain formation and function at adulthood.


Asunto(s)
Encéfalo/embriología , D-Aspartato Oxidasa/metabolismo , Ácido D-Aspártico/deficiencia , Animales , Encéfalo/metabolismo , Cognición , D-Aspartato Oxidasa/genética , Técnicas de Sustitución del Gen , Ácido Glutámico/análisis , Masculino , Ratones , Prueba del Laberinto Acuático de Morris , Prueba de Campo Abierto , Corteza Prefrontal/embriología , Corteza Prefrontal/metabolismo , Serina/análisis
9.
Am J Hum Genet ; 98(4): 772-81, 2016 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-27040692

RESUMEN

Infantile encephalopathies are a group of clinically and biologically heterogeneous disorders for which the genetic basis remains largely unknown. Here, we report a syndromic neonatal encephalopathy characterized by profound developmental disability, severe hypotonia, seizures, diminished respiratory drive requiring mechanical ventilation, brain atrophy, dysgenesis of the corpus callosum, cerebellar vermis hypoplasia, and facial dysmorphism. Biallelic inactivating mutations in TBCK (TBC1-domain-containing kinase) were independently identified by whole-exome sequencing as the cause of this condition in four unrelated families. Matching these families was facilitated by the sharing of phenotypic profiles and WES data in a recently released web-based tool (Geno2MP) that links phenotypic information to rare variants in families with Mendelian traits. TBCK is a putative GTPase-activating protein (GAP) for small GTPases of the Rab family and has been shown to control cell growth and proliferation, actin-cytoskeleton dynamics, and mTOR signaling. Two of the three mutations (c.376C>T [p.Arg126(∗)] and c.1363A>T [p.Lys455(∗)]) are predicted to truncate the protein, and loss of the major TBCK isoform was confirmed in primary fibroblasts from one affected individual. The third mutation, c.1532G>A (p.Arg511His), alters a conserved residue within the TBC1 domain. Structural analysis implicated Arg511 as a required residue for Rab-GAP function, and in silico homology modeling predicted impaired GAP function in the corresponding mutant. These results suggest that loss of Rab-GAP activity is the underlying mechanism of disease. In contrast to other disorders caused by dysregulated mTOR signaling associated with focal or global brain overgrowth, impaired TBCK function results in progressive loss of brain volume.


Asunto(s)
Encefalopatías/genética , Proteínas Activadoras de GTPasa/genética , Proteínas Serina-Treonina Quinasas/genética , Adolescente , Alelos , Secuencia de Aminoácidos , Encefalopatías/diagnóstico , Niño , Preescolar , Cuerpo Calloso/patología , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Datos de Secuencia Molecular , Mutación , Linaje , Conformación Proteica , Transducción de Señal , Serina-Treonina Quinasas TOR/genética , Serina-Treonina Quinasas TOR/metabolismo
10.
Am J Hum Genet ; 99(4): 974-983, 2016 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-27666369

RESUMEN

Tubulinopathies constitute a family of neurodevelopmental/neurodegenerative disorders caused by mutations in several genes encoding tubulin isoforms. Loss-of-function mutations in TBCE, encoding one of the five tubulin-specific chaperones involved in tubulin folding and polymerization, cause two rare neurodevelopmental syndromes, hypoparathyroidism-retardation-dysmorphism and Kenny-Caffey syndrome. Although a missense mutation in Tbce has been associated with progressive distal motor neuronopathy in the pmn/pmn mice, no similar degenerative phenotype has been recognized in humans. We report on the identification of an early-onset and progressive neurodegenerative encephalopathy with distal spinal muscular atrophy resembling the phenotype of pmn/pmn mice and caused by biallelic TBCE mutations, with the c.464T>A (p.Ile155Asn) change occurring at the heterozygous/homozygous state in six affected subjects from four unrelated families originated from the same geographical area in Southern Italy. Western blot analysis of patient fibroblasts documented a reduced amount of TBCE, suggestive of rapid degradation of the mutant protein, similarly to what was observed in pmn/pmn fibroblasts. The impact of TBCE mutations on microtubule polymerization was determined using biochemical fractionation and analyzing the nucleation and growth of microtubules at the centrosome and extracentrosomal sites after treatment with nocodazole. Primary fibroblasts obtained from affected subjects displayed a reduced level of polymerized α-tubulin, similarly to tail fibroblasts of pmn/pmn mice. Moreover, markedly delayed microtubule re-polymerization and abnormal mitotic spindles with disorganized microtubule arrangement were also documented. Although loss of function of TBCE has been documented to impact multiple developmental processes, the present findings provide evidence that hypomorphic TBCE mutations primarily drive neurodegeneration.


