Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Int J Mol Sci ; 24(12)2023 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-37373059

RESUMEN

RNA biology has gained extensive recognition in the last two decades due to the identification of novel transcriptomic elements and molecular functions. Cancer arises, in part, due to the accumulation of mutations that greatly contribute to genomic instability. However, the identification of differential gene expression patterns of wild-type loci has exceeded the boundaries of mutational study and has significantly contributed to the identification of molecular mechanisms that drive carcinogenic transformation. Non-coding RNA molecules have provided a novel avenue of exploration, providing additional routes for evaluating genomic and epigenomic regulation. Of particular focus, long non-coding RNA molecule expression has been demonstrated to govern and direct cellular activity, thus evidencing a correlation between aberrant long non-coding RNA expression and the pathological transformation of cells. lncRNA classification, structure, function, and therapeutic utilization have expanded cancer studies and molecular targeting, and understanding the lncRNA interactome aids in defining the unique transcriptomic signatures of cancer cell phenotypes.


Asunto(s)
Neoplasias , ARN Largo no Codificante , Humanos , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Transcriptoma , Perfilación de la Expresión Génica , Neoplasias/genética
2.
Adv Exp Med Biol ; 1350: 145-155, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34888848

RESUMEN

A large majority of all thyroid cancers are papillary thyroid carcinomas (PTC), named for the specific papillary architecture observed histologically. Despite the high rate of success with modern diagnostic and therapeutic algorithms, there are significant areas where the management of PTC can be improved. Aggressive PTC subtypes that are refractory to radioactive iodine (RAI) therapy carry a more severe prognosis and account for most of PTC-related deaths. As lymph node metastasis is present in roughly 40% of all adult PTC cases, higher specificity in these tests is a clinical need, especially since lymph node metastases are associated with reduced survival and higher recurrence rates. Additionally, this cancer can progress to more dedifferentiated and aggressive variants, such as poorly differentiated papillary thyroid cancer (PDPTC) and anaplastic thyroid cancer (ATC). Therefore, development of more sensitive and specific detection methods that allow unnecessary surgeries to be avoided is of the utmost importance. The body of large-scale, unbiased gene expression analysis in PTC has focused on the coding transcriptome, specifically mRNAs and microRNAs. However, there have been implications for the potential use of long noncoding RNAs (lncRNAs) in PTC diagnosis, prognosis, and treatment via the utilization of genome-wide studies of patient samples. lncRNAs have diverse regulatory potential in gene expression, alternative splicing, posttranscriptional mRNA modification, and epigenomic alterations. Many lncRNAs have tissue-specific expression and are demonstrated to play key roles in cancer progression and prognosis. However, lncRNAs are not being exploited as biomarkers or therapeutic targets currently, despite their elucidated effects on oncogenesis. These potent biomarkers would be revolutionary in detection at early stages, as this significantly increases the chances of survival. Their aberrant expression in cancer and correlation with steps in tumorigenesis as well as their role in differentiation would allow for a promising role as a prognostic and diagnostic biomarker in thyroid cancer. This would help prevent the more aggressive ATC that derives from dedifferentiation of the less aggressive PTC and FTC. The targeting of the specific lncRNAs could also pose a valuable treatment option via preventing or reversing this dedifferentiation process and making this usually refractory form of thyroid cancer more responsive to standard treatment options.


Asunto(s)
Fibroblastos Asociados al Cáncer , Neoplasias de la Tiroides , Regulación Neoplásica de la Expresión Génica , Humanos , Radioisótopos de Yodo , Metástasis Linfática , Cáncer Papilar Tiroideo/genética , Neoplasias de la Tiroides/genética , Microambiente Tumoral/genética
3.
Adv Exp Med Biol ; 1350: 33-66, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34888843

RESUMEN

Thyroid cancer incidence is increasing at an alarming rate, almost tripling every decade. About 44,280 new cases of thyroid cancer (12,150 in men and 32,130 in women) are estimated to be diagnosed in 2021, with an estimated death toll of around 2200. Although most thyroid tumors are treatable and associated with a favorable outcome, anaplastic thyroid cancer (ATC) is extremely aggressive with a grim prognosis of 6-9 months post-diagnosis. A large contributing factor to this aggressive nature is that ATC is completely refractory to mainstream therapies. Analysis of the tumor microenvironment (TME) associated with ATC can relay insight to the pathological realm that encompasses tumors and aids in cancer progression and proliferation. The TME is defined as a complex niche that surrounds a tumor and involves a plethora of cellular components whose secretions can modulate the environment in order to favor tumor progression. The cellular heterogeneity of the TME contributes to its dynamic function due to the presence of both immune and nonimmune resident, infiltrating, and interacting cell types. Associated immune cells discussed in this chapter include macrophages, dendritic cells (DCs), natural killer (NK) cells, and tumor-infiltrating lymphocytes (TILs). Nonimmune cells also play a role in the establishment and proliferation of the TME, including neuroendocrine (NE) cells, adipocytes, endothelial cells (ECs), mesenchymal stem cells (MSCs), and fibroblasts. The dynamic nature of the TME contributes greatly to cancer progression.Recent work has found ATC tissues to be defined by a T cell-inflamed "hot" tumor immune microenvironment (TIME) as evidenced by presence of CD3+ and CD8+ T cells. These tumor types are amenable to immune checkpoint blockade (ICB) therapy. This therapeutic avenue, as of 2021, has remained unexplored in ATC. New studies should seek to explore the therapeutic feasibility of a combination therapy, through the use of a small molecule inhibitor with ICB in ATC. Screening of in vitro model systems representative of papillary, anaplastic, and follicular thyroid cancer explored the expression of 29 immune checkpoint molecules. There are higher expressions of HVEM, BTLA, and CD160 in ATC cell lines when compared to the other TC subtypes. The expression level of HVEM was more than 30-fold higher in ATC compared to the others, on average. HVEM is a member of tumor necrosis factor (TNF) receptor superfamily, which acts as a bidirectional switch through interaction with BTLA, CD160, and LIGHT, in a cis or trans manner. Given the T cell-inflamed hot TIME in ATC, expression of HVEM on tumor cells was suggestive of a possibility for complex crosstalk of HVEM with inflammatory cytokines. Altogether, there is emerging evidence of a T cell-inflamed TIME in ATC along with the expression of immune checkpoint proteins HVEM, BTLA, and CD160 in ATC. This can open doors for combination therapies using small molecule inhibitors targeting downstream effectors of MAPK pathway and antagonistic antibodies targeting the HVEM/BTLA axis as a potentially viable therapeutic avenue for ATC patients. With this being stated, the development of adaptive resistance to targeted therapies is inevitable; therefore, using a combination therapy that targets the TIME can serve as a preemptive tactic against the characteristic therapeutic resistance that is seen in ATC. The dynamic nature of the TME, including the immune cells, nonimmune cells, and acellular components, can serve as viable targets for combination therapy in ATC. Understanding the complex interactions of these associated cells and the paradigm in which their secretions and components can serve as immunomodulators are critical points of understanding when trying to develop therapeutics specifically tailored for the anaplastic thyroid carcinoma microenvironment.


Asunto(s)
Carcinoma Anaplásico de Tiroides , Neoplasias de la Tiroides , Comunicación Celular , Células Endoteliales , Femenino , Humanos , Inmunoterapia , Masculino , Receptores Inmunológicos , Miembro 14 de Receptores del Factor de Necrosis Tumoral , Carcinoma Anaplásico de Tiroides/terapia , Neoplasias de la Tiroides/terapia , Microambiente Tumoral
4.
Biology (Basel) ; 13(5)2024 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-38785786

RESUMEN

Thyroid Cancer (TC) is the most common endocrine malignancy, with increasing incidence globally. Papillary thyroid cancer (PTC), a differentiated form of TC, accounts for approximately 90% of TC and occurs predominantly in women of childbearing age. Although responsive to current treatments, recurrence of PTC by middle age is common and is much more refractive to treatment. Undifferentiated TC, particularly anaplastic thyroid cancer (ATC), is the most aggressive TC subtype, characterized by it being resistant and unresponsive to all therapeutic and surgical interventions. Further, ATC is one of the most aggressive and lethal malignancies across all cancer types. Despite the differences in therapeutic needs in differentiated vs. undifferentiated TC subtypes, there is a critical unmet need for the identification of molecular biomarkers that can aid in early diagnosis, prognosis, and actionable therapeutic targets for intervention. Advances in the field of cancer genomics have enabled for the elucidation of differential gene expression patterns between tumors and healthy tissue. A novel category of molecules, known as non-coding RNAs, can themselves be differentially expressed, and extensively contribute to the up- and downregulation of protein coding genes, serving as master orchestrators of regulated and dysregulated gene expression patterns. These non-coding RNAs have been identified for their roles in driving carcinogenic patterns at various stages of tumor development and have become attractive targets for study. The identification of specific genes that are differentially expressed can give insight into mechanisms that drive carcinogenic patterns, filling the gaps of deciphering molecular and cellular processes that modulate TC subtypes, outside of well-known driver mutations.

5.
Biomolecules ; 14(4)2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38672402

RESUMEN

Circular RNAs (circRNAs) are stable, enclosed, non-coding RNA molecules with dynamic regulatory propensity. Their biogenesis involves a back-splicing process, forming a highly stable and operational RNA molecule. Dysregulated circRNA expression can drive carcinogenic and tumorigenic transformation through the orchestration of epigenetic modifications via extensive RNA and protein-binding domains. These multi-ranged functional capabilities have unveiled extensive identification of previously unknown molecular and cellular patterns of cancer cells. Reliable circRNA expression patterns can aid in early disease detection and provide criteria for genome-specific personalized medicine. Studies described in this review have revealed the novelty of circRNAs and their biological ss as prognostic and diagnostic biomarkers.


Asunto(s)
Biomarcadores de Tumor , Regulación Neoplásica de la Expresión Génica , Neoplasias , ARN Circular , Humanos , ARN Circular/genética , ARN Circular/metabolismo , Neoplasias/genética , Neoplasias/metabolismo , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Epigénesis Genética , Animales
6.
Cancers (Basel) ; 15(8)2023 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-37190127

RESUMEN

Thyroid cancer (TC) is the most common endocrine malignancy, with an approximately three-fold higher incidence in women. TCGA data indicate that androgen receptor (AR) RNA is significantly downregulated in PTC. In this study, AR-expressing 8505C (anaplastic TC) (84E7) and K1 (papillary TC) cells experienced an 80% decrease in proliferation over 6 days of exposure to physiological levels of 5α-dihydrotestosterone (DHT). In 84E7, continuous AR activation resulted in G1 growth arrest, accompanied by a flattened, vacuolized cell morphology, with enlargement of the cell and the nuclear area, which is indicative of senescence; this was substantiated by an increase in senescence-associated ß-galactosidase activity, total RNA and protein content, and reactive oxygen species. Additionally, the expression of tumor suppressor proteins p16, p21, and p27 was significantly increased. A non-inflammatory senescence-associated secretory profile was induced, significantly decreasing inflammatory cytokines and chemokines such as IL-6, IL-8, TNF, RANTES, and MCP-1; this is consistent with the lower incidence of thyroid inflammation and cancer in men. Migration increased six-fold, which is consistent with the clinical observation of increased lymph node metastasis in men. Proteolytic invasion potential was not significantly altered, which is consistent with unchanged MMP/TIMP expression. Our studies provide evidence that the induction of senescence is a novel function of AR activation in thyroid cancer cells, and may underlie the protective role of AR activation in the decreased incidence of TC in men.

7.
Cells ; 11(19)2022 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-36231143

RESUMEN

Papillary thyroid cancer is the most common endocrine malignancy, occurring at an incidence rate of 12.9 per 100,000 in the US adult population. While the overall 10-year survival of PTC nears 95%, the presence of lymph node metastasis (LNM) or capsular invasion indicates the need for extensive neck dissection with possible adjuvant radioactive iodine therapy. While imaging modalities such as ultrasound and CT are currently in use for the detection of suspicious cervical lymph nodes, their sensitivities for tumor-positive nodes are low. Therefore, advancements in preoperative detection of LNM may optimize the surgical and medical management of patients with thyroid cancer. To this end, we analyzed bulk RNA-sequencing datasets to identify candidate markers highly predictive of LNM. We identified MEG3, a long-noncoding RNA previously described as a tumor suppressor when expressed in malignant cells, as highly associated with LNM tissue. Furthermore, the expression of MEG3 was highly predictive of tumor infiltration with cancer-associated fibroblasts, and single-cell RNA-sequencing data revealed the expression of MEG3 was isolated to cancer-associated fibroblasts (CAFs) in the most aggressive form of thyroid cancers. Our findings suggest that MEG3 expression, specifically in CAFs, is highly associated with LNM and may be a driver of aggressive disease.


Asunto(s)
Fibroblastos Asociados al Cáncer , Carcinoma Papilar , ARN Largo no Codificante/genética , Neoplasias de la Tiroides , Adulto , Fibroblastos Asociados al Cáncer/patología , Carcinoma Papilar/genética , Carcinoma Papilar/patología , Carcinoma Papilar/cirugía , Humanos , Radioisótopos de Yodo , Metástasis Linfática , Cáncer Papilar Tiroideo/genética , Neoplasias de la Tiroides/genética , Neoplasias de la Tiroides/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA