RESUMEN
The roof plate-specific spondin-leucine-rich repeat-containing G-protein coupled receptor 4/5 (LGR4/5)-zinc and ring finger 3 (ZNRF3)/ring finger protein 43 (RNF43) module is a master regulator of hepatic Wnt/ß-catenin signaling and metabolic zonation. However, its impact on nonalcoholic fatty liver disease (NAFLD) remains unclear. The current study investigated whether hepatic epithelial cell-specific loss of the Wnt/ß-catenin modulator Lgr4/5 promoted NAFLD. The 3- and 6-month-old mice with hepatic epithelial cell-specific deletion of both receptors Lgr4/5 (Lgr4/5dLKO) were compared with control mice fed with normal diet (ND) or high-fat diet (HFD). Six-month-old HFD-fed Lgr4/5dLKO mice developed hepatic steatosis and fibrosis but the control mice did not. Serum cholesterol-high-density lipoprotein and total cholesterol levels in 3- and 6-month-old HFD-fed Lgr4/5dLKO mice were decreased compared with those in control mice. An ex vivo primary hepatocyte culture assay and a comprehensive bile acid (BA) characterization in liver, plasma, bile, and feces demonstrated that ND-fed Lgr4/5dLKO mice had impaired BA secretion, predisposing them to develop cholestatic characteristics. Lipidome and RNA-sequencing analyses demonstrated severe alterations in several lipid species and pathways controlling lipid metabolism in the livers of Lgr4/5dLKO mice. In conclusion, loss of hepatic Wnt/ß-catenin activity by Lgr4/5 deletion led to loss of BA secretion, cholestatic features, altered lipid homeostasis, and deregulation of lipoprotein pathways. Both BA and intrinsic lipid alterations contributed to the onset of NAFLD.
Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Animales , Ratones , Enfermedad del Hígado Graso no Alcohólico/metabolismo , beta Catenina/metabolismo , Leucina/metabolismo , Hígado/metabolismo , Colesterol/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Ratones Endogámicos C57BL , Dieta Alta en Grasa/efectos adversosRESUMEN
A limited understanding of the pathology underlying chronic wounds has hindered the development of effective diagnostic markers and pharmaceutical interventions. This study aimed to elucidate the molecular composition of various common chronic ulcer types to facilitate drug discovery strategies. We conducted a comprehensive analysis of leg ulcers (LUs), encompassing venous and arterial ulcers, foot ulcers (FUs), pressure ulcers (PUs), and compared them with surgical wound healing complications (WHCs). To explore the pathophysiological mechanisms and identify similarities or differences within wounds, we dissected wounds into distinct subregions, including the wound bed, border, and peri-wound areas, and compared them against intact skin. By correlating histopathology, RNA sequencing (RNA-Seq), and immunohistochemistry (IHC), we identified unique genes, pathways, and cell type abundance patterns in each wound type and subregion. These correlations aim to aid clinicians in selecting targeted treatment options and informing the design of future preclinical and clinical studies in wound healing. Notably, specific genes, such as PITX1 and UPP1, exhibited exclusive upregulation in LUs and FUs, potentially offering significant benefits to specialists in limb preservation and clinical treatment decisions. In contrast, comparisons between different wound subregions, regardless of wound type, revealed distinct expression profiles. The pleiotropic chemokine-like ligand GPR15L (C10orf99) and transmembrane serine proteases TMPRSS11A/D were significantly upregulated in wound border subregions. Interestingly, WHCs exhibited a nearly identical transcriptome to PUs, indicating clinical relevance. Histological examination revealed blood vessel occlusions with impaired angiogenesis in chronic wounds, alongside elevated expression of genes and immunoreactive markers related to blood vessel and lymphatic epithelial cells in wound bed subregions. Additionally, inflammatory and epithelial markers indicated heightened inflammatory responses in wound bed and border subregions and reduced wound bed epithelialization. In summary, chronic wounds from diverse anatomical sites share common aspects of wound pathophysiology but also exhibit distinct molecular differences. These unique molecular characteristics present promising opportunities for drug discovery and treatment, particularly for patients suffering from chronic wounds. The identified diagnostic markers hold the potential to enhance preclinical and clinical trials in the field of wound healing.
Asunto(s)
Pie Diabético , Úlcera de la Pierna , Úlcera por Presión , Traumatismos de los Tejidos Blandos , Humanos , Úlcera por Presión/genética , Úlcera por Presión/terapia , Pie Diabético/terapia , Úlcera de la Pierna/terapia , Expresión Génica , SupuraciónRESUMEN
Although most acute skin wounds heal rapidly, non-healing skin ulcers represent an increasing and substantial unmet medical need that urgently requires effective therapeutics. Keratinocytes resurface wounds to re-establish the epidermal barrier by transitioning to an activated, migratory state, but this ability is lost in dysfunctional chronic wounds. Small-molecule regulators of keratinocyte plasticity with the potential to reverse keratinocyte malfunction in situ could offer a novel therapeutic approach in skin wound healing. Utilizing high-throughput phenotypic screening of primary keratinocytes, we identify such small molecules, including bromodomain and extra-terminal domain (BET) protein family inhibitors (BETi). BETi induce a sustained activated, migratory state in keratinocytes in vitro, increase activation markers in human epidermis ex vivo and enhance skin wound healing in vivo. Our findings suggest potential clinical utility of BETi in promoting keratinocyte re-epithelialization of skin wounds. Importantly, this novel property of BETi is exclusively observed after transient low-dose exposure, revealing new potential for this compound class.
Asunto(s)
Proteínas de Ciclo Celular/genética , Epidermis/efectos de los fármacos , Repitelización/efectos de los fármacos , Úlcera Cutánea/tratamiento farmacológico , Bibliotecas de Moléculas Pequeñas/farmacología , Factores de Transcripción/genética , Heridas no Penetrantes/tratamiento farmacológico , Animales , Proteínas de Ciclo Celular/antagonistas & inhibidores , Proteínas de Ciclo Celular/metabolismo , Modelos Animales de Enfermedad , Epidermis/metabolismo , Epidermis/patología , Transferencia Resonante de Energía de Fluorescencia , Regulación de la Expresión Génica , Ensayos Analíticos de Alto Rendimiento , Humanos , Queratinocitos/efectos de los fármacos , Queratinocitos/metabolismo , Queratinocitos/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Cultivo Primario de Células , Isoformas de Proteínas/antagonistas & inhibidores , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Precursores de Proteínas/antagonistas & inhibidores , Precursores de Proteínas/genética , Precursores de Proteínas/metabolismo , Repitelización/genética , Úlcera Cutánea/genética , Úlcera Cutánea/metabolismo , Úlcera Cutánea/patología , Bibliotecas de Moléculas Pequeñas/química , Relación Estructura-Actividad , Factores de Transcripción/antagonistas & inhibidores , Factores de Transcripción/metabolismo , Transcripción Genética , Heridas no Penetrantes/genética , Heridas no Penetrantes/metabolismo , Heridas no Penetrantes/patologíaRESUMEN
The post-genomic era has seen many advances in our understanding of cancer pathways, yet resistance and tumor heterogeneity necessitate multiple approaches to target even monogenic tumors. Here, we combine phenotypic screening with chemical genetics to identify pre-messenger RNA endonuclease cleavage and polyadenylation specificity factor 3 (CPSF3) as the target of JTE-607, a small molecule with previously unknown target. We show that CPSF3 represents a synthetic lethal node in a subset of acute myeloid leukemia (AML) and Ewing's sarcoma cancer cell lines. Inhibition of CPSF3 by JTE-607 alters expression of known downstream effectors in AML and Ewing's sarcoma lines, upregulates apoptosis and causes tumor-selective stasis in mouse xenografts. Mechanistically, it prevents the release of newly synthesized pre-mRNAs, resulting in read-through transcription and the formation of DNA-RNA hybrid R-loop structures. This study implicates pre-mRNA processing, and specifically CPSF3, as a druggable target providing an avenue to therapeutic intervention in cancer.
Asunto(s)
Factor de Especificidad de Desdoblamiento y Poliadenilación/metabolismo , Leucemia Mieloide Aguda/metabolismo , Precursores del ARN/metabolismo , Sarcoma de Ewing/metabolismo , Animales , Apoptosis/efectos de los fármacos , Sitios de Unión , Hidrolasas de Éster Carboxílico/metabolismo , Línea Celular Tumoral , Supervivencia Celular , Factor de Especificidad de Desdoblamiento y Poliadenilación/genética , Células HEK293 , Humanos , Leucemia Mieloide Aguda/tratamiento farmacológico , Masculino , Espectrometría de Masas , Ratones , Ratones Endogámicos C57BL , Trasplante de Neoplasias , Fenotipo , Fenilalanina/análogos & derivados , Fenilalanina/farmacología , Piperazinas/farmacología , Unión Proteica , ARN Mensajero/metabolismo , ARN Interferente Pequeño/metabolismo , Sarcoma de Ewing/tratamiento farmacológicoRESUMEN
An amendment to this paper has been published and can be accessed via a link at the top of the paper.
RESUMEN
PARKIN, an E3 ligase mutated in familial Parkinson's disease, promotes mitophagy by ubiquitinating mitochondrial proteins for efficient engagement of the autophagy machinery. Specifically, PARKIN-synthesized ubiquitin chains represent targets for the PINK1 kinase generating phosphoS65-ubiquitin (pUb), which constitutes the mitophagy signal. Physiological regulation of PARKIN abundance, however, and the impact on pUb accumulation are poorly understood. Using cells designed to discover physiological regulators of PARKIN abundance, we performed a pooled genome-wide CRISPR/Cas9 knockout screen. Testing identified genes individually resulted in a list of 53 positive and negative regulators. A transcriptional repressor network including THAP11 was identified and negatively regulates endogenous PARKIN abundance. RNAseq analysis revealed the PARKIN-encoding locus as a prime THAP11 target, and THAP11 CRISPR knockout in multiple cell types enhanced pUb accumulation. Thus, our work demonstrates the critical role of PARKIN abundance, identifies regulating genes, and reveals a link between transcriptional repression and mitophagy, which is also apparent in human induced pluripotent stem cell-derived neurons, a disease-relevant cell type.
Asunto(s)
Sistemas CRISPR-Cas , Regulación de la Expresión Génica , Genoma Humano/genética , Mitofagia/genética , Proteínas Represoras/genética , Ubiquitina-Proteína Ligasas/genética , Línea Celular Tumoral , Células Cultivadas , Células HCT116 , Células HEK293 , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Recién Nacido , Neuronas/metabolismo , Fosforilación , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Proteínas Represoras/metabolismo , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligasas/metabolismoRESUMEN
BACKGROUND: RNA-sequencing (RNA-seq) has emerged as one of the most sensitive tool for gene expression analysis. Among the library preparation methods available, the standard poly(A) + enrichment provides a comprehensive, detailed, and accurate view of polyadenylated RNAs. However, on samples of suboptimal quality ribosomal RNA depletion and exon capture methods have recently been reported as better alternatives. METHODS: We compared for the first time three commercial Illumina library preparation kits (TruSeq Stranded mRNA, TruSeq Ribo-Zero rRNA Removal, and TruSeq RNA Access) as representatives of these three different approaches using well-established human reference RNA samples from the MAQC/SEQC consortium on a wide range of input amounts (from 100 ng down to 1 ng) and degradation levels (intact, degraded, and highly degraded). RESULTS: We assessed the accuracy of the generated expression values by comparison to gold standard TaqMan qPCR measurements and gained unprecedented insight into the limits of applicability in terms of input quantity and sample quality of each protocol. We found that each protocol generates highly reproducible results (R 2 > 0.92) on intact RNA samples down to input amounts of 10 ng. For degraded RNA samples, Ribo-Zero showed clear performance advantages over the other two protocols as it generated more accurate and better reproducible gene expression results even at very low input amounts such as 1 ng and 2 ng. For highly degraded RNA samples, RNA Access performed best generating reliable data down to 5 ng input. CONCLUSIONS: We found that the ribosomal RNA depletion protocol from Illumina works very well at amounts far below recommendation and over a good range of intact and degraded material. We also infer that the exome-capture protocol (RNA Access, Illumina) performs better than other methods on highly degraded and low amount samples.
Asunto(s)
Análisis de Secuencia de ARN/métodos , Humanos , Control de Calidad , Estabilidad del ARN , ARN Mensajero/química , ARN Mensajero/genética , ARN Mensajero/metabolismo , Alineación de Secuencia , Polimerasa Taq/metabolismoRESUMEN
BACKGROUND: Genome-wide CRISPR-Cas9 dropout screens can identify genes whose knockout affects cell viability. Recent CRISPR screens detected thousands of essential genes required for cellular survival and key cellular processes; however discovering novel lineage-specific genetic dependencies from the many hits still remains a challenge. RESULTS: To assess whether CRISPR-Cas9 dropout screens can help identify cancer dependencies, we screened two human cancer cell lines carrying known and distinct oncogenic mutations using a genome-wide sgRNA library. We found that the gRNA targeting the driver mutation EGFR was one of the highest-ranking candidates in the EGFR-mutant HCC-827 lung adenocarcinoma cell line. Likewise, sgRNAs for NRAS and MAP2K1 (MEK1), a downstream kinase of mutant NRAS, were identified among the top hits in the NRAS-mutant neuroblastoma cell line CHP-212. Depletion of these genes targeted by the sgRNAs strongly correlated with the sensitivity to specific kinase inhibitors of the EGFR or RAS pathway in cell viability assays. In addition, we describe other dependencies such as TBK1 in HCC-827 cells and TRIB2 in CHP-212 cells which merit further investigation. CONCLUSIONS: We show that genome-wide CRISPR dropout screens are suitable for the identification of oncogenic drivers and other essential genes.
Asunto(s)
Sistemas CRISPR-Cas , Transformación Celular Neoplásica/genética , Estudio de Asociación del Genoma Completo , Mutación , Oncogenes , Proteínas Quinasas Dependientes de Calcio-Calmodulina/metabolismo , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/genética , Ensayos de Selección de Medicamentos Antitumorales , Técnicas de Inactivación de Genes , Humanos , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Fenotipo , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Serina-Treonina Quinasas/metabolismo , ARN Guía de Kinetoplastida/genéticaRESUMEN
We present FLASH-seq (FS), a full-length single-cell RNA sequencing (scRNA-seq) method with increased sensitivity and reduced hands-on time compared to Smart-seq3. The entire FS protocol can be performed in ~4.5 hours, is simple to automate and can be easily miniaturized to decrease resource consumption. The FS protocol can also use unique molecular identifiers (UMIs) for molecule counting while displaying reduced strand-invasion artifacts. FS will be especially useful for characterizing gene expression at high resolution across multiple samples.
Asunto(s)
ARN , Análisis de la Célula Individual , Perfilación de la Expresión Génica/métodos , ARN/genética , Análisis de Secuencia de ARN/métodos , Análisis de la Célula Individual/métodos , Secuenciación del ExomaRESUMEN
Human organoids allow the study of proliferation, lineage specification, and 3D tissue development. Here we present a genome-wide CRISPR screen in induced pluripotent stem cell (iPSC)-derived kidney organoids. The combination of inducible genome editing, longitudinal sampling, and endpoint sorting of tubular and stromal cells generated a complex, high-quality dataset uncovering a broad spectrum of insightful biology from early development to "adult" epithelial morphogenesis. Our functional dataset allows improving mesoderm induction by ROCK inhibition, contains monogenetic and complex trait kidney disease genes, confirms two additional congenital anomalies of the kidney and urinary tract (CAKUT) genes (CCDC170 and MYH7B), and provides a large candidate list of ciliopathy-related genes. Finally, identification of a cis-inhibitory effect of Jagged1 controlling epithelial proliferation shows how mosaic knockouts in pooled CRISPR screening can reveal ways of communication between heterogeneous cell populations in complex tissues. These data serve as a rich resource for the kidney research community and as a benchmark for future iPSC-derived organoid CRISPR screens.
Asunto(s)
Células Madre Pluripotentes Inducidas , Organoides , Edición Génica , Humanos , Riñón , OrganogénesisRESUMEN
BACKGROUND & AIMS: Liver fibrosis is a multifactorial trait that develops in response to chronic liver injury. Our aim was to characterize the genetic architecture of carbon tetrachloride (CCl4)-induced liver fibrosis using the Hybrid Mouse Diversity Panel, a panel of more than 100 genetically distinct mouse strains optimized for genome-wide association studies and systems genetics. METHODS: Chronic liver injury was induced by CCl4 injections twice weekly for 6 weeks. Four hundred thirty-seven mice received CCl4 and 256 received vehicle, after which animals were euthanized for liver histology and gene expression. Using automated digital image analysis, we quantified fibrosis as the collagen proportionate area of the whole section, excluding normal collagen. RESULTS: We discovered broad variation in fibrosis among the Hybrid Mouse Diversity Panel strains, demonstrating a significant genetic influence. Genome-wide association analyses revealed significant and suggestive loci underlying susceptibility to fibrosis, some of which overlapped with loci identified in mouse crosses and human population studies. Liver global gene expression was assessed by RNA sequencing across the strains, and candidate genes were identified using differential expression and expression quantitative trait locus analyses. Gene set enrichment analyses identified the underlying pathways, of which stellate cell involvement was prominent, and coexpression network modeling identified modules associated with fibrosis. CONCLUSIONS: Our results provide a rich resource for the design of experiments to understand mechanisms underlying fibrosis and for rational strain selection when testing antifibrotic drugs.
Asunto(s)
Tetracloruro de Carbono/toxicidad , Redes Reguladoras de Genes/efectos de los fármacos , Predisposición Genética a la Enfermedad , Cirrosis Hepática/inducido químicamente , Hígado/patología , Animales , Tetracloruro de Carbono/administración & dosificación , Modelos Animales de Enfermedad , Estudio de Asociación del Genoma Completo , Humanos , Inyecciones Intraperitoneales , Hígado/efectos de los fármacos , Cirrosis Hepática/genética , Cirrosis Hepática/patología , Masculino , Ratones , Sitios de Carácter CuantitativoRESUMEN
Millions of putative transcriptional regulatory elements (TREs) have been cataloged in the human genome, yet their functional relevance in specific pathophysiological settings remains to be determined. This is critical to understand how oncogenic transcription factors (TFs) engage specific TREs to impose transcriptional programs underlying malignant phenotypes. Here, we combine cutting edge CRISPR screens and epigenomic profiling to functionally survey ≈15,000 TREs engaged by estrogen receptor (ER). We show that ER exerts its oncogenic role in breast cancer by engaging TREs enriched in GATA3, TFAP2C, and H3K27Ac signal. These TREs control critical downstream TFs, among which TFAP2C plays an essential role in ER-driven cell proliferation. Together, our work reveals novel insights into a critical oncogenic transcription program and provides a framework to map regulatory networks, enabling to dissect the function of the noncoding genome of cancer cells.
Asunto(s)
Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Redes Reguladoras de Genes , Carcinogénesis/genética , Epigenómica , Genoma Humano , Humanos , Elementos Reguladores de la TranscripciónRESUMEN
VPS34 is a key regulator of endomembrane dynamics and cargo trafficking, and is essential in cultured cell lines and in mice. To better characterize the role of VPS34 in cell growth, we performed unbiased cell line profiling studies with the selective VPS34 inhibitor PIK-III and identified RKO as a VPS34-dependent cellular model. Pooled CRISPR screen in the presence of PIK-III revealed endolysosomal genes as genetic suppressors. Dissecting VPS34-dependent alterations with transcriptional profiling, we found the induction of hypoxia response and cholesterol biosynthesis as key signatures. Mechanistically, acute VPS34 inhibition enhanced lysosomal degradation of transferrin and low-density lipoprotein receptors leading to impaired iron and cholesterol uptake. Excess soluble iron, but not cholesterol, was sufficient to partially rescue the effects of VPS34 inhibition on mitochondrial respiration and cell growth, indicating that iron limitation is the primary driver of VPS34-dependency in RKO cells. Loss of RAB7A, an endolysosomal marker and top suppressor in our genetic screen, blocked transferrin receptor degradation, restored iron homeostasis and reversed the growth defect as well as metabolic alterations due to VPS34 inhibition. Altogether, our findings suggest that impaired iron mobilization via the VPS34-RAB7A axis drive VPS34-dependence in certain cancer cells.
Asunto(s)
Fosfatidilinositol 3-Quinasas Clase III/metabolismo , Hierro/metabolismo , Neoplasias/metabolismo , Hipoxia de la Célula , Línea Celular Tumoral , Proliferación Celular , Colesterol/biosíntesis , Colesterol/genética , Fosfatidilinositol 3-Quinasas Clase III/genética , Endosomas/metabolismo , Células HEK293 , Humanos , Lisosomas/metabolismo , Receptores de LDL/metabolismo , Transferrina/metabolismo , Proteínas de Unión al GTP rab/genética , Proteínas de Unión al GTP rab/metabolismo , Proteínas de Unión a GTP rab7RESUMEN
BACKGROUND & AIMS: Hepatocyte-like cells (HLCs) differentiated from induced pluripotent stem cells (iPSCs) have emerged as a promising cell culture model to study metabolism, biotransformation, viral infections and inherited liver diseases. iPSCs provide an unlimited supply for the generation of HLCs, but incomplete HLC differentiation remains a major challenge. iPSC may carry-on a tissue of origin dependent expression memory influencing iPSC differentiation into different cell types. Whether liver derived iPSCs (Li-iPSCs) would allow the generation of more fully differentiated HLCs is not known. METHODS: In the current study, we used primary liver cells (PLCs) expanded from liver needle biopsies and reprogrammed them into Li-iPSCs using a non-integrative Sendai virus-based system. Li-iPSCs were differentiated into HLCs using established differentiation protocols. The HLC phenotype was characterized at the protein, functional and transcriptional level. RNA sequencing data were generated from the originating liver biopsies, the Li-iPSCs, fibroblast derived iPSCs, and differentiated HLCs, and used to characterize and compare their transcriptome profiles. RESULTS: Li-iPSCs indeed retain a liver specific transcriptional footprint. Li-iPSCs can be propagated to provide an unlimited supply of cells for differentiation into Li-HLCs. Similar to HLCs derived from fibroblasts, Li-HLCs could not be fully differentiated into hepatocytes. Relative to the originating liver, Li-HLCs showed lower expression of liver specific transcription factors and increased expression of genes involved in the differentiation of other tissues. CONCLUSIONS: PLCs and Li-iPSCs obtained from small pieces of human needle liver biopsies constitute a novel unlimited source for the production of HLCs. Despite the preservation of a liver specific gene expression footprint in Li-iPSCs, the generation of fully differentiated hepatocytes cannot be achieved with the current differentiation protocols.
Asunto(s)
Hepatocitos/citología , Células Madre Pluripotentes Inducidas/citología , Hígado/patología , Animales , Biomarcadores/metabolismo , Biopsia , Diferenciación Celular/genética , Proliferación Celular , Células Cultivadas , Reprogramación Celular , Análisis por Conglomerados , Fibroblastos/citología , Regulación de la Expresión Génica , Hepatocitos/metabolismo , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Ratones SCID , Análisis de Componente Principal , Factores de Transcripción/metabolismo , Transcripción GenéticaRESUMEN
The gut-pancreas axis plays a key role in the regulation of glucose homeostasis and may be therapeutically exploited to treat not only type 2 diabetes but also hypoglycemia and hyperinsulinemia. We identify a novel enteroendocrine cell type expressing the peptide hormone urotensin 2B (UTS2B). UTS2B inhibits glucagon-like peptide-1 (GLP-1) secretion in mouse intestinal crypts and organoids, not by signaling through its cognate receptor UTS2R but through the activation of the somatostatin receptor (SSTR) 5. Circulating UTS2B concentrations in mice are physiologically regulated during starvation, further linking this peptide hormone to metabolism. Furthermore, administration of UTS2B to starved mice demonstrates that it is capable of regulating blood glucose and plasma concentrations of GLP-1 and insulin in vivo. Altogether, our results identify a novel cellular source of UTS2B in the gut, which acts in a paracrine manner to regulate GLP-1 secretion through SSTR5. These findings uncover a fine-tuning mechanism mediated by a ligand-receptor pair in the regulation of gut hormone secretion, which can potentially be exploited to correct metabolic unbalance caused by overactivation of the gut-pancreas axis.
Asunto(s)
Células Enteroendocrinas/metabolismo , Péptido 1 Similar al Glucagón/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Hormonas Peptídicas/metabolismo , Receptores de Somatostatina/metabolismo , Animales , Glucosa/metabolismo , Yeyuno/citología , Yeyuno/metabolismo , Masculino , Ratones Endogámicos C57BL , Ratones Transgénicos , Comunicación ParacrinaRESUMEN
Transcription factor networks shape the gene expression programs responsible for normal cell identity and pathogenic state. Using Core Regulatory Circuitry analysis (CRC), we identify PAX8 as a candidate oncogene in Renal Cell Carcinoma (RCC) cells. Validation of large-scale functional genomic screens confirms that PAX8 silencing leads to decreased proliferation of RCC cell lines. Epigenomic analyses of PAX8-dependent cistrome demonstrate that PAX8 largely occupies active enhancer elements controlling genes involved in various metabolic pathways. We selected the ferroxidase Ceruloplasmin (CP) as an exemplary gene to dissect PAX8 molecular functions. PAX8 recruits histone acetylation activity at bound enhancers looping onto the CP promoter. Importantly, CP expression correlates with sensitivity to PAX8 silencing and identifies a subset of RCC cases with poor survival. Our data identifies PAX8 as a candidate oncogene in RCC and provides a potential biomarker to monitor its activity.
Asunto(s)
Carcinoma de Células Renales/genética , Ceruloplasmina/genética , Elementos de Facilitación Genéticos/genética , Regulación Neoplásica de la Expresión Génica/genética , Neoplasias Renales/genética , Factor de Transcripción PAX8/genética , Acetilación , Biomarcadores de Tumor/genética , Línea Celular Tumoral , Proliferación Celular/genética , Ceruloplasmina/metabolismo , Histonas/metabolismo , Humanos , Regiones Promotoras Genéticas/genética , Interferencia de ARN , ARN Interferente Pequeño/genéticaRESUMEN
The multiciliated cell (MCC) is an evolutionarily conserved cell type, which in vertebrates functions to promote directional fluid flow across epithelial tissues. In the conducting airway, MCCs are generated by basal stem/progenitor cells and act in concert with secretory cells to perform mucociliary clearance to expel pathogens from the lung. Studies in multiple systems, including Xenopus laevis epidermis, murine trachea, and zebrafish kidney, have uncovered a transcriptional network that regulates multiple steps of multiciliogenesis, ultimately leading to an MCC with hundreds of motile cilia extended from their apical surface, which beat in a coordinated fashion. Here, we used a pool-based short hairpin RNA screening approach and identified TRRAP, an essential component of multiple histone acetyltransferase complexes, as a central regulator of MCC formation. Using a combination of immunofluorescence, signaling pathway modulation, and genomic approaches, we show that (a) TRRAP acts downstream of the Notch2-mediated basal progenitor cell fate decision and upstream of Multicilin to control MCC differentiation; and (b) TRRAP binds to the promoters and regulates the expression of a network of genes involved in MCC differentiation and function, including several genes associated with human ciliopathies.
Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Cilios/metabolismo , Proteínas Nucleares/metabolismo , Proteínas de Ciclo Celular/metabolismo , Línea Celular , Linaje de la Célula , Epigénesis Genética , Células Epiteliales/metabolismo , Factores de Transcripción Forkhead/metabolismo , Regulación de la Expresión Génica , Humanos , Pulmón/citología , ARN Interferente Pequeño/metabolismo , Receptor Notch2 , Transducción de Señal , Factores de TranscripciónRESUMEN
Relapses of Plasmodium dormant liver hypnozoites compromise malaria eradication efforts. New radical cure drugs are urgently needed, yet the vast gap in knowledge of hypnozoite biology impedes drug discovery. We previously unraveled the transcriptome of 6 to 7 day-old P. cynomolgi liver stages, highlighting pathways associated with hypnozoite dormancy (Voorberg-van der Wel et al., 2017). We now extend these findings by transcriptome profiling of 9 to 10 day-old liver stage parasites, thus revealing for the first time the maturation of the dormant stage over time. Although progression of dormancy leads to a 10-fold decrease in transcription and expression of only 840 genes, including genes associated with housekeeping functions, we show that pathways involved in quiescence, energy metabolism and maintenance of genome integrity remain the prevalent pathways active in mature hypnozoites.
Asunto(s)
Perfilación de la Expresión Génica , Hígado/parasitología , Plasmodium cynomolgi/crecimiento & desarrollo , Plasmodium cynomolgi/genética , Animales , Primates , Factores de TiempoRESUMEN
Oral and intestinal mucositis is a debilitating side effect of radiation treatment. A mouse model of radiation-induced mucositis leads to weight loss and tissue damage, reflecting the human ailment as it responds to keratinocyte growth factor (KGF), the standard-of-care treatment. Cultured intestinal crypt organoids allowed the development of an assay monitoring the effect of treatments of intestinal epithelium to radiation-induced damage. This in vitro assay resembles the mouse model as KGF and roof plate-specific spondin-1 (RSPO1) enhanced crypt organoid recovery following radiation. Screening identified compounds that increased the survival of organoids postradiation. Testing of these compounds revealed that the organoids changed their responses over time. Unbiased transcriptome analysis was performed on crypt organoid cultures at various time points in culture to investigate this adaptive behavior. A number of genes and pathways were found to be modulated over time, providing a rationale for the altered sensitivity of the organoid cultures. This report describes an in vitro assay that reflects aspects of human disease. The assay was used to identify bioactive compounds, which served as probes to interrogate the biology of crypt organoids over prolonged culture. The pathways that are changing over time may offer potential targets for treatment of mucositis.
Asunto(s)
Ensayos de Selección de Medicamentos Antitumorales/métodos , Intestinos/efectos de los fármacos , Organoides/efectos de los fármacos , Animales , Técnicas de Cultivo de Célula/métodos , Factor 7 de Crecimiento de Fibroblastos/metabolismo , Mucosa Intestinal/efectos de los fármacos , Mucosa Intestinal/metabolismo , Ratones , Ratones Endogámicos C57BL , Organoides/metabolismo , Trombospondinas/metabolismo , Transcriptoma/fisiologíaRESUMEN
Plasmodium liver hypnozoites, which cause disease relapse, are widely considered to be the last barrier towards malaria eradication. The biology of this quiescent form of the parasite is poorly understood which hinders drug discovery. We report a comparative transcriptomic dataset of replicating liver schizonts and dormant hypnozoites of the relapsing parasite Plasmodium cynomolgi. Hypnozoites express only 34% of Plasmodium physiological pathways, while 91% are expressed in replicating schizonts. Few known malaria drug targets are expressed in quiescent parasites, but pathways involved in microbial dormancy, maintenance of genome integrity and ATP homeostasis were robustly expressed. Several transcripts encoding heavy metal transporters were expressed in hypnozoites and the copper chelator neocuproine was cidal to all liver stage parasites. This transcriptomic dataset is a valuable resource for the discovery of vaccines and effective treatments to combat vivax malaria.