Asunto(s)
Encefalopatías/complicaciones , Encefalopatías/genética , Chaperonas Moleculares/genética , Atrofia Muscular Espinal/complicaciones , Atrofia Muscular Espinal/genética , Mutación/genética , Adolescente , Edad de Inicio , Animales , Niño , Femenino , Fibroblastos , Heterocigoto , Homocigoto , Humanos , Lactante , Recién Nacido , Italia , Masculino , Ratones , Microtúbulos/efectos de los fármacos , Microtúbulos/metabolismo , Microtúbulos/patología , Chaperonas Moleculares/metabolismo , Nocodazol/farmacología , Huso Acromático/metabolismo , Huso Acromático/patología , Tubulina (Proteína)/metabolismo , Adulto Joven
11.
Am J Hum Genet ; 96(5): 816-25, 2015 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-25865493

RESUMEN

Transcription factors operate in developmental processes to mediate inductive events and cell competence, and perturbation of their function or regulation can dramatically affect morphogenesis, organogenesis, and growth. We report that a narrow spectrum of amino-acid substitutions within the transactivation domain of the v-maf avian musculoaponeurotic fibrosarcoma oncogene homolog (MAF), a leucine zipper-containing transcription factor of the AP1 superfamily, profoundly affect development. Seven different de novo missense mutations involving conserved residues of the four GSK3 phosphorylation motifs were identified in eight unrelated individuals. The distinctive clinical phenotype, for which we propose the eponym Aymé-Gripp syndrome, is not limited to lens and eye defects as previously reported for MAF/Maf loss of function but includes sensorineural deafness, intellectual disability, seizures, brachycephaly, distinctive flat facial appearance, skeletal anomalies, mammary gland hypoplasia, and reduced growth. Disease-causing mutations were demonstrated to impair proper MAF phosphorylation, ubiquitination and proteasomal degradation, perturbed gene expression in primary skin fibroblasts, and induced neurodevelopmental defects in an in vivo model. Our findings nosologically and clinically delineate a previously poorly understood recognizable multisystem disorder, provide evidence for MAF governing a wider range of developmental programs than previously appreciated, and describe a novel instance of protein dosage effect severely perturbing development.


Asunto(s)
Catarata/genética , Sordera/genética , Glucógeno Sintasa Quinasa 3/genética , Discapacidad Intelectual/genética , Proteínas Proto-Oncogénicas c-maf/genética , Catarata/patología , Síndrome de Down/genética , Síndrome de Down/patología , Humanos , Discapacidad Intelectual/patología , Mutación , Fenotipo , Fosforilación , Convulsiones/genética , Convulsiones/patología
12.
Am J Med Genet A ; 170(7): 1772-9, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27108886

RESUMEN

Whole exome sequencing (WES) is a powerful tool to identify clinically undefined forms of intellectual disability/developmental delay (ID/DD), especially in consanguineous families. Here we report the genetic definition of two sporadic cases, with syndromic ID/DD for whom array-Comparative Genomic Hybridization (aCGH) identified a de novo copy number variant (CNV) of uncertain significance. The phenotypes included microcephaly with brachycephaly and a distinctive facies in one proband, and hypotonia in the legs and mild ataxia in the other. WES allowed identification of a functionally relevant homozygous variant affecting a known disease gene for rare syndromic ID/DD in each proband, that is, c.1423C>T (p.Arg377*) in the Trafficking Protein Particle Complex 9 (TRAPPC9), and c.154T>C (p.Cys52Arg) in the Very Low Density Lipoprotein Receptor (VLDLR). Four mutations affecting TRAPPC9 have been previously reported, and the present finding further depicts this syndromic form of ID, which includes microcephaly with brachycephaly, corpus callosum hypoplasia, facial dysmorphism, and overweight. VLDLR-associated cerebellar hypoplasia (VLDLR-CH) is characterized by non-progressive congenital ataxia and moderate-to-profound intellectual disability. The c.154T>C (p.Cys52Arg) mutation was associated with a very mild form of ataxia, mild intellectual disability, and cerebellar hypoplasia without cortical gyri simplification. In conclusion, we report two novel cases with rare causes of autosomal recessive ID, which document how interpreting de novo array-CGH variants represents a challenge in consanguineous families; as such, clinical WES should be considered in diagnostic testing. © 2016 Wiley Periodicals, Inc.


Asunto(s)
Proteínas Portadoras/genética , Discapacidades del Desarrollo/genética , Discapacidad Intelectual/genética , Receptores de LDL/genética , Ataxia Cerebelosa/genética , Ataxia Cerebelosa/fisiopatología , Cerebelo/anomalías , Cerebelo/fisiopatología , Niño , Preescolar , Hibridación Genómica Comparativa , Discapacidades del Desarrollo/fisiopatología , Exoma/genética , Femenino , Predisposición Genética a la Enfermedad , Humanos , Discapacidad Intelectual/fisiopatología , Péptidos y Proteínas de Señalización Intercelular , Microcefalia/genética , Microcefalia/fisiopatología , Mutación , Malformaciones del Sistema Nervioso/genética , Malformaciones del Sistema Nervioso/fisiopatología , Linaje , Fenotipo
13.
Am J Hum Genet ; 90(1): 161-9, 2012 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-22243968

RESUMEN

Myhre syndrome is a developmental disorder characterized by reduced growth, generalized muscular hypertrophy, facial dysmorphism, deafness, cognitive deficits, joint stiffness, and skeletal anomalies. Here, by performing exome sequencing of a single affected individual and coupling the results to a hypothesis-driven filtering strategy, we establish that heterozygous mutations in SMAD4, which encodes for a transducer mediating transforming growth factor ß and bone morphogenetic protein signaling branches, underlie this rare Mendelian trait. Two recurrent de novo SMAD4 mutations were identified in eight unrelated subjects. Both mutations were missense changes altering Ile500 within the evolutionary conserved MAD homology 2 domain, a well known mutational hot spot in malignancies. Structural analyses suggest that the substituted residues are likely to perturb the binding properties of the mutant protein to signaling partners. Although SMAD4 has been established as a tumor suppressor gene somatically mutated in pancreatic, gastrointestinal, and skin cancers, and germline loss-of-function lesions and deletions of this gene have been documented to cause disorders that predispose individuals to gastrointestinal cancer and vascular dysplasias, the present report identifies a previously unrecognized class of mutations in the gene with profound impact on development and growth.


Asunto(s)
Criptorquidismo/genética , Trastornos del Crecimiento/genética , Deformidades Congénitas de la Mano/genética , Hipertrofia/genética , Discapacidad Intelectual/genética , Artropatías/genética , Mutación Missense , Proteína Smad4/genética , Adolescente , Adulto , Secuencia de Bases , Preescolar , Exoma/genética , Facies , Femenino , Humanos , Masculino , Datos de Secuencia Molecular , Transducción de Señal/genética
14.
J Am Soc Nephrol ; 25(9): 1942-53, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24676634

RESUMEN

FSGS is characterized by the presence of partial sclerosis of some but not all glomeruli. Studies of familial FSGS have been instrumental in identifying podocytes as critical elements in maintaining glomerular function, but underlying mutations have not been identified for all forms of this genetically heterogeneous condition. Here, exome sequencing in members of an index family with dominant FSGS revealed a nonconservative, disease-segregating variant in the PAX2 transcription factor gene. Sequencing in probands of a familial FSGS cohort revealed seven rare and private heterozygous single nucleotide substitutions (4% of individuals). Further sequencing revealed seven private missense variants (8%) in a cohort of individuals with congenital abnormalities of the kidney and urinary tract. As predicted by in silico structural modeling analyses, in vitro functional studies documented that several of the FSGS-associated PAX2 mutations perturb protein function by affecting proper binding to DNA and transactivation activity or by altering the interaction of PAX2 with repressor proteins, resulting in enhanced repressor activity. Thus, mutations in PAX2 may contribute to adult-onset FSGS in the absence of overt extrarenal manifestations. These results expand the phenotypic spectrum associated with PAX2 mutations, which have been shown to lead to congenital abnormalities of the kidney and urinary tract as part of papillorenal syndrome. Moreover, these results indicate PAX2 mutations can cause disease through haploinsufficiency and dominant negative effects, which could have implications for tailoring individualized drug therapy in the future.


Asunto(s)
Glomeruloesclerosis Focal y Segmentaria/genética , Mutación , Factor de Transcripción PAX2/genética , Adolescente , Adulto , Edad de Inicio , Anciano , Secuencia de Aminoácidos , Secuencia de Bases , Estudios de Cohortes , Simulación por Computador , Secuencia Conservada , Análisis Mutacional de ADN , Exoma , Femenino , Glomeruloesclerosis Focal y Segmentaria/metabolismo , Glomeruloesclerosis Focal y Segmentaria/patología , Humanos , Masculino , Persona de Mediana Edad , Modelos Moleculares , Datos de Secuencia Molecular , Mutación Missense , Factor de Transcripción PAX2/química , Factor de Transcripción PAX2/metabolismo , Linaje , Polimorfismo de Nucleótido Simple , Conformación Proteica , Electricidad Estática , Anomalías Urogenitales , Reflujo Vesicoureteral/genética , Adulto Joven
15.
Am J Med Genet A ; 164A(7): 1835-40, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24715504

RESUMEN

Myhre syndrome (MYHRS, OMIM 139210) is an autosomal dominant disorder characterized by developmental and growth delay, athletic muscular built, variable cognitive deficits, skeletal anomalies, stiffness of joints, distinctive facial gestalt and deafness. Recently, SMAD4 (OMIM 600993) was identified by exome sequencing as the disease gene mutated in MYHRS. Previously only three missense mutations affecting Ile500 (p.Ile500Thr, p.Ile500Val, and p.Ile500Met) have been described in 22 unrelated subjects with MYHRS or a clinically related phenotype. Here we report on a 15-year-old boy with typical MYHRS and a novel heterozygous SMAD4 missense mutation affecting residue Arg496. This finding provides further information about the distinctive SMAD4 mutation spectrum in MYHRS. In silico structural analyses exploring the impact of the Arg-to-Cys change at codon 496 suggested that conformational changes promoted by replacement of Arg496 impact the stability of the SMAD heterotrimer and/or proper SMAD4 ubiquitination.


Asunto(s)
Criptorquidismo/diagnóstico , Criptorquidismo/genética , Estudios de Asociación Genética , Trastornos del Crecimiento/diagnóstico , Trastornos del Crecimiento/genética , Deformidades Congénitas de la Mano/diagnóstico , Deformidades Congénitas de la Mano/genética , Hipertrofia/diagnóstico , Hipertrofia/genética , Discapacidad Intelectual/diagnóstico , Discapacidad Intelectual/genética , Artropatías/diagnóstico , Artropatías/genética , Mutación , Proteína Smad4/genética , Preescolar , Codón , Facies , Humanos , Masculino , Modelos Moleculares , Fenotipo , Conformación Proteica , Multimerización de Proteína , Estabilidad Proteica , Análisis de Secuencia de ADN , Proteína Smad4/química
16.
J Med Genet ; 50(8): 493-9, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23687348

RESUMEN

BACKGROUND: Kaufman oculocerebrofacial syndrome (KOS) is a developmental disorder characterised by reduced growth, microcephaly, ocular anomalies (microcornea, strabismus, myopia, and pale optic disk), distinctive facial features (narrow palpebral fissures, telecanthus, sparse and laterally broad eyebrows, preauricular tags, and micrognathia), mental retardation, and generalised hypotonia. KOS is a rare, possibly underestimated condition, with fewer than 10 cases reported to date. Here we investigate the molecular cause underlying KOS. METHODS: An exome sequencing approach was used on a single affected individual of an Italian consanguineous family coupled with mutation scanning using Sanger sequencing on a second unrelated subject with clinical features fitting the disorder. RESULTS: Exome sequencing was able to identify homozygosity for a novel truncating mutation (c.556C>T, p.Arg186stop) in UBE3B, which encodes a widely expressed HECT (homologous to the E6-AP carboxyl terminus) domain E3 ubiquitin-protein ligase. Homozygosity for a different nonsense lesion affecting the gene (c.1166G>A, p.Trp389stop) was documented in the second affected subject, supporting the recessive mode of inheritance of the disorder. Mutation scanning of the entire UBE3B coding sequence on a selected cohort of subjects with features overlapping, in part, those recurring in KOS did not reveal disease-causing mutations, suggesting phenotypic homogeneity of UBE3B lesions. DISCUSSION: Our data provide evidence that KOS is caused by UBE3B loss of function, and further demonstrate the impact of misregulation of protein ubiquitination on development and growth. The available clinical records, including those referring to four UBE3B mutation-positive subjects recently described as belonging to a previously unreported entity, which fits KOS, document the clinical homogeneity of this disorder.


Asunto(s)
Anomalías del Ojo/enzimología , Anomalías del Ojo/genética , Discapacidad Intelectual/enzimología , Discapacidad Intelectual/genética , Deformidades Congénitas de las Extremidades/enzimología , Deformidades Congénitas de las Extremidades/genética , Microcefalia/enzimología , Microcefalia/genética , Ubiquitina-Proteína Ligasas/genética , Secuencia de Bases , Niño , Exoma , Facies , Femenino , Homocigoto , Humanos , Masculino , Datos de Secuencia Molecular , Mutación , Linaje
17.
Gene ; 915: 148422, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38570058

RESUMEN

The surge in human whole-genome sequencing data has facilitated the study of non-coding region variations, yet understanding their biological significance remains a challenge. We used a computational workflow to assess the regulatory potential of non-coding variants, with a particular focus on the Angiotensin Converting Enzyme 2 (ACE2) gene. This gene is crucial in physiological processes and serves as the entry point for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus causing coronavirus disease 19 (COVID-19). In our analysis, using data from the gnomAD population database and functional annotation, we identified 17 significant Single Nucleotide Variants (SNVs) in ACE2, particularly in its enhancers, promoters, and 3' untranslated regions (UTRs). We found preliminary evidence supporting the regulatory impact of some of these variants on ACE2 expression. Our detailed examination of two SNVs, rs147718775 and rs140394675, in the ACE2 promoter revealed that these co-occurring SNVs, when mutated, significantly enhance promoter activity, suggesting a possible increase in specific ACE2 isoform expression. This method proves effective in identifying and interpreting impactful non-coding variants, aiding in further studies and enhancing understanding of molecular bases of monogenic and complex traits.


Asunto(s)
Enzima Convertidora de Angiotensina 2 , COVID-19 , Polimorfismo de Nucleótido Simple , Regiones Promotoras Genéticas , SARS-CoV-2 , Enzima Convertidora de Angiotensina 2/genética , Enzima Convertidora de Angiotensina 2/metabolismo , Humanos , COVID-19/genética , COVID-19/virología , SARS-CoV-2/genética , Regiones no Traducidas 3'/genética , Variación Genética
18.
Am J Hum Genet ; 87(2): 250-7, 2010 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-20619386

RESUMEN

RAS signaling plays a key role in controlling appropriate cell responses to extracellular stimuli and participates in early and late developmental processes. Although enhanced flow through this pathway has been established as a major contributor to oncogenesis, recent discoveries have revealed that aberrant RAS activation causes a group of clinically related developmental disorders characterized by facial dysmorphism, a wide spectrum of cardiac disease, reduced growth, variable cognitive deficits, ectodermal and musculoskeletal anomalies, and increased risk for certain malignancies. Here, we report that heterozygous germline mutations in CBL, a tumor-suppressor gene that is mutated in myeloid malignancies and encodes a multivalent adaptor protein with E3 ubiquitin ligase activity, can underlie a phenotype with clinical features fitting or partially overlapping Noonan syndrome (NS), the most common condition of this disease family. Independent CBL mutations were identified in two sporadic cases and two families from among 365 unrelated subjects who had NS or suggestive features and were negative for mutations in previously identified disease genes. Phenotypic heterogeneity and variable expressivity were documented. Mutations were missense changes altering evolutionarily conserved residues located in the RING finger domain or the linker connecting this domain to the N-terminal tyrosine kinase binding domain, a known mutational hot spot in myeloid malignancies. Mutations were shown to affect CBL-mediated receptor ubiquitylation and dysregulate signal flow through RAS. These findings document that germline mutations in CBL alter development to cause a clinically variable condition that resembles NS and that possibly predisposes to malignancies.


Asunto(s)
Mutación de Línea Germinal/genética , Heterocigoto , Síndrome de Noonan/genética , Proteínas Proto-Oncogénicas c-cbl/genética , Proteínas Supresoras de Tumor/genética , Sustitución de Aminoácidos/genética , Secuencia de Bases , Análisis Mutacional de ADN , Femenino , Humanos , Masculino , Datos de Secuencia Molecular , Proteínas Mutantes/genética , Fenotipo
19.
Front Cell Neurosci ; 17: 1091890, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36794260

RESUMEN

Breast milk (BM) is the optimal source of nutrition for mammals' early life. It exerts multiple benefits, including the development of cognitive capabilities and protection against several diseases like obesity and infection of the respiratory tract. However, which components of BM are involved in individual development has remained elusive. Sialylated human milk oligosaccharides (HMOs) may constitute a valid candidate, whereby they represent the principal source of sialic acid and act as building blocks for brain development. We hypothesize that the reduced availability of two HMOs, sialyl(alpha2,6)lactose (6'SL) and sialyl(alpha2,3)lactose (3'SL), may impair attention, cognitive flexibility, and memory in a preclinical model and that the exogenous supplementation of these compounds may contrast the observed deficits. We evaluated cognitive capabilities in a preclinical model exposed to maternal milk containing reduced concentrations of 6'SL and 3'SL during lactation. To modulate their concentrations, we utilized a preclinical model characterized by the absence of genes that synthesize 3'SL and 6'SL (B6.129-St3gal4 tm1.1Jxm and St6gal1tm2Jxm , double genetic deletion), producing milk lacking 3'SL and 6'SL. Then, to ensure exposure to 3'SL-6'SL-poor milk in early life, we adopted a cross-fostering protocol. The outcomes assessed in adulthood were different types of memory, attention and information processing, some of which are part of executive functions. Then, in the second study, we evaluated the long-term compensatory potential of the exogenous oral supplementation of 3'SL and 6'SL during lactation. In the first study, exposure to HMO-poor milk resulted in reduced memory and attention. Specifically, it resulted in impaired working memory in the T-maze test, in reduced spatial memory in the Barnes maze, and in impaired attentional capabilities in the Attentional set-shifting task. In the second part of the study, we did not observe any difference between experimental groups. We hypothesize that the experimental procedures utilized for the exogenous supplementation may have impacted our ability to observe the cognitive read-out in vivo. This study suggests that early life dietary sialylated HMOs play a crucial role in the development of cognitive functions. Future studies are needed to clarify if an exogenous supplementation of these oligosaccharides may compensate for these affected phenotypes.

20.
Nat Commun ; 14(1): 5058, 2023 08 19.
Artículo en Inglés | MEDLINE | ID: mdl-37598215

RESUMEN

Mitochondrial dysfunction has pleiotropic effects and is frequently caused by mitochondrial DNA mutations. However, factors such as significant variability in clinical manifestations make interpreting the pathogenicity of variants in the mitochondrial genome challenging. Here, we present APOGEE 2, a mitochondrially-centered ensemble method designed to improve the accuracy of pathogenicity predictions for interpreting missense mitochondrial variants. Built on the joint consensus recommendations by the American College of Medical Genetics and Genomics/Association for Molecular Pathology, APOGEE 2 features an improved machine learning method and a curated training set for enhanced performance metrics. It offers region-wise assessments of genome fragility and mechanistic analyses of specific amino acids that cause perceptible long-range effects on protein structure. With clinical and research use in mind, APOGEE 2 scores and pathogenicity probabilities are precompiled and available in MitImpact. APOGEE 2's ability to address challenges in interpreting mitochondrial missense variants makes it an essential tool in the field of mitochondrial genetics.


Asunto(s)
Aminoácidos , Mutación Missense , Humanos , Mutación , Aprendizaje Automático , Mitocondrias/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA